ScheduleDAGInstrs.cpp revision 3c58ba8ea7ec097d69d7f7be5930a4a4d7405a18
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineMemOperand.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/PseudoSourceValue.h"
24#include "llvm/MC/MCInstrItineraries.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetSubtargetInfo.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/ADT/SmallSet.h"
32using namespace llvm;
33
34ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
35                                     const MachineLoopInfo &mli,
36                                     const MachineDominatorTree &mdt,
37                                     bool IsPostRAFlag)
38  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
39    InstrItins(mf.getTarget().getInstrItineraryData()), IsPostRA(IsPostRAFlag),
40    UnitLatencies(false), Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()),
41    LoopRegs(MLI, MDT), FirstDbgValue(0) {
42  DbgValues.clear();
43}
44
45/// Run - perform scheduling.
46///
47void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
48                            MachineBasicBlock::iterator begin,
49                            MachineBasicBlock::iterator end,
50                            unsigned endcount) {
51  BB = bb;
52  Begin = begin;
53  InsertPosIndex = endcount;
54
55  // Check to see if the scheduler cares about latencies.
56  UnitLatencies = ForceUnitLatencies();
57
58  ScheduleDAG::Run(bb, end);
59}
60
61/// getUnderlyingObjectFromInt - This is the function that does the work of
62/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
63static const Value *getUnderlyingObjectFromInt(const Value *V) {
64  do {
65    if (const Operator *U = dyn_cast<Operator>(V)) {
66      // If we find a ptrtoint, we can transfer control back to the
67      // regular getUnderlyingObjectFromInt.
68      if (U->getOpcode() == Instruction::PtrToInt)
69        return U->getOperand(0);
70      // If we find an add of a constant or a multiplied value, it's
71      // likely that the other operand will lead us to the base
72      // object. We don't have to worry about the case where the
73      // object address is somehow being computed by the multiply,
74      // because our callers only care when the result is an
75      // identifibale object.
76      if (U->getOpcode() != Instruction::Add ||
77          (!isa<ConstantInt>(U->getOperand(1)) &&
78           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
79        return V;
80      V = U->getOperand(0);
81    } else {
82      return V;
83    }
84    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
85  } while (1);
86}
87
88/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
89/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
90static const Value *getUnderlyingObject(const Value *V) {
91  // First just call Value::getUnderlyingObject to let it do what it does.
92  do {
93    V = GetUnderlyingObject(V);
94    // If it found an inttoptr, use special code to continue climing.
95    if (Operator::getOpcode(V) != Instruction::IntToPtr)
96      break;
97    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
98    // If that succeeded in finding a pointer, continue the search.
99    if (!O->getType()->isPointerTy())
100      break;
101    V = O;
102  } while (1);
103  return V;
104}
105
106/// getUnderlyingObjectForInstr - If this machine instr has memory reference
107/// information and it can be tracked to a normal reference to a known
108/// object, return the Value for that object. Otherwise return null.
109static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
110                                                const MachineFrameInfo *MFI,
111                                                bool &MayAlias) {
112  MayAlias = true;
113  if (!MI->hasOneMemOperand() ||
114      !(*MI->memoperands_begin())->getValue() ||
115      (*MI->memoperands_begin())->isVolatile())
116    return 0;
117
118  const Value *V = (*MI->memoperands_begin())->getValue();
119  if (!V)
120    return 0;
121
122  V = getUnderlyingObject(V);
123  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
124    // For now, ignore PseudoSourceValues which may alias LLVM IR values
125    // because the code that uses this function has no way to cope with
126    // such aliases.
127    if (PSV->isAliased(MFI))
128      return 0;
129
130    MayAlias = PSV->mayAlias(MFI);
131    return V;
132  }
133
134  if (isIdentifiedObject(V))
135    return V;
136
137  return 0;
138}
139
140void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
141  LoopRegs.Deps.clear();
142  if (MachineLoop *ML = MLI.getLoopFor(BB))
143    if (BB == ML->getLoopLatch())
144      LoopRegs.VisitLoop(ML);
145}
146
147/// AddSchedBarrierDeps - Add dependencies from instructions in the current
148/// list of instructions being scheduled to scheduling barrier by adding
149/// the exit SU to the register defs and use list. This is because we want to
150/// make sure instructions which define registers that are either used by
151/// the terminator or are live-out are properly scheduled. This is
152/// especially important when the definition latency of the return value(s)
153/// are too high to be hidden by the branch or when the liveout registers
154/// used by instructions in the fallthrough block.
155void ScheduleDAGInstrs::AddSchedBarrierDeps() {
156  MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
157  ExitSU.setInstr(ExitMI);
158  bool AllDepKnown = ExitMI &&
159    (ExitMI->isCall() || ExitMI->isBarrier());
160  if (ExitMI && AllDepKnown) {
161    // If it's a call or a barrier, add dependencies on the defs and uses of
162    // instruction.
163    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
164      const MachineOperand &MO = ExitMI->getOperand(i);
165      if (!MO.isReg() || MO.isDef()) continue;
166      unsigned Reg = MO.getReg();
167      if (Reg == 0) continue;
168
169      if (TRI->isPhysicalRegister(Reg))
170        Uses[Reg].push_back(&ExitSU);
171      else
172        assert(!IsPostRA && "Virtual register encountered after regalloc.");
173    }
174  } else {
175    // For others, e.g. fallthrough, conditional branch, assume the exit
176    // uses all the registers that are livein to the successor blocks.
177    SmallSet<unsigned, 8> Seen;
178    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
179           SE = BB->succ_end(); SI != SE; ++SI)
180      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
181             E = (*SI)->livein_end(); I != E; ++I) {
182        unsigned Reg = *I;
183        if (Seen.insert(Reg))
184          Uses[Reg].push_back(&ExitSU);
185      }
186  }
187}
188
189/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
190/// this SUnit to following instructions in the same scheduling region that
191/// depend the physical register referenced at OperIdx.
192void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
193  const MachineInstr *MI = SU->getInstr();
194  const MachineOperand &MO = MI->getOperand(OperIdx);
195  unsigned Reg = MO.getReg();
196
197  // Ask the target if address-backscheduling is desirable, and if so how much.
198  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
199  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
200
201  // Optionally add output and anti dependencies. For anti
202  // dependencies we use a latency of 0 because for a multi-issue
203  // target we want to allow the defining instruction to issue
204  // in the same cycle as the using instruction.
205  // TODO: Using a latency of 1 here for output dependencies assumes
206  //       there's no cost for reusing registers.
207  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
208  for (const unsigned *Alias = TRI->getOverlaps(Reg); *Alias; ++Alias) {
209    std::vector<SUnit *> &DefList = Defs[*Alias];
210    for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
211      SUnit *DefSU = DefList[i];
212      if (DefSU == &ExitSU)
213        continue;
214      if (DefSU != SU &&
215          (Kind != SDep::Output || !MO.isDead() ||
216           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
217        if (Kind == SDep::Anti)
218          DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
219        else {
220          unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
221                                                 DefSU->getInstr());
222          DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
223        }
224      }
225    }
226  }
227
228  // Retrieve the UseList to add data dependencies and update uses.
229  std::vector<SUnit *> &UseList = Uses[Reg];
230  if (MO.isDef()) {
231    // Update DefList. Defs are pushed in the order they are visited and
232    // never reordered.
233    std::vector<SUnit *> &DefList = Defs[Reg];
234
235    // Add any data dependencies.
236    unsigned DataLatency = SU->Latency;
237    for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
238      SUnit *UseSU = UseList[i];
239      if (UseSU == SU)
240        continue;
241      unsigned LDataLatency = DataLatency;
242      // Optionally add in a special extra latency for nodes that
243      // feed addresses.
244      // TODO: Do this for register aliases too.
245      // TODO: Perhaps we should get rid of
246      // SpecialAddressLatency and just move this into
247      // adjustSchedDependency for the targets that care about it.
248      if (SpecialAddressLatency != 0 && !UnitLatencies &&
249          UseSU != &ExitSU) {
250        MachineInstr *UseMI = UseSU->getInstr();
251        const MCInstrDesc &UseMCID = UseMI->getDesc();
252        int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
253        assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
254        if (RegUseIndex >= 0 &&
255            (UseMI->mayLoad() || UseMI->mayStore()) &&
256            (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
257            UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
258          LDataLatency += SpecialAddressLatency;
259      }
260      // Adjust the dependence latency using operand def/use
261      // information (if any), and then allow the target to
262      // perform its own adjustments.
263      const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
264      if (!UnitLatencies) {
265        ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
266        ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
267      }
268      UseSU->addPred(dep);
269    }
270    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
271      std::vector<SUnit *> &UseList = Uses[*Alias];
272      for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
273        SUnit *UseSU = UseList[i];
274        if (UseSU == SU)
275          continue;
276        const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
277        if (!UnitLatencies) {
278          ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
279          ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
280        }
281        UseSU->addPred(dep);
282      }
283    }
284
285    // If a def is going to wrap back around to the top of the loop,
286    // backschedule it.
287    if (!UnitLatencies && DefList.empty()) {
288      LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
289      if (I != LoopRegs.Deps.end()) {
290        const MachineOperand *UseMO = I->second.first;
291        unsigned Count = I->second.second;
292        const MachineInstr *UseMI = UseMO->getParent();
293        unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
294        const MCInstrDesc &UseMCID = UseMI->getDesc();
295        // TODO: If we knew the total depth of the region here, we could
296        // handle the case where the whole loop is inside the region but
297        // is large enough that the isScheduleHigh trick isn't needed.
298        if (UseMOIdx < UseMCID.getNumOperands()) {
299          // Currently, we only support scheduling regions consisting of
300          // single basic blocks. Check to see if the instruction is in
301          // the same region by checking to see if it has the same parent.
302          if (UseMI->getParent() != MI->getParent()) {
303            unsigned Latency = SU->Latency;
304            if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
305              Latency += SpecialAddressLatency;
306            // This is a wild guess as to the portion of the latency which
307            // will be overlapped by work done outside the current
308            // scheduling region.
309            Latency -= std::min(Latency, Count);
310            // Add the artificial edge.
311            ExitSU.addPred(SDep(SU, SDep::Order, Latency,
312                                /*Reg=*/0, /*isNormalMemory=*/false,
313                                /*isMustAlias=*/false,
314                                /*isArtificial=*/true));
315          } else if (SpecialAddressLatency > 0 &&
316                     UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
317            // The entire loop body is within the current scheduling region
318            // and the latency of this operation is assumed to be greater
319            // than the latency of the loop.
320            // TODO: Recursively mark data-edge predecessors as
321            //       isScheduleHigh too.
322            SU->isScheduleHigh = true;
323          }
324        }
325        LoopRegs.Deps.erase(I);
326      }
327    }
328
329    UseList.clear();
330    if (!MO.isDead())
331      DefList.clear();
332
333    // Calls will not be reordered because of chain dependencies (see
334    // below). Since call operands are dead, calls may continue to be added
335    // to the DefList making dependence checking quadratic in the size of
336    // the block. Instead, we leave only one call at the back of the
337    // DefList.
338    if (SU->isCall) {
339      while (!DefList.empty() && DefList.back()->isCall)
340        DefList.pop_back();
341    }
342    DefList.push_back(SU);
343  } else {
344    UseList.push_back(SU);
345  }
346}
347
348/// addVRegDefDeps - Add register output and data dependencies from this SUnit
349/// to instructions that occur later in the same scheduling region if they read
350/// from or write to the virtual register defined at OperIdx.
351///
352/// TODO: Hoist loop induction variable increments. This has to be
353/// reevaluated. Generally, IV scheduling should be done before coalescing.
354void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
355  const MachineInstr *MI = SU->getInstr();
356  unsigned Reg = MI->getOperand(OperIdx).getReg();
357
358  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
359
360  // Add output dependence to the next nearest def of this vreg.
361  //
362  // Unless this definition is dead, the output dependence should be
363  // transitively redundant with antidependencies from this definition's
364  // uses. We're conservative for now until we have a way to guarantee the uses
365  // are not eliminated sometime during scheduling. The output dependence edge
366  // is also useful if output latency exceeds def-use latency.
367  SUnit *DefSU = VRegDefs[Reg];
368  if (DefSU && DefSU != SU && DefSU != &ExitSU) {
369    unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
370                                                DefSU->getInstr());
371    DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
372  }
373  VRegDefs[Reg] = SU;
374
375  // Add data dependence to any uses of this vreg before the next nearest def.
376  //
377  // TODO: Handle ExitSU properly.
378  //
379  // TODO: Data dependence could be handled more efficiently at the use-side.
380  std::vector<SUnit*> &UseList = VRegUses[Reg];
381  for (std::vector<SUnit*>::const_iterator UI = UseList.begin(),
382         UE = UseList.end(); UI != UE; ++UI) {
383    SUnit *UseSU = *UI;
384    if (UseSU == SU) continue;
385
386    // TODO: Handle "special" address latencies cleanly.
387    const SDep& dep = SDep(SU, SDep::Data, SU->Latency, Reg);
388    if (!UnitLatencies) {
389      // Adjust the dependence latency using operand def/use information, then
390      // allow the target to perform its own adjustments.
391      ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
392      ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
393    }
394    UseSU->addPred(dep);
395  }
396  UseList.clear();
397}
398
399/// addVRegUseDeps - Add register antidependencies from this SUnit to
400/// instructions that occur later in the same scheduling region if they
401/// write the virtual register referenced at OperIdx.
402void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
403  unsigned Reg = SU->getInstr()->getOperand(OperIdx).getReg();
404
405  // Add antidependence to the following def of the vreg it uses.
406  SUnit *DefSU = VRegDefs[Reg];
407  if (DefSU && DefSU != SU)
408    DefSU->addPred(SDep(SU, SDep::Anti, 0, Reg));
409
410  // Add this SUnit to the use list of the vreg it uses.
411  //
412  // TODO: pinch the DAG before we see too many uses to avoid quadratic
413  // behavior. Limiting the scheduling window can accomplish the same thing.
414  VRegUses[Reg].push_back(SU);
415}
416
417void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
418  // We'll be allocating one SUnit for each instruction, plus one for
419  // the region exit node.
420  SUnits.reserve(BB->size());
421
422  // We build scheduling units by walking a block's instruction list from bottom
423  // to top.
424
425  // Remember where a generic side-effecting instruction is as we procede.
426  SUnit *BarrierChain = 0, *AliasChain = 0;
427
428  // Memory references to specific known memory locations are tracked
429  // so that they can be given more precise dependencies. We track
430  // separately the known memory locations that may alias and those
431  // that are known not to alias
432  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
433  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
434
435  // Remove any stale debug info; sometimes BuildSchedGraph is called again
436  // without emitting the info from the previous call.
437  DbgValues.clear();
438  FirstDbgValue = NULL;
439
440  // Model data dependencies between instructions being scheduled and the
441  // ExitSU.
442  AddSchedBarrierDeps();
443
444  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
445    assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs");
446  }
447
448  // Reinitialize the large VReg vectors, while reusing the memory.
449  //
450  // Note: this can be an expensive part of DAG building. We may want to be more
451  // clever. Reevaluate after VRegUses goes away.
452  assert(VRegDefs.size() == 0 && VRegUses.size() == 0 &&
453         "Only BuildSchedGraph should access VRegDefs/Uses");
454  VRegDefs.resize(MF.getRegInfo().getNumVirtRegs());
455  VRegUses.resize(MF.getRegInfo().getNumVirtRegs());
456
457  // Walk the list of instructions, from bottom moving up.
458  MachineInstr *PrevMI = NULL;
459  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
460       MII != MIE; --MII) {
461    MachineInstr *MI = prior(MII);
462    if (MI && PrevMI) {
463      DbgValues.push_back(std::make_pair(PrevMI, MI));
464      PrevMI = NULL;
465    }
466
467    if (MI->isDebugValue()) {
468      PrevMI = MI;
469      continue;
470    }
471
472    assert(!MI->isTerminator() && !MI->isLabel() &&
473           "Cannot schedule terminators or labels!");
474    // Create the SUnit for this MI.
475    SUnit *SU = NewSUnit(MI);
476    SU->isCall = MI->isCall();
477    SU->isCommutable = MI->isCommutable();
478
479    // Assign the Latency field of SU using target-provided information.
480    if (UnitLatencies)
481      SU->Latency = 1;
482    else
483      ComputeLatency(SU);
484
485    // Add register-based dependencies (data, anti, and output).
486    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
487      const MachineOperand &MO = MI->getOperand(j);
488      if (!MO.isReg()) continue;
489      unsigned Reg = MO.getReg();
490      if (Reg == 0) continue;
491
492      if (TRI->isPhysicalRegister(Reg))
493        addPhysRegDeps(SU, j);
494      else {
495        assert(!IsPostRA && "Virtual register encountered!");
496        if (MO.isDef())
497          addVRegDefDeps(SU, j);
498        else
499          addVRegUseDeps(SU, j);
500      }
501    }
502
503    // Add chain dependencies.
504    // Chain dependencies used to enforce memory order should have
505    // latency of 0 (except for true dependency of Store followed by
506    // aliased Load... we estimate that with a single cycle of latency
507    // assuming the hardware will bypass)
508    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
509    // after stack slots are lowered to actual addresses.
510    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
511    // produce more precise dependence information.
512#define STORE_LOAD_LATENCY 1
513    unsigned TrueMemOrderLatency = 0;
514    if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
515        (MI->hasVolatileMemoryRef() &&
516         (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) {
517      // Be conservative with these and add dependencies on all memory
518      // references, even those that are known to not alias.
519      for (std::map<const Value *, SUnit *>::iterator I =
520             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
521        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
522      }
523      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
524             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
525        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
526          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
527      }
528      NonAliasMemDefs.clear();
529      NonAliasMemUses.clear();
530      // Add SU to the barrier chain.
531      if (BarrierChain)
532        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
533      BarrierChain = SU;
534
535      // fall-through
536    new_alias_chain:
537      // Chain all possibly aliasing memory references though SU.
538      if (AliasChain)
539        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
540      AliasChain = SU;
541      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
542        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
543      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
544           E = AliasMemDefs.end(); I != E; ++I) {
545        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
546      }
547      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
548           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
549        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
550          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
551      }
552      PendingLoads.clear();
553      AliasMemDefs.clear();
554      AliasMemUses.clear();
555    } else if (MI->mayStore()) {
556      bool MayAlias = true;
557      TrueMemOrderLatency = STORE_LOAD_LATENCY;
558      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
559        // A store to a specific PseudoSourceValue. Add precise dependencies.
560        // Record the def in MemDefs, first adding a dep if there is
561        // an existing def.
562        std::map<const Value *, SUnit *>::iterator I =
563          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
564        std::map<const Value *, SUnit *>::iterator IE =
565          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
566        if (I != IE) {
567          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
568                                  /*isNormalMemory=*/true));
569          I->second = SU;
570        } else {
571          if (MayAlias)
572            AliasMemDefs[V] = SU;
573          else
574            NonAliasMemDefs[V] = SU;
575        }
576        // Handle the uses in MemUses, if there are any.
577        std::map<const Value *, std::vector<SUnit *> >::iterator J =
578          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
579        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
580          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
581        if (J != JE) {
582          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
583            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
584                                       /*Reg=*/0, /*isNormalMemory=*/true));
585          J->second.clear();
586        }
587        if (MayAlias) {
588          // Add dependencies from all the PendingLoads, i.e. loads
589          // with no underlying object.
590          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
591            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
592          // Add dependence on alias chain, if needed.
593          if (AliasChain)
594            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
595        }
596        // Add dependence on barrier chain, if needed.
597        if (BarrierChain)
598          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
599      } else {
600        // Treat all other stores conservatively.
601        goto new_alias_chain;
602      }
603
604      if (!ExitSU.isPred(SU))
605        // Push store's up a bit to avoid them getting in between cmp
606        // and branches.
607        ExitSU.addPred(SDep(SU, SDep::Order, 0,
608                            /*Reg=*/0, /*isNormalMemory=*/false,
609                            /*isMustAlias=*/false,
610                            /*isArtificial=*/true));
611    } else if (MI->mayLoad()) {
612      bool MayAlias = true;
613      TrueMemOrderLatency = 0;
614      if (MI->isInvariantLoad(AA)) {
615        // Invariant load, no chain dependencies needed!
616      } else {
617        if (const Value *V =
618            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
619          // A load from a specific PseudoSourceValue. Add precise dependencies.
620          std::map<const Value *, SUnit *>::iterator I =
621            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
622          std::map<const Value *, SUnit *>::iterator IE =
623            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
624          if (I != IE)
625            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
626                                    /*isNormalMemory=*/true));
627          if (MayAlias)
628            AliasMemUses[V].push_back(SU);
629          else
630            NonAliasMemUses[V].push_back(SU);
631        } else {
632          // A load with no underlying object. Depend on all
633          // potentially aliasing stores.
634          for (std::map<const Value *, SUnit *>::iterator I =
635                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
636            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
637
638          PendingLoads.push_back(SU);
639          MayAlias = true;
640        }
641
642        // Add dependencies on alias and barrier chains, if needed.
643        if (MayAlias && AliasChain)
644          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
645        if (BarrierChain)
646          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
647      }
648    }
649  }
650  if (PrevMI)
651    FirstDbgValue = PrevMI;
652
653  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
654    Defs[i].clear();
655    Uses[i].clear();
656  }
657  VRegDefs.clear();
658  VRegUses.clear();
659  PendingLoads.clear();
660}
661
662void ScheduleDAGInstrs::FinishBlock() {
663  // Nothing to do.
664}
665
666void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
667  // Compute the latency for the node.
668  if (!InstrItins || InstrItins->isEmpty()) {
669    SU->Latency = 1;
670
671    // Simplistic target-independent heuristic: assume that loads take
672    // extra time.
673    if (SU->getInstr()->mayLoad())
674      SU->Latency += 2;
675  } else {
676    SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
677  }
678}
679
680void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
681                                              SDep& dep) const {
682  if (!InstrItins || InstrItins->isEmpty())
683    return;
684
685  // For a data dependency with a known register...
686  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
687    return;
688
689  const unsigned Reg = dep.getReg();
690
691  // ... find the definition of the register in the defining
692  // instruction
693  MachineInstr *DefMI = Def->getInstr();
694  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
695  if (DefIdx != -1) {
696    const MachineOperand &MO = DefMI->getOperand(DefIdx);
697    if (MO.isReg() && MO.isImplicit() &&
698        DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
699      // This is an implicit def, getOperandLatency() won't return the correct
700      // latency. e.g.
701      //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
702      //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
703      // What we want is to compute latency between def of %D6/%D7 and use of
704      // %Q3 instead.
705      DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
706    }
707    MachineInstr *UseMI = Use->getInstr();
708    // For all uses of the register, calculate the maxmimum latency
709    int Latency = -1;
710    if (UseMI) {
711      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
712        const MachineOperand &MO = UseMI->getOperand(i);
713        if (!MO.isReg() || !MO.isUse())
714          continue;
715        unsigned MOReg = MO.getReg();
716        if (MOReg != Reg)
717          continue;
718
719        int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
720                                              UseMI, i);
721        Latency = std::max(Latency, UseCycle);
722      }
723    } else {
724      // UseMI is null, then it must be a scheduling barrier.
725      if (!InstrItins || InstrItins->isEmpty())
726        return;
727      unsigned DefClass = DefMI->getDesc().getSchedClass();
728      Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
729    }
730
731    // If we found a latency, then replace the existing dependence latency.
732    if (Latency >= 0)
733      dep.setLatency(Latency);
734  }
735}
736
737void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
738  SU->getInstr()->dump();
739}
740
741std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
742  std::string s;
743  raw_string_ostream oss(s);
744  if (SU == &EntrySU)
745    oss << "<entry>";
746  else if (SU == &ExitSU)
747    oss << "<exit>";
748  else
749    SU->getInstr()->print(oss);
750  return oss.str();
751}
752
753// EmitSchedule - Emit the machine code in scheduled order.
754MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
755  Begin = InsertPos;
756
757  // If first instruction was a DBG_VALUE then put it back.
758  if (FirstDbgValue)
759    BB->splice(InsertPos, BB, FirstDbgValue);
760
761  // Then re-insert them according to the given schedule.
762  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
763    if (SUnit *SU = Sequence[i])
764      BB->splice(InsertPos, BB, SU->getInstr());
765    else
766      // Null SUnit* is a noop.
767      EmitNoop();
768
769    // Update the Begin iterator, as the first instruction in the block
770    // may have been scheduled later.
771    if (i == 0)
772      Begin = prior(InsertPos);
773  }
774
775  // Reinsert any remaining debug_values.
776  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
777         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
778    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
779    MachineInstr *DbgValue = P.first;
780    MachineBasicBlock::iterator OrigPrivMI = P.second;
781    BB->splice(++OrigPrivMI, BB, DbgValue);
782  }
783  DbgValues.clear();
784  FirstDbgValue = NULL;
785  return BB;
786}
787