ScheduleDAGInstrs.cpp revision 47c144505b9be28ed22c626b3a407c11dba2fec5
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineMemOperand.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/MC/MCInstrItineraries.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetSubtargetInfo.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/ADT/SmallSet.h"
33using namespace llvm;
34
35ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
36                                     const MachineLoopInfo &mli,
37                                     const MachineDominatorTree &mdt,
38                                     bool IsPostRAFlag,
39                                     LiveIntervals *lis)
40  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
41    InstrItins(mf.getTarget().getInstrItineraryData()), IsPostRA(IsPostRAFlag),
42    LIS(lis), UnitLatencies(false), LoopRegs(MLI, MDT), FirstDbgValue(0) {
43  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
44  DbgValues.clear();
45  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
46         "Virtual registers must be removed prior to PostRA scheduling");
47}
48
49/// getUnderlyingObjectFromInt - This is the function that does the work of
50/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
51static const Value *getUnderlyingObjectFromInt(const Value *V) {
52  do {
53    if (const Operator *U = dyn_cast<Operator>(V)) {
54      // If we find a ptrtoint, we can transfer control back to the
55      // regular getUnderlyingObjectFromInt.
56      if (U->getOpcode() == Instruction::PtrToInt)
57        return U->getOperand(0);
58      // If we find an add of a constant or a multiplied value, it's
59      // likely that the other operand will lead us to the base
60      // object. We don't have to worry about the case where the
61      // object address is somehow being computed by the multiply,
62      // because our callers only care when the result is an
63      // identifibale object.
64      if (U->getOpcode() != Instruction::Add ||
65          (!isa<ConstantInt>(U->getOperand(1)) &&
66           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
67        return V;
68      V = U->getOperand(0);
69    } else {
70      return V;
71    }
72    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
73  } while (1);
74}
75
76/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
77/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
78static const Value *getUnderlyingObject(const Value *V) {
79  // First just call Value::getUnderlyingObject to let it do what it does.
80  do {
81    V = GetUnderlyingObject(V);
82    // If it found an inttoptr, use special code to continue climing.
83    if (Operator::getOpcode(V) != Instruction::IntToPtr)
84      break;
85    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
86    // If that succeeded in finding a pointer, continue the search.
87    if (!O->getType()->isPointerTy())
88      break;
89    V = O;
90  } while (1);
91  return V;
92}
93
94/// getUnderlyingObjectForInstr - If this machine instr has memory reference
95/// information and it can be tracked to a normal reference to a known
96/// object, return the Value for that object. Otherwise return null.
97static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
98                                                const MachineFrameInfo *MFI,
99                                                bool &MayAlias) {
100  MayAlias = true;
101  if (!MI->hasOneMemOperand() ||
102      !(*MI->memoperands_begin())->getValue() ||
103      (*MI->memoperands_begin())->isVolatile())
104    return 0;
105
106  const Value *V = (*MI->memoperands_begin())->getValue();
107  if (!V)
108    return 0;
109
110  V = getUnderlyingObject(V);
111  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
112    // For now, ignore PseudoSourceValues which may alias LLVM IR values
113    // because the code that uses this function has no way to cope with
114    // such aliases.
115    if (PSV->isAliased(MFI))
116      return 0;
117
118    MayAlias = PSV->mayAlias(MFI);
119    return V;
120  }
121
122  if (isIdentifiedObject(V))
123    return V;
124
125  return 0;
126}
127
128void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
129  LoopRegs.Deps.clear();
130  if (MachineLoop *ML = MLI.getLoopFor(BB))
131    if (BB == ML->getLoopLatch())
132      LoopRegs.VisitLoop(ML);
133}
134
135void ScheduleDAGInstrs::FinishBlock() {
136  // Nothing to do.
137}
138
139/// Initialize the map with the number of registers.
140void ScheduleDAGInstrs::Reg2SUnitsMap::setRegLimit(unsigned Limit) {
141  PhysRegSet.setUniverse(Limit);
142  SUnits.resize(Limit);
143}
144
145/// Clear the map without deallocating storage.
146void ScheduleDAGInstrs::Reg2SUnitsMap::clear() {
147  for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
148    SUnits[*I].clear();
149  }
150  PhysRegSet.clear();
151}
152
153/// Initialize the DAG and common scheduler state for the current scheduling
154/// region. This does not actually create the DAG, only clears it. The
155/// scheduling driver may call BuildSchedGraph multiple times per scheduling
156/// region.
157void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
158                                    MachineBasicBlock::iterator begin,
159                                    MachineBasicBlock::iterator end,
160                                    unsigned endcount) {
161  BB = bb;
162  Begin = begin;
163  InsertPos = end;
164  InsertPosIndex = endcount;
165
166  // Check to see if the scheduler cares about latencies.
167  UnitLatencies = ForceUnitLatencies();
168
169  ScheduleDAG::clearDAG();
170}
171
172/// Close the current scheduling region. Don't clear any state in case the
173/// driver wants to refer to the previous scheduling region.
174void ScheduleDAGInstrs::exitRegion() {
175  // Nothing to do.
176}
177
178/// AddSchedBarrierDeps - Add dependencies from instructions in the current
179/// list of instructions being scheduled to scheduling barrier by adding
180/// the exit SU to the register defs and use list. This is because we want to
181/// make sure instructions which define registers that are either used by
182/// the terminator or are live-out are properly scheduled. This is
183/// especially important when the definition latency of the return value(s)
184/// are too high to be hidden by the branch or when the liveout registers
185/// used by instructions in the fallthrough block.
186void ScheduleDAGInstrs::AddSchedBarrierDeps() {
187  MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
188  ExitSU.setInstr(ExitMI);
189  bool AllDepKnown = ExitMI &&
190    (ExitMI->isCall() || ExitMI->isBarrier());
191  if (ExitMI && AllDepKnown) {
192    // If it's a call or a barrier, add dependencies on the defs and uses of
193    // instruction.
194    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
195      const MachineOperand &MO = ExitMI->getOperand(i);
196      if (!MO.isReg() || MO.isDef()) continue;
197      unsigned Reg = MO.getReg();
198      if (Reg == 0) continue;
199
200      if (TRI->isPhysicalRegister(Reg))
201        Uses[Reg].push_back(&ExitSU);
202      else
203        assert(!IsPostRA && "Virtual register encountered after regalloc.");
204    }
205  } else {
206    // For others, e.g. fallthrough, conditional branch, assume the exit
207    // uses all the registers that are livein to the successor blocks.
208    SmallSet<unsigned, 8> Seen;
209    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
210           SE = BB->succ_end(); SI != SE; ++SI)
211      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
212             E = (*SI)->livein_end(); I != E; ++I) {
213        unsigned Reg = *I;
214        if (Seen.insert(Reg))
215          Uses[Reg].push_back(&ExitSU);
216      }
217  }
218}
219
220/// MO is an operand of SU's instruction that defines a physical register. Add
221/// data dependencies from SU to any uses of the physical register.
222void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU,
223                                           const MachineOperand &MO) {
224  assert(MO.isDef() && "expect physreg def");
225
226  // Ask the target if address-backscheduling is desirable, and if so how much.
227  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
228  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
229  unsigned DataLatency = SU->Latency;
230
231  for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
232    if (!Uses.contains(*Alias))
233      continue;
234    std::vector<SUnit*> &UseList = Uses[*Alias];
235    for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
236      SUnit *UseSU = UseList[i];
237      if (UseSU == SU)
238        continue;
239      unsigned LDataLatency = DataLatency;
240      // Optionally add in a special extra latency for nodes that
241      // feed addresses.
242      // TODO: Perhaps we should get rid of
243      // SpecialAddressLatency and just move this into
244      // adjustSchedDependency for the targets that care about it.
245      if (SpecialAddressLatency != 0 && !UnitLatencies &&
246          UseSU != &ExitSU) {
247        MachineInstr *UseMI = UseSU->getInstr();
248        const MCInstrDesc &UseMCID = UseMI->getDesc();
249        int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias);
250        assert(RegUseIndex >= 0 && "UseMI doesn't use register!");
251        if (RegUseIndex >= 0 &&
252            (UseMI->mayLoad() || UseMI->mayStore()) &&
253            (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
254            UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
255          LDataLatency += SpecialAddressLatency;
256      }
257      // Adjust the dependence latency using operand def/use
258      // information (if any), and then allow the target to
259      // perform its own adjustments.
260      const SDep& dep = SDep(SU, SDep::Data, LDataLatency, *Alias);
261      if (!UnitLatencies) {
262        ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
263        ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
264      }
265      UseSU->addPred(dep);
266    }
267  }
268}
269
270/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
271/// this SUnit to following instructions in the same scheduling region that
272/// depend the physical register referenced at OperIdx.
273void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
274  const MachineInstr *MI = SU->getInstr();
275  const MachineOperand &MO = MI->getOperand(OperIdx);
276
277  // Optionally add output and anti dependencies. For anti
278  // dependencies we use a latency of 0 because for a multi-issue
279  // target we want to allow the defining instruction to issue
280  // in the same cycle as the using instruction.
281  // TODO: Using a latency of 1 here for output dependencies assumes
282  //       there's no cost for reusing registers.
283  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
284  for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
285    if (!Defs.contains(*Alias))
286      continue;
287    std::vector<SUnit *> &DefList = Defs[*Alias];
288    for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
289      SUnit *DefSU = DefList[i];
290      if (DefSU == &ExitSU)
291        continue;
292      if (DefSU != SU &&
293          (Kind != SDep::Output || !MO.isDead() ||
294           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
295        if (Kind == SDep::Anti)
296          DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
297        else {
298          unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
299                                                 DefSU->getInstr());
300          DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
301        }
302      }
303    }
304  }
305
306  if (!MO.isDef()) {
307    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
308    // retrieve the existing SUnits list for this register's uses.
309    // Push this SUnit on the use list.
310    Uses[MO.getReg()].push_back(SU);
311  }
312  else {
313    addPhysRegDataDeps(SU, MO);
314
315    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
316    // retrieve the existing SUnits list for this register's defs.
317    std::vector<SUnit *> &DefList = Defs[MO.getReg()];
318
319    // If a def is going to wrap back around to the top of the loop,
320    // backschedule it.
321    if (!UnitLatencies && DefList.empty()) {
322      LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(MO.getReg());
323      if (I != LoopRegs.Deps.end()) {
324        const MachineOperand *UseMO = I->second.first;
325        unsigned Count = I->second.second;
326        const MachineInstr *UseMI = UseMO->getParent();
327        unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
328        const MCInstrDesc &UseMCID = UseMI->getDesc();
329        const TargetSubtargetInfo &ST =
330          TM.getSubtarget<TargetSubtargetInfo>();
331        unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
332        // TODO: If we knew the total depth of the region here, we could
333        // handle the case where the whole loop is inside the region but
334        // is large enough that the isScheduleHigh trick isn't needed.
335        if (UseMOIdx < UseMCID.getNumOperands()) {
336          // Currently, we only support scheduling regions consisting of
337          // single basic blocks. Check to see if the instruction is in
338          // the same region by checking to see if it has the same parent.
339          if (UseMI->getParent() != MI->getParent()) {
340            unsigned Latency = SU->Latency;
341            if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
342              Latency += SpecialAddressLatency;
343            // This is a wild guess as to the portion of the latency which
344            // will be overlapped by work done outside the current
345            // scheduling region.
346            Latency -= std::min(Latency, Count);
347            // Add the artificial edge.
348            ExitSU.addPred(SDep(SU, SDep::Order, Latency,
349                                /*Reg=*/0, /*isNormalMemory=*/false,
350                                /*isMustAlias=*/false,
351                                /*isArtificial=*/true));
352          } else if (SpecialAddressLatency > 0 &&
353                     UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
354            // The entire loop body is within the current scheduling region
355            // and the latency of this operation is assumed to be greater
356            // than the latency of the loop.
357            // TODO: Recursively mark data-edge predecessors as
358            //       isScheduleHigh too.
359            SU->isScheduleHigh = true;
360          }
361        }
362        LoopRegs.Deps.erase(I);
363      }
364    }
365
366    // clear this register's use list
367    if (Uses.contains(MO.getReg()))
368      Uses[MO.getReg()].clear();
369
370    if (!MO.isDead())
371      DefList.clear();
372
373    // Calls will not be reordered because of chain dependencies (see
374    // below). Since call operands are dead, calls may continue to be added
375    // to the DefList making dependence checking quadratic in the size of
376    // the block. Instead, we leave only one call at the back of the
377    // DefList.
378    if (SU->isCall) {
379      while (!DefList.empty() && DefList.back()->isCall)
380        DefList.pop_back();
381    }
382    // Defs are pushed in the order they are visited and never reordered.
383    DefList.push_back(SU);
384  }
385}
386
387/// addVRegDefDeps - Add register output and data dependencies from this SUnit
388/// to instructions that occur later in the same scheduling region if they read
389/// from or write to the virtual register defined at OperIdx.
390///
391/// TODO: Hoist loop induction variable increments. This has to be
392/// reevaluated. Generally, IV scheduling should be done before coalescing.
393void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
394  const MachineInstr *MI = SU->getInstr();
395  unsigned Reg = MI->getOperand(OperIdx).getReg();
396
397  // SSA defs do not have output/anti dependencies.
398  // The current operand is a def, so we have at least one.
399  if (llvm::next(MRI.def_begin(Reg)) == MRI.def_end())
400    return;
401
402  // Add output dependence to the next nearest def of this vreg.
403  //
404  // Unless this definition is dead, the output dependence should be
405  // transitively redundant with antidependencies from this definition's
406  // uses. We're conservative for now until we have a way to guarantee the uses
407  // are not eliminated sometime during scheduling. The output dependence edge
408  // is also useful if output latency exceeds def-use latency.
409  VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
410  if (DefI == VRegDefs.end())
411    VRegDefs.insert(VReg2SUnit(Reg, SU));
412  else {
413    SUnit *DefSU = DefI->SU;
414    if (DefSU != SU && DefSU != &ExitSU) {
415      unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
416                                                  DefSU->getInstr());
417      DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
418    }
419    DefI->SU = SU;
420  }
421}
422
423/// addVRegUseDeps - Add a register data dependency if the instruction that
424/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
425/// register antidependency from this SUnit to instructions that occur later in
426/// the same scheduling region if they write the virtual register.
427///
428/// TODO: Handle ExitSU "uses" properly.
429void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
430  MachineInstr *MI = SU->getInstr();
431  unsigned Reg = MI->getOperand(OperIdx).getReg();
432
433  // Lookup this operand's reaching definition.
434  assert(LIS && "vreg dependencies requires LiveIntervals");
435  SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot();
436  LiveInterval *LI = &LIS->getInterval(Reg);
437  VNInfo *VNI = LI->getVNInfoBefore(UseIdx);
438  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
439  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
440  // Phis and other noninstructions (after coalescing) have a NULL Def.
441  if (Def) {
442    SUnit *DefSU = getSUnit(Def);
443    if (DefSU) {
444      // The reaching Def lives within this scheduling region.
445      // Create a data dependence.
446      //
447      // TODO: Handle "special" address latencies cleanly.
448      const SDep &dep = SDep(DefSU, SDep::Data, DefSU->Latency, Reg);
449      if (!UnitLatencies) {
450        // Adjust the dependence latency using operand def/use information, then
451        // allow the target to perform its own adjustments.
452        ComputeOperandLatency(DefSU, SU, const_cast<SDep &>(dep));
453        const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
454        ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
455      }
456      SU->addPred(dep);
457    }
458  }
459
460  // Add antidependence to the following def of the vreg it uses.
461  VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
462  if (DefI != VRegDefs.end() && DefI->SU != SU)
463    DefI->SU->addPred(SDep(SU, SDep::Anti, 0, Reg));
464}
465
466/// Create an SUnit for each real instruction, numbered in top-down toplological
467/// order. The instruction order A < B, implies that no edge exists from B to A.
468///
469/// Map each real instruction to its SUnit.
470///
471/// After initSUnits, the SUnits vector is cannot be resized and the scheduler
472/// may hang onto SUnit pointers. We may relax this in the future by using SUnit
473/// IDs instead of pointers.
474void ScheduleDAGInstrs::initSUnits() {
475  // We'll be allocating one SUnit for each real instruction in the region,
476  // which is contained within a basic block.
477  SUnits.reserve(BB->size());
478
479  for (MachineBasicBlock::iterator I = Begin; I != InsertPos; ++I) {
480    MachineInstr *MI = I;
481    if (MI->isDebugValue())
482      continue;
483
484    SUnit *SU = NewSUnit(MI);
485    MISUnitMap[MI] = SU;
486
487    SU->isCall = MI->isCall();
488    SU->isCommutable = MI->isCommutable();
489
490    // Assign the Latency field of SU using target-provided information.
491    if (UnitLatencies)
492      SU->Latency = 1;
493    else
494      ComputeLatency(SU);
495  }
496}
497
498void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
499  // Create an SUnit for each real instruction.
500  initSUnits();
501
502  // We build scheduling units by walking a block's instruction list from bottom
503  // to top.
504
505  // Remember where a generic side-effecting instruction is as we procede.
506  SUnit *BarrierChain = 0, *AliasChain = 0;
507
508  // Memory references to specific known memory locations are tracked
509  // so that they can be given more precise dependencies. We track
510  // separately the known memory locations that may alias and those
511  // that are known not to alias
512  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
513  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
514
515  // Remove any stale debug info; sometimes BuildSchedGraph is called again
516  // without emitting the info from the previous call.
517  DbgValues.clear();
518  FirstDbgValue = NULL;
519
520  assert(Defs.empty() && Uses.empty() &&
521         "Only BuildGraph should update Defs/Uses");
522  Defs.setRegLimit(TRI->getNumRegs());
523  Uses.setRegLimit(TRI->getNumRegs());
524
525  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
526  // FIXME: Allow SparseSet to reserve space for the creation of virtual
527  // registers during scheduling. Don't artificially inflate the Universe
528  // because we want to assert that vregs are not created during DAG building.
529  VRegDefs.setUniverse(MRI.getNumVirtRegs());
530
531  // Model data dependencies between instructions being scheduled and the
532  // ExitSU.
533  AddSchedBarrierDeps();
534
535  // Walk the list of instructions, from bottom moving up.
536  MachineInstr *PrevMI = NULL;
537  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
538       MII != MIE; --MII) {
539    MachineInstr *MI = prior(MII);
540    if (MI && PrevMI) {
541      DbgValues.push_back(std::make_pair(PrevMI, MI));
542      PrevMI = NULL;
543    }
544
545    if (MI->isDebugValue()) {
546      PrevMI = MI;
547      continue;
548    }
549
550    assert(!MI->isTerminator() && !MI->isLabel() &&
551           "Cannot schedule terminators or labels!");
552
553    SUnit *SU = MISUnitMap[MI];
554    assert(SU && "No SUnit mapped to this MI");
555
556    // Add register-based dependencies (data, anti, and output).
557    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
558      const MachineOperand &MO = MI->getOperand(j);
559      if (!MO.isReg()) continue;
560      unsigned Reg = MO.getReg();
561      if (Reg == 0) continue;
562
563      if (TRI->isPhysicalRegister(Reg))
564        addPhysRegDeps(SU, j);
565      else {
566        assert(!IsPostRA && "Virtual register encountered!");
567        if (MO.isDef())
568          addVRegDefDeps(SU, j);
569        else if (MO.readsReg()) // ignore undef operands
570          addVRegUseDeps(SU, j);
571      }
572    }
573
574    // Add chain dependencies.
575    // Chain dependencies used to enforce memory order should have
576    // latency of 0 (except for true dependency of Store followed by
577    // aliased Load... we estimate that with a single cycle of latency
578    // assuming the hardware will bypass)
579    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
580    // after stack slots are lowered to actual addresses.
581    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
582    // produce more precise dependence information.
583#define STORE_LOAD_LATENCY 1
584    unsigned TrueMemOrderLatency = 0;
585    if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
586        (MI->hasVolatileMemoryRef() &&
587         (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) {
588      // Be conservative with these and add dependencies on all memory
589      // references, even those that are known to not alias.
590      for (std::map<const Value *, SUnit *>::iterator I =
591             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
592        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
593      }
594      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
595             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
596        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
597          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
598      }
599      NonAliasMemDefs.clear();
600      NonAliasMemUses.clear();
601      // Add SU to the barrier chain.
602      if (BarrierChain)
603        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
604      BarrierChain = SU;
605
606      // fall-through
607    new_alias_chain:
608      // Chain all possibly aliasing memory references though SU.
609      if (AliasChain)
610        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
611      AliasChain = SU;
612      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
613        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
614      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
615           E = AliasMemDefs.end(); I != E; ++I) {
616        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
617      }
618      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
619           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
620        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
621          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
622      }
623      PendingLoads.clear();
624      AliasMemDefs.clear();
625      AliasMemUses.clear();
626    } else if (MI->mayStore()) {
627      bool MayAlias = true;
628      TrueMemOrderLatency = STORE_LOAD_LATENCY;
629      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
630        // A store to a specific PseudoSourceValue. Add precise dependencies.
631        // Record the def in MemDefs, first adding a dep if there is
632        // an existing def.
633        std::map<const Value *, SUnit *>::iterator I =
634          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
635        std::map<const Value *, SUnit *>::iterator IE =
636          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
637        if (I != IE) {
638          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
639                                  /*isNormalMemory=*/true));
640          I->second = SU;
641        } else {
642          if (MayAlias)
643            AliasMemDefs[V] = SU;
644          else
645            NonAliasMemDefs[V] = SU;
646        }
647        // Handle the uses in MemUses, if there are any.
648        std::map<const Value *, std::vector<SUnit *> >::iterator J =
649          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
650        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
651          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
652        if (J != JE) {
653          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
654            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
655                                       /*Reg=*/0, /*isNormalMemory=*/true));
656          J->second.clear();
657        }
658        if (MayAlias) {
659          // Add dependencies from all the PendingLoads, i.e. loads
660          // with no underlying object.
661          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
662            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
663          // Add dependence on alias chain, if needed.
664          if (AliasChain)
665            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
666        }
667        // Add dependence on barrier chain, if needed.
668        if (BarrierChain)
669          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
670      } else {
671        // Treat all other stores conservatively.
672        goto new_alias_chain;
673      }
674
675      if (!ExitSU.isPred(SU))
676        // Push store's up a bit to avoid them getting in between cmp
677        // and branches.
678        ExitSU.addPred(SDep(SU, SDep::Order, 0,
679                            /*Reg=*/0, /*isNormalMemory=*/false,
680                            /*isMustAlias=*/false,
681                            /*isArtificial=*/true));
682    } else if (MI->mayLoad()) {
683      bool MayAlias = true;
684      TrueMemOrderLatency = 0;
685      if (MI->isInvariantLoad(AA)) {
686        // Invariant load, no chain dependencies needed!
687      } else {
688        if (const Value *V =
689            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
690          // A load from a specific PseudoSourceValue. Add precise dependencies.
691          std::map<const Value *, SUnit *>::iterator I =
692            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
693          std::map<const Value *, SUnit *>::iterator IE =
694            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
695          if (I != IE)
696            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
697                                    /*isNormalMemory=*/true));
698          if (MayAlias)
699            AliasMemUses[V].push_back(SU);
700          else
701            NonAliasMemUses[V].push_back(SU);
702        } else {
703          // A load with no underlying object. Depend on all
704          // potentially aliasing stores.
705          for (std::map<const Value *, SUnit *>::iterator I =
706                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
707            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
708
709          PendingLoads.push_back(SU);
710          MayAlias = true;
711        }
712
713        // Add dependencies on alias and barrier chains, if needed.
714        if (MayAlias && AliasChain)
715          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
716        if (BarrierChain)
717          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
718      }
719    }
720  }
721  if (PrevMI)
722    FirstDbgValue = PrevMI;
723
724  Defs.clear();
725  Uses.clear();
726  VRegDefs.clear();
727  PendingLoads.clear();
728  MISUnitMap.clear();
729}
730
731void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
732  // Compute the latency for the node.
733  if (!InstrItins || InstrItins->isEmpty()) {
734    SU->Latency = 1;
735
736    // Simplistic target-independent heuristic: assume that loads take
737    // extra time.
738    if (SU->getInstr()->mayLoad())
739      SU->Latency += 2;
740  } else {
741    SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
742  }
743}
744
745void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
746                                              SDep& dep) const {
747  if (!InstrItins || InstrItins->isEmpty())
748    return;
749
750  // For a data dependency with a known register...
751  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
752    return;
753
754  const unsigned Reg = dep.getReg();
755
756  // ... find the definition of the register in the defining
757  // instruction
758  MachineInstr *DefMI = Def->getInstr();
759  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
760  if (DefIdx != -1) {
761    const MachineOperand &MO = DefMI->getOperand(DefIdx);
762    if (MO.isReg() && MO.isImplicit() &&
763        DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
764      // This is an implicit def, getOperandLatency() won't return the correct
765      // latency. e.g.
766      //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
767      //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
768      // What we want is to compute latency between def of %D6/%D7 and use of
769      // %Q3 instead.
770      unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
771      if (DefMI->getOperand(Op2).isReg())
772        DefIdx = Op2;
773    }
774    MachineInstr *UseMI = Use->getInstr();
775    // For all uses of the register, calculate the maxmimum latency
776    int Latency = -1;
777    if (UseMI) {
778      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
779        const MachineOperand &MO = UseMI->getOperand(i);
780        if (!MO.isReg() || !MO.isUse())
781          continue;
782        unsigned MOReg = MO.getReg();
783        if (MOReg != Reg)
784          continue;
785
786        int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
787                                              UseMI, i);
788        Latency = std::max(Latency, UseCycle);
789      }
790    } else {
791      // UseMI is null, then it must be a scheduling barrier.
792      if (!InstrItins || InstrItins->isEmpty())
793        return;
794      unsigned DefClass = DefMI->getDesc().getSchedClass();
795      Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
796    }
797
798    // If we found a latency, then replace the existing dependence latency.
799    if (Latency >= 0)
800      dep.setLatency(Latency);
801  }
802}
803
804void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
805  SU->getInstr()->dump();
806}
807
808std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
809  std::string s;
810  raw_string_ostream oss(s);
811  if (SU == &EntrySU)
812    oss << "<entry>";
813  else if (SU == &ExitSU)
814    oss << "<exit>";
815  else
816    SU->getInstr()->print(oss);
817  return oss.str();
818}
819
820/// Return the basic block label. It is not necessarilly unique because a block
821/// contains multiple scheduling regions. But it is fine for visualization.
822std::string ScheduleDAGInstrs::getDAGName() const {
823  return "dag." + BB->getFullName();
824}
825