ScheduleDAGInstrs.cpp revision 56b94c52c9bf0342106ca7d274b9bb469d5ef619
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineMemOperand.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/MC/MCInstrItineraries.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetSubtargetInfo.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/ADT/SmallSet.h"
33using namespace llvm;
34
35ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
36                                     const MachineLoopInfo &mli,
37                                     const MachineDominatorTree &mdt,
38                                     bool IsPostRAFlag,
39                                     LiveIntervals *lis)
40  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
41    InstrItins(mf.getTarget().getInstrItineraryData()), IsPostRA(IsPostRAFlag),
42    LIS(lis), UnitLatencies(false), LoopRegs(MLI, MDT), FirstDbgValue(0) {
43  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
44  DbgValues.clear();
45  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
46         "Virtual registers must be removed prior to PostRA scheduling");
47}
48
49/// Run - perform scheduling.
50///
51void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
52                            MachineBasicBlock::iterator begin,
53                            MachineBasicBlock::iterator end,
54                            unsigned endcount) {
55  BB = bb;
56  Begin = begin;
57  InsertPosIndex = endcount;
58
59  // Check to see if the scheduler cares about latencies.
60  UnitLatencies = ForceUnitLatencies();
61
62  ScheduleDAG::Run(bb, end);
63}
64
65/// getUnderlyingObjectFromInt - This is the function that does the work of
66/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
67static const Value *getUnderlyingObjectFromInt(const Value *V) {
68  do {
69    if (const Operator *U = dyn_cast<Operator>(V)) {
70      // If we find a ptrtoint, we can transfer control back to the
71      // regular getUnderlyingObjectFromInt.
72      if (U->getOpcode() == Instruction::PtrToInt)
73        return U->getOperand(0);
74      // If we find an add of a constant or a multiplied value, it's
75      // likely that the other operand will lead us to the base
76      // object. We don't have to worry about the case where the
77      // object address is somehow being computed by the multiply,
78      // because our callers only care when the result is an
79      // identifibale object.
80      if (U->getOpcode() != Instruction::Add ||
81          (!isa<ConstantInt>(U->getOperand(1)) &&
82           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
83        return V;
84      V = U->getOperand(0);
85    } else {
86      return V;
87    }
88    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
89  } while (1);
90}
91
92/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
93/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
94static const Value *getUnderlyingObject(const Value *V) {
95  // First just call Value::getUnderlyingObject to let it do what it does.
96  do {
97    V = GetUnderlyingObject(V);
98    // If it found an inttoptr, use special code to continue climing.
99    if (Operator::getOpcode(V) != Instruction::IntToPtr)
100      break;
101    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
102    // If that succeeded in finding a pointer, continue the search.
103    if (!O->getType()->isPointerTy())
104      break;
105    V = O;
106  } while (1);
107  return V;
108}
109
110/// getUnderlyingObjectForInstr - If this machine instr has memory reference
111/// information and it can be tracked to a normal reference to a known
112/// object, return the Value for that object. Otherwise return null.
113static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
114                                                const MachineFrameInfo *MFI,
115                                                bool &MayAlias) {
116  MayAlias = true;
117  if (!MI->hasOneMemOperand() ||
118      !(*MI->memoperands_begin())->getValue() ||
119      (*MI->memoperands_begin())->isVolatile())
120    return 0;
121
122  const Value *V = (*MI->memoperands_begin())->getValue();
123  if (!V)
124    return 0;
125
126  V = getUnderlyingObject(V);
127  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
128    // For now, ignore PseudoSourceValues which may alias LLVM IR values
129    // because the code that uses this function has no way to cope with
130    // such aliases.
131    if (PSV->isAliased(MFI))
132      return 0;
133
134    MayAlias = PSV->mayAlias(MFI);
135    return V;
136  }
137
138  if (isIdentifiedObject(V))
139    return V;
140
141  return 0;
142}
143
144void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
145  LoopRegs.Deps.clear();
146  if (MachineLoop *ML = MLI.getLoopFor(BB))
147    if (BB == ML->getLoopLatch())
148      LoopRegs.VisitLoop(ML);
149}
150
151/// Initialize the map with the number of registers.
152void ScheduleDAGInstrs::Reg2SUnitsMap::setRegLimit(unsigned Limit) {
153  PhysRegSet.setUniverse(Limit);
154  SUnits.resize(Limit);
155}
156
157/// Clear the map without deallocating storage.
158void ScheduleDAGInstrs::Reg2SUnitsMap::clear() {
159  for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
160    SUnits[*I].clear();
161  }
162  PhysRegSet.clear();
163}
164
165/// AddSchedBarrierDeps - Add dependencies from instructions in the current
166/// list of instructions being scheduled to scheduling barrier by adding
167/// the exit SU to the register defs and use list. This is because we want to
168/// make sure instructions which define registers that are either used by
169/// the terminator or are live-out are properly scheduled. This is
170/// especially important when the definition latency of the return value(s)
171/// are too high to be hidden by the branch or when the liveout registers
172/// used by instructions in the fallthrough block.
173void ScheduleDAGInstrs::AddSchedBarrierDeps() {
174  MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
175  ExitSU.setInstr(ExitMI);
176  bool AllDepKnown = ExitMI &&
177    (ExitMI->isCall() || ExitMI->isBarrier());
178  if (ExitMI && AllDepKnown) {
179    // If it's a call or a barrier, add dependencies on the defs and uses of
180    // instruction.
181    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
182      const MachineOperand &MO = ExitMI->getOperand(i);
183      if (!MO.isReg() || MO.isDef()) continue;
184      unsigned Reg = MO.getReg();
185      if (Reg == 0) continue;
186
187      if (TRI->isPhysicalRegister(Reg))
188        Uses[Reg].push_back(&ExitSU);
189      else
190        assert(!IsPostRA && "Virtual register encountered after regalloc.");
191    }
192  } else {
193    // For others, e.g. fallthrough, conditional branch, assume the exit
194    // uses all the registers that are livein to the successor blocks.
195    SmallSet<unsigned, 8> Seen;
196    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
197           SE = BB->succ_end(); SI != SE; ++SI)
198      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
199             E = (*SI)->livein_end(); I != E; ++I) {
200        unsigned Reg = *I;
201        if (Seen.insert(Reg))
202          Uses[Reg].push_back(&ExitSU);
203      }
204  }
205}
206
207/// MO is an operand of SU's instruction that defines a physical register. Add
208/// data dependencies from SU to any uses of the physical register.
209void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU,
210                                           const MachineOperand &MO) {
211  assert(MO.isDef() && "expect physreg def");
212
213  // Ask the target if address-backscheduling is desirable, and if so how much.
214  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
215  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
216  unsigned DataLatency = SU->Latency;
217
218  for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
219    if (!Uses.contains(*Alias))
220      continue;
221    std::vector<SUnit*> &UseList = Uses[*Alias];
222    for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
223      SUnit *UseSU = UseList[i];
224      if (UseSU == SU)
225        continue;
226      unsigned LDataLatency = DataLatency;
227      // Optionally add in a special extra latency for nodes that
228      // feed addresses.
229      // TODO: Perhaps we should get rid of
230      // SpecialAddressLatency and just move this into
231      // adjustSchedDependency for the targets that care about it.
232      if (SpecialAddressLatency != 0 && !UnitLatencies &&
233          UseSU != &ExitSU) {
234        MachineInstr *UseMI = UseSU->getInstr();
235        const MCInstrDesc &UseMCID = UseMI->getDesc();
236        int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias);
237        assert(RegUseIndex >= 0 && "UseMI doesn't use register!");
238        if (RegUseIndex >= 0 &&
239            (UseMI->mayLoad() || UseMI->mayStore()) &&
240            (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
241            UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
242          LDataLatency += SpecialAddressLatency;
243      }
244      // Adjust the dependence latency using operand def/use
245      // information (if any), and then allow the target to
246      // perform its own adjustments.
247      const SDep& dep = SDep(SU, SDep::Data, LDataLatency, *Alias);
248      if (!UnitLatencies) {
249        ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
250        ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
251      }
252      UseSU->addPred(dep);
253    }
254  }
255}
256
257/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
258/// this SUnit to following instructions in the same scheduling region that
259/// depend the physical register referenced at OperIdx.
260void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
261  const MachineInstr *MI = SU->getInstr();
262  const MachineOperand &MO = MI->getOperand(OperIdx);
263
264  // Optionally add output and anti dependencies. For anti
265  // dependencies we use a latency of 0 because for a multi-issue
266  // target we want to allow the defining instruction to issue
267  // in the same cycle as the using instruction.
268  // TODO: Using a latency of 1 here for output dependencies assumes
269  //       there's no cost for reusing registers.
270  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
271  for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
272    if (!Defs.contains(*Alias))
273      continue;
274    std::vector<SUnit *> &DefList = Defs[*Alias];
275    for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
276      SUnit *DefSU = DefList[i];
277      if (DefSU == &ExitSU)
278        continue;
279      if (DefSU != SU &&
280          (Kind != SDep::Output || !MO.isDead() ||
281           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
282        if (Kind == SDep::Anti)
283          DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
284        else {
285          unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
286                                                 DefSU->getInstr());
287          DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
288        }
289      }
290    }
291  }
292
293  if (!MO.isDef()) {
294    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
295    // retrieve the existing SUnits list for this register's uses.
296    // Push this SUnit on the use list.
297    Uses[MO.getReg()].push_back(SU);
298  }
299  else {
300    addPhysRegDataDeps(SU, MO);
301
302    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
303    // retrieve the existing SUnits list for this register's defs.
304    std::vector<SUnit *> &DefList = Defs[MO.getReg()];
305
306    // If a def is going to wrap back around to the top of the loop,
307    // backschedule it.
308    if (!UnitLatencies && DefList.empty()) {
309      LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(MO.getReg());
310      if (I != LoopRegs.Deps.end()) {
311        const MachineOperand *UseMO = I->second.first;
312        unsigned Count = I->second.second;
313        const MachineInstr *UseMI = UseMO->getParent();
314        unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
315        const MCInstrDesc &UseMCID = UseMI->getDesc();
316        const TargetSubtargetInfo &ST =
317          TM.getSubtarget<TargetSubtargetInfo>();
318        unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
319        // TODO: If we knew the total depth of the region here, we could
320        // handle the case where the whole loop is inside the region but
321        // is large enough that the isScheduleHigh trick isn't needed.
322        if (UseMOIdx < UseMCID.getNumOperands()) {
323          // Currently, we only support scheduling regions consisting of
324          // single basic blocks. Check to see if the instruction is in
325          // the same region by checking to see if it has the same parent.
326          if (UseMI->getParent() != MI->getParent()) {
327            unsigned Latency = SU->Latency;
328            if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
329              Latency += SpecialAddressLatency;
330            // This is a wild guess as to the portion of the latency which
331            // will be overlapped by work done outside the current
332            // scheduling region.
333            Latency -= std::min(Latency, Count);
334            // Add the artificial edge.
335            ExitSU.addPred(SDep(SU, SDep::Order, Latency,
336                                /*Reg=*/0, /*isNormalMemory=*/false,
337                                /*isMustAlias=*/false,
338                                /*isArtificial=*/true));
339          } else if (SpecialAddressLatency > 0 &&
340                     UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
341            // The entire loop body is within the current scheduling region
342            // and the latency of this operation is assumed to be greater
343            // than the latency of the loop.
344            // TODO: Recursively mark data-edge predecessors as
345            //       isScheduleHigh too.
346            SU->isScheduleHigh = true;
347          }
348        }
349        LoopRegs.Deps.erase(I);
350      }
351    }
352
353    // clear this register's use list
354    if (Uses.contains(MO.getReg()))
355      Uses[MO.getReg()].clear();
356
357    if (!MO.isDead())
358      DefList.clear();
359
360    // Calls will not be reordered because of chain dependencies (see
361    // below). Since call operands are dead, calls may continue to be added
362    // to the DefList making dependence checking quadratic in the size of
363    // the block. Instead, we leave only one call at the back of the
364    // DefList.
365    if (SU->isCall) {
366      while (!DefList.empty() && DefList.back()->isCall)
367        DefList.pop_back();
368    }
369    // Defs are pushed in the order they are visited and never reordered.
370    DefList.push_back(SU);
371  }
372}
373
374/// addVRegDefDeps - Add register output and data dependencies from this SUnit
375/// to instructions that occur later in the same scheduling region if they read
376/// from or write to the virtual register defined at OperIdx.
377///
378/// TODO: Hoist loop induction variable increments. This has to be
379/// reevaluated. Generally, IV scheduling should be done before coalescing.
380void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
381  const MachineInstr *MI = SU->getInstr();
382  unsigned Reg = MI->getOperand(OperIdx).getReg();
383
384  // SSA defs do not have output/anti dependencies.
385  // The current operand is a def, so we have at least one.
386  if (llvm::next(MRI.def_begin(Reg)) == MRI.def_end())
387    return;
388
389  // Add output dependence to the next nearest def of this vreg.
390  //
391  // Unless this definition is dead, the output dependence should be
392  // transitively redundant with antidependencies from this definition's
393  // uses. We're conservative for now until we have a way to guarantee the uses
394  // are not eliminated sometime during scheduling. The output dependence edge
395  // is also useful if output latency exceeds def-use latency.
396  VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
397  if (DefI == VRegDefs.end())
398    VRegDefs.insert(VReg2SUnit(Reg, SU));
399  else {
400    SUnit *DefSU = DefI->SU;
401    if (DefSU != SU && DefSU != &ExitSU) {
402      unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
403                                                  DefSU->getInstr());
404      DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
405    }
406    DefI->SU = SU;
407  }
408}
409
410/// addVRegUseDeps - Add a register data dependency if the instruction that
411/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
412/// register antidependency from this SUnit to instructions that occur later in
413/// the same scheduling region if they write the virtual register.
414///
415/// TODO: Handle ExitSU "uses" properly.
416void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
417  MachineInstr *MI = SU->getInstr();
418  unsigned Reg = MI->getOperand(OperIdx).getReg();
419
420  // Lookup this operand's reaching definition.
421  assert(LIS && "vreg dependencies requires LiveIntervals");
422  SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot();
423  LiveInterval *LI = &LIS->getInterval(Reg);
424  VNInfo *VNI = LI->getVNInfoBefore(UseIdx);
425  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
426  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
427  // Phis and other noninstructions (after coalescing) have a NULL Def.
428  if (Def) {
429    SUnit *DefSU = getSUnit(Def);
430    if (DefSU) {
431      // The reaching Def lives within this scheduling region.
432      // Create a data dependence.
433      //
434      // TODO: Handle "special" address latencies cleanly.
435      const SDep &dep = SDep(DefSU, SDep::Data, DefSU->Latency, Reg);
436      if (!UnitLatencies) {
437        // Adjust the dependence latency using operand def/use information, then
438        // allow the target to perform its own adjustments.
439        ComputeOperandLatency(DefSU, SU, const_cast<SDep &>(dep));
440        const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
441        ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
442      }
443      SU->addPred(dep);
444    }
445  }
446
447  // Add antidependence to the following def of the vreg it uses.
448  VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
449  if (DefI != VRegDefs.end() && DefI->SU != SU)
450    DefI->SU->addPred(SDep(SU, SDep::Anti, 0, Reg));
451}
452
453/// Create an SUnit for each real instruction, numbered in top-down toplological
454/// order. The instruction order A < B, implies that no edge exists from B to A.
455///
456/// Map each real instruction to its SUnit.
457///
458/// After initSUnits, the SUnits vector is cannot be resized and the scheduler
459/// may hang onto SUnit pointers. We may relax this in the future by using SUnit
460/// IDs instead of pointers.
461void ScheduleDAGInstrs::initSUnits() {
462  // We'll be allocating one SUnit for each real instruction in the region,
463  // which is contained within a basic block.
464  SUnits.reserve(BB->size());
465
466  for (MachineBasicBlock::iterator I = Begin; I != InsertPos; ++I) {
467    MachineInstr *MI = I;
468    if (MI->isDebugValue())
469      continue;
470
471    SUnit *SU = NewSUnit(MI);
472    MISUnitMap[MI] = SU;
473
474    SU->isCall = MI->isCall();
475    SU->isCommutable = MI->isCommutable();
476
477    // Assign the Latency field of SU using target-provided information.
478    if (UnitLatencies)
479      SU->Latency = 1;
480    else
481      ComputeLatency(SU);
482  }
483}
484
485void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
486  // Create an SUnit for each real instruction.
487  initSUnits();
488
489  // We build scheduling units by walking a block's instruction list from bottom
490  // to top.
491
492  // Remember where a generic side-effecting instruction is as we procede.
493  SUnit *BarrierChain = 0, *AliasChain = 0;
494
495  // Memory references to specific known memory locations are tracked
496  // so that they can be given more precise dependencies. We track
497  // separately the known memory locations that may alias and those
498  // that are known not to alias
499  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
500  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
501
502  // Remove any stale debug info; sometimes BuildSchedGraph is called again
503  // without emitting the info from the previous call.
504  DbgValues.clear();
505  FirstDbgValue = NULL;
506
507  assert(Defs.empty() && Uses.empty() &&
508         "Only BuildGraph should update Defs/Uses");
509  Defs.setRegLimit(TRI->getNumRegs());
510  Uses.setRegLimit(TRI->getNumRegs());
511
512  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
513  // FIXME: Allow SparseSet to reserve space for the creation of virtual
514  // registers during scheduling. Don't artificially inflate the Universe
515  // because we want to assert that vregs are not created during DAG building.
516  VRegDefs.setUniverse(MRI.getNumVirtRegs());
517
518  // Model data dependencies between instructions being scheduled and the
519  // ExitSU.
520  AddSchedBarrierDeps();
521
522  // Walk the list of instructions, from bottom moving up.
523  MachineInstr *PrevMI = NULL;
524  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
525       MII != MIE; --MII) {
526    MachineInstr *MI = prior(MII);
527    if (MI && PrevMI) {
528      DbgValues.push_back(std::make_pair(PrevMI, MI));
529      PrevMI = NULL;
530    }
531
532    if (MI->isDebugValue()) {
533      PrevMI = MI;
534      continue;
535    }
536
537    assert(!MI->isTerminator() && !MI->isLabel() &&
538           "Cannot schedule terminators or labels!");
539
540    SUnit *SU = MISUnitMap[MI];
541    assert(SU && "No SUnit mapped to this MI");
542
543    // Add register-based dependencies (data, anti, and output).
544    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
545      const MachineOperand &MO = MI->getOperand(j);
546      if (!MO.isReg()) continue;
547      unsigned Reg = MO.getReg();
548      if (Reg == 0) continue;
549
550      if (TRI->isPhysicalRegister(Reg))
551        addPhysRegDeps(SU, j);
552      else {
553        assert(!IsPostRA && "Virtual register encountered!");
554        if (MO.isDef())
555          addVRegDefDeps(SU, j);
556        else if (MO.readsReg()) // ignore undef operands
557          addVRegUseDeps(SU, j);
558      }
559    }
560
561    // Add chain dependencies.
562    // Chain dependencies used to enforce memory order should have
563    // latency of 0 (except for true dependency of Store followed by
564    // aliased Load... we estimate that with a single cycle of latency
565    // assuming the hardware will bypass)
566    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
567    // after stack slots are lowered to actual addresses.
568    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
569    // produce more precise dependence information.
570#define STORE_LOAD_LATENCY 1
571    unsigned TrueMemOrderLatency = 0;
572    if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
573        (MI->hasVolatileMemoryRef() &&
574         (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) {
575      // Be conservative with these and add dependencies on all memory
576      // references, even those that are known to not alias.
577      for (std::map<const Value *, SUnit *>::iterator I =
578             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
579        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
580      }
581      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
582             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
583        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
584          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
585      }
586      NonAliasMemDefs.clear();
587      NonAliasMemUses.clear();
588      // Add SU to the barrier chain.
589      if (BarrierChain)
590        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
591      BarrierChain = SU;
592
593      // fall-through
594    new_alias_chain:
595      // Chain all possibly aliasing memory references though SU.
596      if (AliasChain)
597        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
598      AliasChain = SU;
599      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
600        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
601      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
602           E = AliasMemDefs.end(); I != E; ++I) {
603        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
604      }
605      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
606           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
607        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
608          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
609      }
610      PendingLoads.clear();
611      AliasMemDefs.clear();
612      AliasMemUses.clear();
613    } else if (MI->mayStore()) {
614      bool MayAlias = true;
615      TrueMemOrderLatency = STORE_LOAD_LATENCY;
616      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
617        // A store to a specific PseudoSourceValue. Add precise dependencies.
618        // Record the def in MemDefs, first adding a dep if there is
619        // an existing def.
620        std::map<const Value *, SUnit *>::iterator I =
621          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
622        std::map<const Value *, SUnit *>::iterator IE =
623          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
624        if (I != IE) {
625          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
626                                  /*isNormalMemory=*/true));
627          I->second = SU;
628        } else {
629          if (MayAlias)
630            AliasMemDefs[V] = SU;
631          else
632            NonAliasMemDefs[V] = SU;
633        }
634        // Handle the uses in MemUses, if there are any.
635        std::map<const Value *, std::vector<SUnit *> >::iterator J =
636          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
637        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
638          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
639        if (J != JE) {
640          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
641            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
642                                       /*Reg=*/0, /*isNormalMemory=*/true));
643          J->second.clear();
644        }
645        if (MayAlias) {
646          // Add dependencies from all the PendingLoads, i.e. loads
647          // with no underlying object.
648          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
649            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
650          // Add dependence on alias chain, if needed.
651          if (AliasChain)
652            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
653        }
654        // Add dependence on barrier chain, if needed.
655        if (BarrierChain)
656          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
657      } else {
658        // Treat all other stores conservatively.
659        goto new_alias_chain;
660      }
661
662      if (!ExitSU.isPred(SU))
663        // Push store's up a bit to avoid them getting in between cmp
664        // and branches.
665        ExitSU.addPred(SDep(SU, SDep::Order, 0,
666                            /*Reg=*/0, /*isNormalMemory=*/false,
667                            /*isMustAlias=*/false,
668                            /*isArtificial=*/true));
669    } else if (MI->mayLoad()) {
670      bool MayAlias = true;
671      TrueMemOrderLatency = 0;
672      if (MI->isInvariantLoad(AA)) {
673        // Invariant load, no chain dependencies needed!
674      } else {
675        if (const Value *V =
676            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
677          // A load from a specific PseudoSourceValue. Add precise dependencies.
678          std::map<const Value *, SUnit *>::iterator I =
679            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
680          std::map<const Value *, SUnit *>::iterator IE =
681            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
682          if (I != IE)
683            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
684                                    /*isNormalMemory=*/true));
685          if (MayAlias)
686            AliasMemUses[V].push_back(SU);
687          else
688            NonAliasMemUses[V].push_back(SU);
689        } else {
690          // A load with no underlying object. Depend on all
691          // potentially aliasing stores.
692          for (std::map<const Value *, SUnit *>::iterator I =
693                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
694            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
695
696          PendingLoads.push_back(SU);
697          MayAlias = true;
698        }
699
700        // Add dependencies on alias and barrier chains, if needed.
701        if (MayAlias && AliasChain)
702          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
703        if (BarrierChain)
704          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
705      }
706    }
707  }
708  if (PrevMI)
709    FirstDbgValue = PrevMI;
710
711  Defs.clear();
712  Uses.clear();
713  VRegDefs.clear();
714  PendingLoads.clear();
715  MISUnitMap.clear();
716}
717
718void ScheduleDAGInstrs::FinishBlock() {
719  // Nothing to do.
720}
721
722void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
723  // Compute the latency for the node.
724  if (!InstrItins || InstrItins->isEmpty()) {
725    SU->Latency = 1;
726
727    // Simplistic target-independent heuristic: assume that loads take
728    // extra time.
729    if (SU->getInstr()->mayLoad())
730      SU->Latency += 2;
731  } else {
732    SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
733  }
734}
735
736void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
737                                              SDep& dep) const {
738  if (!InstrItins || InstrItins->isEmpty())
739    return;
740
741  // For a data dependency with a known register...
742  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
743    return;
744
745  const unsigned Reg = dep.getReg();
746
747  // ... find the definition of the register in the defining
748  // instruction
749  MachineInstr *DefMI = Def->getInstr();
750  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
751  if (DefIdx != -1) {
752    const MachineOperand &MO = DefMI->getOperand(DefIdx);
753    if (MO.isReg() && MO.isImplicit() &&
754        DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
755      // This is an implicit def, getOperandLatency() won't return the correct
756      // latency. e.g.
757      //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
758      //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
759      // What we want is to compute latency between def of %D6/%D7 and use of
760      // %Q3 instead.
761      unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
762      if (DefMI->getOperand(Op2).isReg())
763        DefIdx = Op2;
764    }
765    MachineInstr *UseMI = Use->getInstr();
766    // For all uses of the register, calculate the maxmimum latency
767    int Latency = -1;
768    if (UseMI) {
769      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
770        const MachineOperand &MO = UseMI->getOperand(i);
771        if (!MO.isReg() || !MO.isUse())
772          continue;
773        unsigned MOReg = MO.getReg();
774        if (MOReg != Reg)
775          continue;
776
777        int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
778                                              UseMI, i);
779        Latency = std::max(Latency, UseCycle);
780      }
781    } else {
782      // UseMI is null, then it must be a scheduling barrier.
783      if (!InstrItins || InstrItins->isEmpty())
784        return;
785      unsigned DefClass = DefMI->getDesc().getSchedClass();
786      Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
787    }
788
789    // If we found a latency, then replace the existing dependence latency.
790    if (Latency >= 0)
791      dep.setLatency(Latency);
792  }
793}
794
795void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
796  SU->getInstr()->dump();
797}
798
799std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
800  std::string s;
801  raw_string_ostream oss(s);
802  if (SU == &EntrySU)
803    oss << "<entry>";
804  else if (SU == &ExitSU)
805    oss << "<exit>";
806  else
807    SU->getInstr()->print(oss);
808  return oss.str();
809}
810
811/// Return the basic block label. It is not necessarilly unique because a block
812/// contains multiple scheduling regions. But it is fine for visualization.
813std::string ScheduleDAGInstrs::getDAGName() const {
814  return "dag." + BB->getFullName();
815}
816
817// EmitSchedule - Emit the machine code in scheduled order.
818MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
819  Begin = InsertPos;
820
821  // If first instruction was a DBG_VALUE then put it back.
822  if (FirstDbgValue)
823    BB->splice(InsertPos, BB, FirstDbgValue);
824
825  // Then re-insert them according to the given schedule.
826  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
827    if (SUnit *SU = Sequence[i])
828      BB->splice(InsertPos, BB, SU->getInstr());
829    else
830      // Null SUnit* is a noop.
831      EmitNoop();
832
833    // Update the Begin iterator, as the first instruction in the block
834    // may have been scheduled later.
835    if (i == 0)
836      Begin = prior(InsertPos);
837  }
838
839  // Reinsert any remaining debug_values.
840  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
841         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
842    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
843    MachineInstr *DbgValue = P.first;
844    MachineBasicBlock::iterator OrigPrivMI = P.second;
845    BB->splice(++OrigPrivMI, BB, DbgValue);
846  }
847  DbgValues.clear();
848  FirstDbgValue = NULL;
849  return BB;
850}
851