ScheduleDAGInstrs.cpp revision 79ce276083ced01256a0eb7d80731e4948ca6e87
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "llvm/CodeGen/MachineDominators.h"
17#include "llvm/CodeGen/MachineFunctionPass.h"
18#include "llvm/CodeGen/MachineLoopInfo.h"
19#include "llvm/CodeGen/MachineRegisterInfo.h"
20#include "llvm/CodeGen/ScheduleDAGInstrs.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetRegisterInfo.h"
25#include "llvm/Target/TargetSubtarget.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/ADT/SmallSet.h"
30#include <map>
31using namespace llvm;
32
33namespace {
34  class VISIBILITY_HIDDEN LoopDependencies {
35    const MachineLoopInfo &MLI;
36    const MachineDominatorTree &MDT;
37
38  public:
39    typedef std::map<unsigned, std::pair<const MachineOperand *, unsigned> >
40      LoopDeps;
41    LoopDeps Deps;
42
43    LoopDependencies(const MachineLoopInfo &mli,
44                     const MachineDominatorTree &mdt) :
45      MLI(mli), MDT(mdt) {}
46
47    void VisitLoop(const MachineLoop *Loop) {
48      Deps.clear();
49      MachineBasicBlock *Header = Loop->getHeader();
50      SmallSet<unsigned, 8> LoopLiveIns;
51      for (MachineBasicBlock::livein_iterator LI = Header->livein_begin(),
52           LE = Header->livein_end(); LI != LE; ++LI)
53        LoopLiveIns.insert(*LI);
54
55      const MachineDomTreeNode *Node = MDT.getNode(Header);
56      const MachineBasicBlock *MBB = Node->getBlock();
57      assert(Loop->contains(MBB) &&
58             "Loop does not contain header!");
59      VisitRegion(Node, MBB, Loop, LoopLiveIns);
60    }
61
62  private:
63    void VisitRegion(const MachineDomTreeNode *Node,
64                     const MachineBasicBlock *MBB,
65                     const MachineLoop *Loop,
66                     const SmallSet<unsigned, 8> &LoopLiveIns) {
67      unsigned Count = 0;
68      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
69           I != E; ++I, ++Count) {
70        const MachineInstr *MI = I;
71        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
72          const MachineOperand &MO = MI->getOperand(i);
73          if (!MO.isReg() || !MO.isUse())
74            continue;
75          unsigned MOReg = MO.getReg();
76          if (LoopLiveIns.count(MOReg))
77            Deps.insert(std::make_pair(MOReg, std::make_pair(&MO, Count)));
78        }
79      }
80
81      const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
82      for (std::vector<MachineDomTreeNode*>::const_iterator I =
83           Children.begin(), E = Children.end(); I != E; ++I) {
84        const MachineDomTreeNode *ChildNode = *I;
85        MachineBasicBlock *ChildBlock = ChildNode->getBlock();
86        if (Loop->contains(ChildBlock))
87          VisitRegion(ChildNode, ChildBlock, Loop, LoopLiveIns);
88      }
89    }
90  };
91}
92
93ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
94                                     const MachineLoopInfo &mli,
95                                     const MachineDominatorTree &mdt)
96  : ScheduleDAG(mf), MLI(mli), MDT(mdt) {}
97
98void ScheduleDAGInstrs::BuildSchedGraph() {
99  SUnits.reserve(BB->size());
100
101  // We build scheduling units by walking a block's instruction list from bottom
102  // to top.
103
104  // Remember where a generic side-effecting instruction is as we procede. If
105  // ChainMMO is null, this is assumed to have arbitrary side-effects. If
106  // ChainMMO is non-null, then Chain makes only a single memory reference.
107  SUnit *Chain = 0;
108  MachineMemOperand *ChainMMO = 0;
109
110  // Memory references to specific known memory locations are tracked so that
111  // they can be given more precise dependencies.
112  std::map<const Value *, SUnit *> MemDefs;
113  std::map<const Value *, std::vector<SUnit *> > MemUses;
114
115  // Terminators can perform control transfers, we we need to make sure that
116  // all the work of the block is done before the terminator.
117  SUnit *Terminator = 0;
118
119  LoopDependencies LoopRegs(MLI, MDT);
120
121  // Track which regs are live into a loop, to help guide back-edge-aware
122  // scheduling.
123  SmallSet<unsigned, 8> LoopLiveInRegs;
124  if (MachineLoop *ML = MLI.getLoopFor(BB))
125    if (BB == ML->getLoopLatch()) {
126      MachineBasicBlock *Header = ML->getHeader();
127      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
128           E = Header->livein_end(); I != E; ++I)
129        LoopLiveInRegs.insert(*I);
130      LoopRegs.VisitLoop(ML);
131    }
132
133  // Check to see if the scheduler cares about latencies.
134  bool UnitLatencies = ForceUnitLatencies();
135
136  // Ask the target if address-backscheduling is desirable, and if so how much.
137  unsigned SpecialAddressLatency =
138    TM.getSubtarget<TargetSubtarget>().getSpecialAddressLatency();
139
140  for (MachineBasicBlock::iterator MII = BB->end(), MIE = BB->begin();
141       MII != MIE; --MII) {
142    MachineInstr *MI = prior(MII);
143    const TargetInstrDesc &TID = MI->getDesc();
144    SUnit *SU = NewSUnit(MI);
145
146    // Assign the Latency field of SU using target-provided information.
147    if (UnitLatencies)
148      SU->Latency = 1;
149    else
150      ComputeLatency(SU);
151
152    // Add register-based dependencies (data, anti, and output).
153    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
154      const MachineOperand &MO = MI->getOperand(j);
155      if (!MO.isReg()) continue;
156      unsigned Reg = MO.getReg();
157      if (Reg == 0) continue;
158
159      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
160      std::vector<SUnit *> &UseList = Uses[Reg];
161      std::vector<SUnit *> &DefList = Defs[Reg];
162      // Optionally add output and anti dependencies.
163      // TODO: Using a latency of 1 here assumes there's no cost for
164      //       reusing registers.
165      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
166      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
167        SUnit *DefSU = DefList[i];
168        if (DefSU != SU &&
169            (Kind != SDep::Output || !MO.isDead() ||
170             !DefSU->getInstr()->registerDefIsDead(Reg)))
171          DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/Reg));
172      }
173      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
174        std::vector<SUnit *> &DefList = Defs[*Alias];
175        for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
176          SUnit *DefSU = DefList[i];
177          if (DefSU != SU &&
178              (Kind != SDep::Output || !MO.isDead() ||
179               !DefSU->getInstr()->registerDefIsDead(Reg)))
180            DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/ *Alias));
181        }
182      }
183
184      if (MO.isDef()) {
185        // Add any data dependencies.
186        unsigned DataLatency = SU->Latency;
187        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
188          SUnit *UseSU = UseList[i];
189          if (UseSU != SU) {
190            unsigned LDataLatency = DataLatency;
191            // Optionally add in a special extra latency for nodes that
192            // feed addresses.
193            // TODO: Do this for register aliases too.
194            if (SpecialAddressLatency != 0 && !UnitLatencies) {
195              MachineInstr *UseMI = UseSU->getInstr();
196              const TargetInstrDesc &UseTID = UseMI->getDesc();
197              int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
198              assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
199              if ((UseTID.mayLoad() || UseTID.mayStore()) &&
200                  (unsigned)RegUseIndex < UseTID.getNumOperands() &&
201                  UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
202                LDataLatency += SpecialAddressLatency;
203            }
204            UseSU->addPred(SDep(SU, SDep::Data, LDataLatency, Reg));
205          }
206        }
207        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
208          std::vector<SUnit *> &UseList = Uses[*Alias];
209          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
210            SUnit *UseSU = UseList[i];
211            if (UseSU != SU)
212              UseSU->addPred(SDep(SU, SDep::Data, DataLatency, *Alias));
213          }
214        }
215
216        // If a def is going to wrap back around to the top of the loop,
217        // backschedule it.
218        // TODO: Blocks in loops without terminators can benefit too.
219        if (!UnitLatencies && Terminator && DefList.empty()) {
220          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
221          if (I != LoopRegs.Deps.end()) {
222            const MachineOperand *UseMO = I->second.first;
223            unsigned Count = I->second.second;
224            const MachineInstr *UseMI = UseMO->getParent();
225            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
226            const TargetInstrDesc &UseTID = UseMI->getDesc();
227            // TODO: If we knew the total depth of the region here, we could
228            // handle the case where the whole loop is inside the region but
229            // is large enough that the isScheduleHigh trick isn't needed.
230            if (UseMOIdx < UseTID.getNumOperands()) {
231              // Currently, we only support scheduling regions consisting of
232              // single basic blocks. Check to see if the instruction is in
233              // the same region by checking to see if it has the same parent.
234              if (UseMI->getParent() != MI->getParent()) {
235                unsigned Latency = SU->Latency;
236                if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
237                  Latency += SpecialAddressLatency;
238                // This is a wild guess as to the portion of the latency which
239                // will be overlapped by work done outside the current
240                // scheduling region.
241                Latency -= std::min(Latency, Count);
242                // Add the artifical edge.
243                Terminator->addPred(SDep(SU, SDep::Order, Latency,
244                                         /*Reg=*/0, /*isNormalMemory=*/false,
245                                         /*isMustAlias=*/false,
246                                         /*isArtificial=*/true));
247              } else if (SpecialAddressLatency > 0 &&
248                         UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
249                // The entire loop body is within the current scheduling region
250                // and the latency of this operation is assumed to be greater
251                // than the latency of the loop.
252                // TODO: Recursively mark data-edge predecessors as
253                //       isScheduleHigh too.
254                SU->isScheduleHigh = true;
255              }
256            }
257            LoopRegs.Deps.erase(I);
258          }
259        }
260
261        UseList.clear();
262        if (!MO.isDead())
263          DefList.clear();
264        DefList.push_back(SU);
265      } else {
266        UseList.push_back(SU);
267      }
268    }
269
270    // Add chain dependencies.
271    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
272    // after stack slots are lowered to actual addresses.
273    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
274    // produce more precise dependence information.
275    if (TID.isCall() || TID.isTerminator() || TID.hasUnmodeledSideEffects()) {
276    new_chain:
277      // This is the conservative case. Add dependencies on all memory
278      // references.
279      if (Chain)
280        Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
281      Chain = SU;
282      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
283        PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
284      PendingLoads.clear();
285      for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
286           E = MemDefs.end(); I != E; ++I) {
287        I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
288        I->second = SU;
289      }
290      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
291           MemUses.begin(), E = MemUses.end(); I != E; ++I) {
292        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
293          I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency));
294        I->second.clear();
295      }
296      // See if it is known to just have a single memory reference.
297      MachineInstr *ChainMI = Chain->getInstr();
298      const TargetInstrDesc &ChainTID = ChainMI->getDesc();
299      if (!ChainTID.isCall() && !ChainTID.isTerminator() &&
300          !ChainTID.hasUnmodeledSideEffects() &&
301          ChainMI->hasOneMemOperand() &&
302          !ChainMI->memoperands_begin()->isVolatile() &&
303          ChainMI->memoperands_begin()->getValue())
304        // We know that the Chain accesses one specific memory location.
305        ChainMMO = &*ChainMI->memoperands_begin();
306      else
307        // Unknown memory accesses. Assume the worst.
308        ChainMMO = 0;
309    } else if (TID.mayStore()) {
310      if (MI->hasOneMemOperand() &&
311          MI->memoperands_begin()->getValue() &&
312          !MI->memoperands_begin()->isVolatile() &&
313          isa<PseudoSourceValue>(MI->memoperands_begin()->getValue())) {
314        // A store to a specific PseudoSourceValue. Add precise dependencies.
315        const Value *V = MI->memoperands_begin()->getValue();
316        // Handle the def in MemDefs, if there is one.
317        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
318        if (I != MemDefs.end()) {
319          I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
320                                  /*isNormalMemory=*/true));
321          I->second = SU;
322        } else {
323          MemDefs[V] = SU;
324        }
325        // Handle the uses in MemUses, if there are any.
326        std::map<const Value *, std::vector<SUnit *> >::iterator J =
327          MemUses.find(V);
328        if (J != MemUses.end()) {
329          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
330            J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
331                                       /*isNormalMemory=*/true));
332          J->second.clear();
333        }
334        // Add a general dependence too, if needed.
335        if (Chain)
336          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
337      } else
338        // Treat all other stores conservatively.
339        goto new_chain;
340    } else if (TID.mayLoad()) {
341      if (TII->isInvariantLoad(MI)) {
342        // Invariant load, no chain dependencies needed!
343      } else if (MI->hasOneMemOperand() &&
344                 MI->memoperands_begin()->getValue() &&
345                 !MI->memoperands_begin()->isVolatile() &&
346                 isa<PseudoSourceValue>(MI->memoperands_begin()->getValue())) {
347        // A load from a specific PseudoSourceValue. Add precise dependencies.
348        const Value *V = MI->memoperands_begin()->getValue();
349        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
350        if (I != MemDefs.end())
351          I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
352                                  /*isNormalMemory=*/true));
353        MemUses[V].push_back(SU);
354
355        // Add a general dependence too, if needed.
356        if (Chain && (!ChainMMO ||
357                      (ChainMMO->isStore() || ChainMMO->isVolatile())))
358          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
359      } else if (MI->hasVolatileMemoryRef()) {
360        // Treat volatile loads conservatively. Note that this includes
361        // cases where memoperand information is unavailable.
362        goto new_chain;
363      } else {
364        // A normal load. Just depend on the general chain.
365        if (Chain)
366          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
367        PendingLoads.push_back(SU);
368      }
369    }
370
371    // Add chain edges from the terminator to ensure that all the work of the
372    // block is completed before any control transfers.
373    if (Terminator && SU->Succs.empty())
374      Terminator->addPred(SDep(SU, SDep::Order, SU->Latency));
375    if (TID.isTerminator() || MI->isLabel())
376      Terminator = SU;
377  }
378
379  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
380    Defs[i].clear();
381    Uses[i].clear();
382  }
383  PendingLoads.clear();
384}
385
386void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
387  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
388
389  // Compute the latency for the node.  We use the sum of the latencies for
390  // all nodes flagged together into this SUnit.
391  SU->Latency =
392    InstrItins.getLatency(SU->getInstr()->getDesc().getSchedClass());
393
394  // Simplistic target-independent heuristic: assume that loads take
395  // extra time.
396  if (InstrItins.isEmpty())
397    if (SU->getInstr()->getDesc().mayLoad())
398      SU->Latency += 2;
399}
400
401void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
402  SU->getInstr()->dump();
403}
404
405std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
406  std::string s;
407  raw_string_ostream oss(s);
408  SU->getInstr()->print(oss);
409  return oss.str();
410}
411
412// EmitSchedule - Emit the machine code in scheduled order.
413MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
414  // For MachineInstr-based scheduling, we're rescheduling the instructions in
415  // the block, so start by removing them from the block.
416  while (!BB->empty())
417    BB->remove(BB->begin());
418
419  // Then re-insert them according to the given schedule.
420  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
421    SUnit *SU = Sequence[i];
422    if (!SU) {
423      // Null SUnit* is a noop.
424      EmitNoop();
425      continue;
426    }
427
428    BB->push_back(SU->getInstr());
429  }
430
431  return BB;
432}
433