ScheduleDAGInstrs.cpp revision 0a4c09e724bd3ab7c9a1d3a1615894e7bf209179
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineMemOperand.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/PseudoSourceValue.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26#include "llvm/Target/TargetSubtarget.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/ADT/SmallSet.h"
30using namespace llvm;
31
32ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
33                                     const MachineLoopInfo &mli,
34                                     const MachineDominatorTree &mdt)
35  : ScheduleDAG(mf), MLI(mli), MDT(mdt), LoopRegs(MLI, MDT) {}
36
37/// Run - perform scheduling.
38///
39void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
40                            MachineBasicBlock::iterator begin,
41                            MachineBasicBlock::iterator end,
42                            unsigned endcount) {
43  BB = bb;
44  Begin = begin;
45  InsertPosIndex = endcount;
46
47  ScheduleDAG::Run(bb, end);
48}
49
50/// getUnderlyingObjectFromInt - This is the function that does the work of
51/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
52static const Value *getUnderlyingObjectFromInt(const Value *V) {
53  do {
54    if (const Operator *U = dyn_cast<Operator>(V)) {
55      // If we find a ptrtoint, we can transfer control back to the
56      // regular getUnderlyingObjectFromInt.
57      if (U->getOpcode() == Instruction::PtrToInt)
58        return U->getOperand(0);
59      // If we find an add of a constant or a multiplied value, it's
60      // likely that the other operand will lead us to the base
61      // object. We don't have to worry about the case where the
62      // object address is somehow being computed by the multiply,
63      // because our callers only care when the result is an
64      // identifibale object.
65      if (U->getOpcode() != Instruction::Add ||
66          (!isa<ConstantInt>(U->getOperand(1)) &&
67           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
68        return V;
69      V = U->getOperand(0);
70    } else {
71      return V;
72    }
73    assert(isa<IntegerType>(V->getType()) && "Unexpected operand type!");
74  } while (1);
75}
76
77/// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
78/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
79static const Value *getUnderlyingObject(const Value *V) {
80  // First just call Value::getUnderlyingObject to let it do what it does.
81  do {
82    V = V->getUnderlyingObject();
83    // If it found an inttoptr, use special code to continue climing.
84    if (Operator::getOpcode(V) != Instruction::IntToPtr)
85      break;
86    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
87    // If that succeeded in finding a pointer, continue the search.
88    if (!isa<PointerType>(O->getType()))
89      break;
90    V = O;
91  } while (1);
92  return V;
93}
94
95/// getUnderlyingObjectForInstr - If this machine instr has memory reference
96/// information and it can be tracked to a normal reference to a known
97/// object, return the Value for that object. Otherwise return null.
98static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI) {
99  if (!MI->hasOneMemOperand() ||
100      !(*MI->memoperands_begin())->getValue() ||
101      (*MI->memoperands_begin())->isVolatile())
102    return 0;
103
104  const Value *V = (*MI->memoperands_begin())->getValue();
105  if (!V)
106    return 0;
107
108  V = getUnderlyingObject(V);
109  if (!isa<PseudoSourceValue>(V) && !isIdentifiedObject(V))
110    return 0;
111
112  return V;
113}
114
115void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
116  if (MachineLoop *ML = MLI.getLoopFor(BB))
117    if (BB == ML->getLoopLatch()) {
118      MachineBasicBlock *Header = ML->getHeader();
119      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
120           E = Header->livein_end(); I != E; ++I)
121        LoopLiveInRegs.insert(*I);
122      LoopRegs.VisitLoop(ML);
123    }
124}
125
126void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
127  // We'll be allocating one SUnit for each instruction, plus one for
128  // the region exit node.
129  SUnits.reserve(BB->size());
130
131  // We build scheduling units by walking a block's instruction list from bottom
132  // to top.
133
134  // Remember where a generic side-effecting instruction is as we procede. If
135  // ChainMMO is null, this is assumed to have arbitrary side-effects. If
136  // ChainMMO is non-null, then Chain makes only a single memory reference.
137  SUnit *Chain = 0;
138  MachineMemOperand *ChainMMO = 0;
139
140  // Memory references to specific known memory locations are tracked so that
141  // they can be given more precise dependencies.
142  std::map<const Value *, SUnit *> MemDefs;
143  std::map<const Value *, std::vector<SUnit *> > MemUses;
144
145  // Check to see if the scheduler cares about latencies.
146  bool UnitLatencies = ForceUnitLatencies();
147
148  // Ask the target if address-backscheduling is desirable, and if so how much.
149  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
150  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
151
152  // Walk the list of instructions, from bottom moving up.
153  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
154       MII != MIE; --MII) {
155    MachineInstr *MI = prior(MII);
156    const TargetInstrDesc &TID = MI->getDesc();
157    assert(!TID.isTerminator() && !MI->isLabel() &&
158           "Cannot schedule terminators or labels!");
159    // Create the SUnit for this MI.
160    SUnit *SU = NewSUnit(MI);
161
162    // Assign the Latency field of SU using target-provided information.
163    if (UnitLatencies)
164      SU->Latency = 1;
165    else
166      ComputeLatency(SU);
167
168    // Add register-based dependencies (data, anti, and output).
169    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
170      const MachineOperand &MO = MI->getOperand(j);
171      if (!MO.isReg()) continue;
172      unsigned Reg = MO.getReg();
173      if (Reg == 0) continue;
174
175      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
176      std::vector<SUnit *> &UseList = Uses[Reg];
177      std::vector<SUnit *> &DefList = Defs[Reg];
178      // Optionally add output and anti dependencies. For anti
179      // dependencies we use a latency of 0 because for a multi-issue
180      // target we want to allow the defining instruction to issue
181      // in the same cycle as the using instruction.
182      // TODO: Using a latency of 1 here for output dependencies assumes
183      //       there's no cost for reusing registers.
184      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
185      unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
186      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
187        SUnit *DefSU = DefList[i];
188        if (DefSU != SU &&
189            (Kind != SDep::Output || !MO.isDead() ||
190             !DefSU->getInstr()->registerDefIsDead(Reg)))
191          DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
192      }
193      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
194        std::vector<SUnit *> &DefList = Defs[*Alias];
195        for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
196          SUnit *DefSU = DefList[i];
197          if (DefSU != SU &&
198              (Kind != SDep::Output || !MO.isDead() ||
199               !DefSU->getInstr()->registerDefIsDead(Reg)))
200            DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
201        }
202      }
203
204      if (MO.isDef()) {
205        // Add any data dependencies.
206        unsigned DataLatency = SU->Latency;
207        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
208          SUnit *UseSU = UseList[i];
209          if (UseSU != SU) {
210            unsigned LDataLatency = DataLatency;
211            // Optionally add in a special extra latency for nodes that
212            // feed addresses.
213            // TODO: Do this for register aliases too.
214            // TODO: Perhaps we should get rid of
215            // SpecialAddressLatency and just move this into
216            // adjustSchedDependency for the targets that care about
217            // it.
218            if (SpecialAddressLatency != 0 && !UnitLatencies) {
219              MachineInstr *UseMI = UseSU->getInstr();
220              const TargetInstrDesc &UseTID = UseMI->getDesc();
221              int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
222              assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
223              if ((UseTID.mayLoad() || UseTID.mayStore()) &&
224                  (unsigned)RegUseIndex < UseTID.getNumOperands() &&
225                  UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
226                LDataLatency += SpecialAddressLatency;
227            }
228            // Adjust the dependence latency using operand def/use
229            // information (if any), and then allow the target to
230            // perform its own adjustments.
231            const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
232            if (!UnitLatencies) {
233              ComputeOperandLatency(SU, UseSU, (SDep &)dep);
234              ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
235            }
236            UseSU->addPred(dep);
237          }
238        }
239        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
240          std::vector<SUnit *> &UseList = Uses[*Alias];
241          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
242            SUnit *UseSU = UseList[i];
243            if (UseSU != SU) {
244              const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
245              if (!UnitLatencies) {
246                ComputeOperandLatency(SU, UseSU, (SDep &)dep);
247                ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
248              }
249              UseSU->addPred(dep);
250            }
251          }
252        }
253
254        // If a def is going to wrap back around to the top of the loop,
255        // backschedule it.
256        if (!UnitLatencies && DefList.empty()) {
257          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
258          if (I != LoopRegs.Deps.end()) {
259            const MachineOperand *UseMO = I->second.first;
260            unsigned Count = I->second.second;
261            const MachineInstr *UseMI = UseMO->getParent();
262            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
263            const TargetInstrDesc &UseTID = UseMI->getDesc();
264            // TODO: If we knew the total depth of the region here, we could
265            // handle the case where the whole loop is inside the region but
266            // is large enough that the isScheduleHigh trick isn't needed.
267            if (UseMOIdx < UseTID.getNumOperands()) {
268              // Currently, we only support scheduling regions consisting of
269              // single basic blocks. Check to see if the instruction is in
270              // the same region by checking to see if it has the same parent.
271              if (UseMI->getParent() != MI->getParent()) {
272                unsigned Latency = SU->Latency;
273                if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
274                  Latency += SpecialAddressLatency;
275                // This is a wild guess as to the portion of the latency which
276                // will be overlapped by work done outside the current
277                // scheduling region.
278                Latency -= std::min(Latency, Count);
279                // Add the artifical edge.
280                ExitSU.addPred(SDep(SU, SDep::Order, Latency,
281                                    /*Reg=*/0, /*isNormalMemory=*/false,
282                                    /*isMustAlias=*/false,
283                                    /*isArtificial=*/true));
284              } else if (SpecialAddressLatency > 0 &&
285                         UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
286                // The entire loop body is within the current scheduling region
287                // and the latency of this operation is assumed to be greater
288                // than the latency of the loop.
289                // TODO: Recursively mark data-edge predecessors as
290                //       isScheduleHigh too.
291                SU->isScheduleHigh = true;
292              }
293            }
294            LoopRegs.Deps.erase(I);
295          }
296        }
297
298        UseList.clear();
299        if (!MO.isDead())
300          DefList.clear();
301        DefList.push_back(SU);
302      } else {
303        UseList.push_back(SU);
304      }
305    }
306
307    // Add chain dependencies.
308    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
309    // after stack slots are lowered to actual addresses.
310    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
311    // produce more precise dependence information.
312    if (TID.isCall() || TID.hasUnmodeledSideEffects()) {
313    new_chain:
314      // This is the conservative case. Add dependencies on all memory
315      // references.
316      if (Chain)
317        Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
318      Chain = SU;
319      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
320        PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
321      PendingLoads.clear();
322      for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
323           E = MemDefs.end(); I != E; ++I) {
324        I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
325        I->second = SU;
326      }
327      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
328           MemUses.begin(), E = MemUses.end(); I != E; ++I) {
329        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
330          I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency));
331        I->second.clear();
332      }
333      // See if it is known to just have a single memory reference.
334      MachineInstr *ChainMI = Chain->getInstr();
335      const TargetInstrDesc &ChainTID = ChainMI->getDesc();
336      if (!ChainTID.isCall() &&
337          !ChainTID.hasUnmodeledSideEffects() &&
338          ChainMI->hasOneMemOperand() &&
339          !(*ChainMI->memoperands_begin())->isVolatile() &&
340          (*ChainMI->memoperands_begin())->getValue())
341        // We know that the Chain accesses one specific memory location.
342        ChainMMO = *ChainMI->memoperands_begin();
343      else
344        // Unknown memory accesses. Assume the worst.
345        ChainMMO = 0;
346    } else if (TID.mayStore()) {
347      if (const Value *V = getUnderlyingObjectForInstr(MI)) {
348        // A store to a specific PseudoSourceValue. Add precise dependencies.
349        // Handle the def in MemDefs, if there is one.
350        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
351        if (I != MemDefs.end()) {
352          I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
353                                  /*isNormalMemory=*/true));
354          I->second = SU;
355        } else {
356          MemDefs[V] = SU;
357        }
358        // Handle the uses in MemUses, if there are any.
359        std::map<const Value *, std::vector<SUnit *> >::iterator J =
360          MemUses.find(V);
361        if (J != MemUses.end()) {
362          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
363            J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
364                                       /*isNormalMemory=*/true));
365          J->second.clear();
366        }
367        // Add dependencies from all the PendingLoads, since without
368        // memoperands we must assume they alias anything.
369        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
370          PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
371        // Add a general dependence too, if needed.
372        if (Chain)
373          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
374      } else
375        // Treat all other stores conservatively.
376        goto new_chain;
377    } else if (TID.mayLoad()) {
378      if (MI->isInvariantLoad(AA)) {
379        // Invariant load, no chain dependencies needed!
380      } else if (const Value *V = getUnderlyingObjectForInstr(MI)) {
381        // A load from a specific PseudoSourceValue. Add precise dependencies.
382        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
383        if (I != MemDefs.end())
384          I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
385                                  /*isNormalMemory=*/true));
386        MemUses[V].push_back(SU);
387
388        // Add a general dependence too, if needed.
389        if (Chain && (!ChainMMO ||
390                      (ChainMMO->isStore() || ChainMMO->isVolatile())))
391          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
392      } else if (MI->hasVolatileMemoryRef()) {
393        // Treat volatile loads conservatively. Note that this includes
394        // cases where memoperand information is unavailable.
395        goto new_chain;
396      } else {
397        // A normal load. Depend on the general chain, as well as on
398        // all stores. In the absense of MachineMemOperand information,
399        // we can't even assume that the load doesn't alias well-behaved
400        // memory locations.
401        if (Chain)
402          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
403        for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
404             E = MemDefs.end(); I != E; ++I)
405          I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
406        PendingLoads.push_back(SU);
407      }
408    }
409  }
410
411  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
412    Defs[i].clear();
413    Uses[i].clear();
414  }
415  PendingLoads.clear();
416}
417
418void ScheduleDAGInstrs::FinishBlock() {
419  // Nothing to do.
420}
421
422void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
423  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
424
425  // Compute the latency for the node.
426  SU->Latency =
427    InstrItins.getStageLatency(SU->getInstr()->getDesc().getSchedClass());
428
429  // Simplistic target-independent heuristic: assume that loads take
430  // extra time.
431  if (InstrItins.isEmpty())
432    if (SU->getInstr()->getDesc().mayLoad())
433      SU->Latency += 2;
434}
435
436void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
437                                              SDep& dep) const {
438  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
439  if (InstrItins.isEmpty())
440    return;
441
442  // For a data dependency with a known register...
443  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
444    return;
445
446  const unsigned Reg = dep.getReg();
447
448  // ... find the definition of the register in the defining
449  // instruction
450  MachineInstr *DefMI = Def->getInstr();
451  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
452  if (DefIdx != -1) {
453    int DefCycle = InstrItins.getOperandCycle(DefMI->getDesc().getSchedClass(), DefIdx);
454    if (DefCycle >= 0) {
455      MachineInstr *UseMI = Use->getInstr();
456      const unsigned UseClass = UseMI->getDesc().getSchedClass();
457
458      // For all uses of the register, calculate the maxmimum latency
459      int Latency = -1;
460      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
461        const MachineOperand &MO = UseMI->getOperand(i);
462        if (!MO.isReg() || !MO.isUse())
463          continue;
464        unsigned MOReg = MO.getReg();
465        if (MOReg != Reg)
466          continue;
467
468        int UseCycle = InstrItins.getOperandCycle(UseClass, i);
469        if (UseCycle >= 0)
470          Latency = std::max(Latency, DefCycle - UseCycle + 1);
471      }
472
473      // If we found a latency, then replace the existing dependence latency.
474      if (Latency >= 0)
475        dep.setLatency(Latency);
476    }
477  }
478}
479
480void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
481  SU->getInstr()->dump();
482}
483
484std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
485  std::string s;
486  raw_string_ostream oss(s);
487  if (SU == &EntrySU)
488    oss << "<entry>";
489  else if (SU == &ExitSU)
490    oss << "<exit>";
491  else
492    SU->getInstr()->print(oss);
493  return oss.str();
494}
495
496// EmitSchedule - Emit the machine code in scheduled order.
497MachineBasicBlock *ScheduleDAGInstrs::
498EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) {
499  // For MachineInstr-based scheduling, we're rescheduling the instructions in
500  // the block, so start by removing them from the block.
501  while (Begin != InsertPos) {
502    MachineBasicBlock::iterator I = Begin;
503    ++Begin;
504    BB->remove(I);
505  }
506
507  // Then re-insert them according to the given schedule.
508  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
509    SUnit *SU = Sequence[i];
510    if (!SU) {
511      // Null SUnit* is a noop.
512      EmitNoop();
513      continue;
514    }
515
516    BB->insert(InsertPos, SU->getInstr());
517  }
518
519  // Update the Begin iterator, as the first instruction in the block
520  // may have been scheduled later.
521  if (!Sequence.empty())
522    Begin = Sequence[0]->getInstr();
523
524  return BB;
525}
526