ScheduleDAGInstrs.cpp revision 877ae2ee17cb89c57310c65fb4046e49020a0b55
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineMemOperand.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/PseudoSourceValue.h"
24#include "llvm/MC/MCInstrItineraries.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetSubtargetInfo.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/ADT/SmallSet.h"
32using namespace llvm;
33
34ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
35                                     const MachineLoopInfo &mli,
36                                     const MachineDominatorTree &mdt)
37  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
38    InstrItins(mf.getTarget().getInstrItineraryData()),
39    Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()),
40    LoopRegs(MLI, MDT), FirstDbgValue(0) {
41  DbgValues.clear();
42}
43
44/// Run - perform scheduling.
45///
46void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
47                            MachineBasicBlock::iterator begin,
48                            MachineBasicBlock::iterator end,
49                            unsigned endcount) {
50  BB = bb;
51  Begin = begin;
52  InsertPosIndex = endcount;
53
54  ScheduleDAG::Run(bb, end);
55}
56
57/// getUnderlyingObjectFromInt - This is the function that does the work of
58/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
59static const Value *getUnderlyingObjectFromInt(const Value *V) {
60  do {
61    if (const Operator *U = dyn_cast<Operator>(V)) {
62      // If we find a ptrtoint, we can transfer control back to the
63      // regular getUnderlyingObjectFromInt.
64      if (U->getOpcode() == Instruction::PtrToInt)
65        return U->getOperand(0);
66      // If we find an add of a constant or a multiplied value, it's
67      // likely that the other operand will lead us to the base
68      // object. We don't have to worry about the case where the
69      // object address is somehow being computed by the multiply,
70      // because our callers only care when the result is an
71      // identifibale object.
72      if (U->getOpcode() != Instruction::Add ||
73          (!isa<ConstantInt>(U->getOperand(1)) &&
74           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
75        return V;
76      V = U->getOperand(0);
77    } else {
78      return V;
79    }
80    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
81  } while (1);
82}
83
84/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
85/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
86static const Value *getUnderlyingObject(const Value *V) {
87  // First just call Value::getUnderlyingObject to let it do what it does.
88  do {
89    V = GetUnderlyingObject(V);
90    // If it found an inttoptr, use special code to continue climing.
91    if (Operator::getOpcode(V) != Instruction::IntToPtr)
92      break;
93    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
94    // If that succeeded in finding a pointer, continue the search.
95    if (!O->getType()->isPointerTy())
96      break;
97    V = O;
98  } while (1);
99  return V;
100}
101
102/// getUnderlyingObjectForInstr - If this machine instr has memory reference
103/// information and it can be tracked to a normal reference to a known
104/// object, return the Value for that object. Otherwise return null.
105static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
106                                                const MachineFrameInfo *MFI,
107                                                bool &MayAlias) {
108  MayAlias = true;
109  if (!MI->hasOneMemOperand() ||
110      !(*MI->memoperands_begin())->getValue() ||
111      (*MI->memoperands_begin())->isVolatile())
112    return 0;
113
114  const Value *V = (*MI->memoperands_begin())->getValue();
115  if (!V)
116    return 0;
117
118  V = getUnderlyingObject(V);
119  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
120    // For now, ignore PseudoSourceValues which may alias LLVM IR values
121    // because the code that uses this function has no way to cope with
122    // such aliases.
123    if (PSV->isAliased(MFI))
124      return 0;
125
126    MayAlias = PSV->mayAlias(MFI);
127    return V;
128  }
129
130  if (isIdentifiedObject(V))
131    return V;
132
133  return 0;
134}
135
136void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
137  LoopRegs.Deps.clear();
138  if (MachineLoop *ML = MLI.getLoopFor(BB))
139    if (BB == ML->getLoopLatch()) {
140      MachineBasicBlock *Header = ML->getHeader();
141      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
142           E = Header->livein_end(); I != E; ++I)
143        LoopLiveInRegs.insert(*I);
144      LoopRegs.VisitLoop(ML);
145    }
146}
147
148/// AddSchedBarrierDeps - Add dependencies from instructions in the current
149/// list of instructions being scheduled to scheduling barrier by adding
150/// the exit SU to the register defs and use list. This is because we want to
151/// make sure instructions which define registers that are either used by
152/// the terminator or are live-out are properly scheduled. This is
153/// especially important when the definition latency of the return value(s)
154/// are too high to be hidden by the branch or when the liveout registers
155/// used by instructions in the fallthrough block.
156void ScheduleDAGInstrs::AddSchedBarrierDeps() {
157  MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
158  ExitSU.setInstr(ExitMI);
159  bool AllDepKnown = ExitMI &&
160    (ExitMI->isCall() || ExitMI->isBarrier());
161  if (ExitMI && AllDepKnown) {
162    // If it's a call or a barrier, add dependencies on the defs and uses of
163    // instruction.
164    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
165      const MachineOperand &MO = ExitMI->getOperand(i);
166      if (!MO.isReg() || MO.isDef()) continue;
167      unsigned Reg = MO.getReg();
168      if (Reg == 0) continue;
169
170      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
171      Uses[Reg].push_back(&ExitSU);
172    }
173  } else {
174    // For others, e.g. fallthrough, conditional branch, assume the exit
175    // uses all the registers that are livein to the successor blocks.
176    SmallSet<unsigned, 8> Seen;
177    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
178           SE = BB->succ_end(); SI != SE; ++SI)
179      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
180             E = (*SI)->livein_end(); I != E; ++I) {
181        unsigned Reg = *I;
182        if (Seen.insert(Reg))
183          Uses[Reg].push_back(&ExitSU);
184      }
185  }
186}
187
188void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
189  // We'll be allocating one SUnit for each instruction, plus one for
190  // the region exit node.
191  SUnits.reserve(BB->size());
192
193  // We build scheduling units by walking a block's instruction list from bottom
194  // to top.
195
196  // Remember where a generic side-effecting instruction is as we procede.
197  SUnit *BarrierChain = 0, *AliasChain = 0;
198
199  // Memory references to specific known memory locations are tracked
200  // so that they can be given more precise dependencies. We track
201  // separately the known memory locations that may alias and those
202  // that are known not to alias
203  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
204  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
205
206  // Check to see if the scheduler cares about latencies.
207  bool UnitLatencies = ForceUnitLatencies();
208
209  // Ask the target if address-backscheduling is desirable, and if so how much.
210  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
211  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
212
213  // Remove any stale debug info; sometimes BuildSchedGraph is called again
214  // without emitting the info from the previous call.
215  DbgValues.clear();
216  FirstDbgValue = NULL;
217
218  // Model data dependencies between instructions being scheduled and the
219  // ExitSU.
220  AddSchedBarrierDeps();
221
222  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
223    assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs");
224  }
225
226  // Walk the list of instructions, from bottom moving up.
227  MachineInstr *PrevMI = NULL;
228  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
229       MII != MIE; --MII) {
230    MachineInstr *MI = prior(MII);
231    if (MI && PrevMI) {
232      DbgValues.push_back(std::make_pair(PrevMI, MI));
233      PrevMI = NULL;
234    }
235
236    if (MI->isDebugValue()) {
237      PrevMI = MI;
238      continue;
239    }
240
241    assert(!MI->isTerminator() && !MI->isLabel() &&
242           "Cannot schedule terminators or labels!");
243    // Create the SUnit for this MI.
244    SUnit *SU = NewSUnit(MI);
245    SU->isCall = MI->isCall();
246    SU->isCommutable = MI->isCommutable();
247
248    // Assign the Latency field of SU using target-provided information.
249    if (UnitLatencies)
250      SU->Latency = 1;
251    else
252      ComputeLatency(SU);
253
254    // Add register-based dependencies (data, anti, and output).
255    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
256      const MachineOperand &MO = MI->getOperand(j);
257      if (!MO.isReg()) continue;
258      unsigned Reg = MO.getReg();
259      if (Reg == 0) continue;
260
261      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
262
263      // Optionally add output and anti dependencies. For anti
264      // dependencies we use a latency of 0 because for a multi-issue
265      // target we want to allow the defining instruction to issue
266      // in the same cycle as the using instruction.
267      // TODO: Using a latency of 1 here for output dependencies assumes
268      //       there's no cost for reusing registers.
269      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
270      unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
271      for (const unsigned *Alias = TRI->getOverlaps(Reg); *Alias; ++Alias) {
272        std::vector<SUnit *> &DefList = Defs[*Alias];
273        for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
274          SUnit *DefSU = DefList[i];
275          if (DefSU == &ExitSU)
276            continue;
277          if (DefSU != SU &&
278              (Kind != SDep::Output || !MO.isDead() ||
279               !DefSU->getInstr()->registerDefIsDead(*Alias))) {
280            if (Kind == SDep::Anti)
281              DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
282            else {
283              unsigned AOLat = TII->getOutputLatency(InstrItins, MI, j,
284                                                     DefSU->getInstr());
285              DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
286            }
287          }
288        }
289      }
290
291      // Retrieve the UseList to add data dependencies and update uses.
292      std::vector<SUnit *> &UseList = Uses[Reg];
293      if (MO.isDef()) {
294        // Update DefList. Defs are pushed in the order they are visited and
295        // never reordered.
296        std::vector<SUnit *> &DefList = Defs[Reg];
297
298        // Add any data dependencies.
299        unsigned DataLatency = SU->Latency;
300        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
301          SUnit *UseSU = UseList[i];
302          if (UseSU == SU)
303            continue;
304          unsigned LDataLatency = DataLatency;
305          // Optionally add in a special extra latency for nodes that
306          // feed addresses.
307          // TODO: Do this for register aliases too.
308          // TODO: Perhaps we should get rid of
309          // SpecialAddressLatency and just move this into
310          // adjustSchedDependency for the targets that care about it.
311          if (SpecialAddressLatency != 0 && !UnitLatencies &&
312              UseSU != &ExitSU) {
313            MachineInstr *UseMI = UseSU->getInstr();
314            const MCInstrDesc &UseMCID = UseMI->getDesc();
315            int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
316            assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
317            if (RegUseIndex >= 0 &&
318                (UseMI->mayLoad() || UseMI->mayStore()) &&
319                (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
320                UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
321              LDataLatency += SpecialAddressLatency;
322          }
323          // Adjust the dependence latency using operand def/use
324          // information (if any), and then allow the target to
325          // perform its own adjustments.
326          const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
327          if (!UnitLatencies) {
328            ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
329            ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
330          }
331          UseSU->addPred(dep);
332        }
333        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
334          std::vector<SUnit *> &UseList = Uses[*Alias];
335          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
336            SUnit *UseSU = UseList[i];
337            if (UseSU == SU)
338              continue;
339            const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
340            if (!UnitLatencies) {
341              ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
342              ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
343            }
344            UseSU->addPred(dep);
345          }
346        }
347
348        // If a def is going to wrap back around to the top of the loop,
349        // backschedule it.
350        if (!UnitLatencies && DefList.empty()) {
351          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
352          if (I != LoopRegs.Deps.end()) {
353            const MachineOperand *UseMO = I->second.first;
354            unsigned Count = I->second.second;
355            const MachineInstr *UseMI = UseMO->getParent();
356            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
357            const MCInstrDesc &UseMCID = UseMI->getDesc();
358            // TODO: If we knew the total depth of the region here, we could
359            // handle the case where the whole loop is inside the region but
360            // is large enough that the isScheduleHigh trick isn't needed.
361            if (UseMOIdx < UseMCID.getNumOperands()) {
362              // Currently, we only support scheduling regions consisting of
363              // single basic blocks. Check to see if the instruction is in
364              // the same region by checking to see if it has the same parent.
365              if (UseMI->getParent() != MI->getParent()) {
366                unsigned Latency = SU->Latency;
367                if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
368                  Latency += SpecialAddressLatency;
369                // This is a wild guess as to the portion of the latency which
370                // will be overlapped by work done outside the current
371                // scheduling region.
372                Latency -= std::min(Latency, Count);
373                // Add the artificial edge.
374                ExitSU.addPred(SDep(SU, SDep::Order, Latency,
375                                    /*Reg=*/0, /*isNormalMemory=*/false,
376                                    /*isMustAlias=*/false,
377                                    /*isArtificial=*/true));
378              } else if (SpecialAddressLatency > 0 &&
379                         UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
380                // The entire loop body is within the current scheduling region
381                // and the latency of this operation is assumed to be greater
382                // than the latency of the loop.
383                // TODO: Recursively mark data-edge predecessors as
384                //       isScheduleHigh too.
385                SU->isScheduleHigh = true;
386              }
387            }
388            LoopRegs.Deps.erase(I);
389          }
390        }
391
392        UseList.clear();
393        if (!MO.isDead())
394          DefList.clear();
395
396        // Calls will not be reordered because of chain dependencies (see
397        // below). Since call operands are dead, calls may continue to be added
398        // to the DefList making dependence checking quadratic in the size of
399        // the block. Instead, we leave only one call at the back of the
400        // DefList.
401        if (SU->isCall) {
402          while (!DefList.empty() && DefList.back()->isCall)
403            DefList.pop_back();
404        }
405        DefList.push_back(SU);
406      } else {
407        UseList.push_back(SU);
408      }
409    }
410
411    // Add chain dependencies.
412    // Chain dependencies used to enforce memory order should have
413    // latency of 0 (except for true dependency of Store followed by
414    // aliased Load... we estimate that with a single cycle of latency
415    // assuming the hardware will bypass)
416    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
417    // after stack slots are lowered to actual addresses.
418    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
419    // produce more precise dependence information.
420#define STORE_LOAD_LATENCY 1
421    unsigned TrueMemOrderLatency = 0;
422    if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
423        (MI->hasVolatileMemoryRef() &&
424         (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) {
425      // Be conservative with these and add dependencies on all memory
426      // references, even those that are known to not alias.
427      for (std::map<const Value *, SUnit *>::iterator I =
428             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
429        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
430      }
431      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
432             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
433        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
434          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
435      }
436      NonAliasMemDefs.clear();
437      NonAliasMemUses.clear();
438      // Add SU to the barrier chain.
439      if (BarrierChain)
440        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
441      BarrierChain = SU;
442
443      // fall-through
444    new_alias_chain:
445      // Chain all possibly aliasing memory references though SU.
446      if (AliasChain)
447        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
448      AliasChain = SU;
449      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
450        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
451      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
452           E = AliasMemDefs.end(); I != E; ++I) {
453        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
454      }
455      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
456           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
457        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
458          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
459      }
460      PendingLoads.clear();
461      AliasMemDefs.clear();
462      AliasMemUses.clear();
463    } else if (MI->mayStore()) {
464      bool MayAlias = true;
465      TrueMemOrderLatency = STORE_LOAD_LATENCY;
466      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
467        // A store to a specific PseudoSourceValue. Add precise dependencies.
468        // Record the def in MemDefs, first adding a dep if there is
469        // an existing def.
470        std::map<const Value *, SUnit *>::iterator I =
471          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
472        std::map<const Value *, SUnit *>::iterator IE =
473          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
474        if (I != IE) {
475          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
476                                  /*isNormalMemory=*/true));
477          I->second = SU;
478        } else {
479          if (MayAlias)
480            AliasMemDefs[V] = SU;
481          else
482            NonAliasMemDefs[V] = SU;
483        }
484        // Handle the uses in MemUses, if there are any.
485        std::map<const Value *, std::vector<SUnit *> >::iterator J =
486          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
487        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
488          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
489        if (J != JE) {
490          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
491            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
492                                       /*Reg=*/0, /*isNormalMemory=*/true));
493          J->second.clear();
494        }
495        if (MayAlias) {
496          // Add dependencies from all the PendingLoads, i.e. loads
497          // with no underlying object.
498          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
499            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
500          // Add dependence on alias chain, if needed.
501          if (AliasChain)
502            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
503        }
504        // Add dependence on barrier chain, if needed.
505        if (BarrierChain)
506          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
507      } else {
508        // Treat all other stores conservatively.
509        goto new_alias_chain;
510      }
511
512      if (!ExitSU.isPred(SU))
513        // Push store's up a bit to avoid them getting in between cmp
514        // and branches.
515        ExitSU.addPred(SDep(SU, SDep::Order, 0,
516                            /*Reg=*/0, /*isNormalMemory=*/false,
517                            /*isMustAlias=*/false,
518                            /*isArtificial=*/true));
519    } else if (MI->mayLoad()) {
520      bool MayAlias = true;
521      TrueMemOrderLatency = 0;
522      if (MI->isInvariantLoad(AA)) {
523        // Invariant load, no chain dependencies needed!
524      } else {
525        if (const Value *V =
526            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
527          // A load from a specific PseudoSourceValue. Add precise dependencies.
528          std::map<const Value *, SUnit *>::iterator I =
529            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
530          std::map<const Value *, SUnit *>::iterator IE =
531            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
532          if (I != IE)
533            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
534                                    /*isNormalMemory=*/true));
535          if (MayAlias)
536            AliasMemUses[V].push_back(SU);
537          else
538            NonAliasMemUses[V].push_back(SU);
539        } else {
540          // A load with no underlying object. Depend on all
541          // potentially aliasing stores.
542          for (std::map<const Value *, SUnit *>::iterator I =
543                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
544            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
545
546          PendingLoads.push_back(SU);
547          MayAlias = true;
548        }
549
550        // Add dependencies on alias and barrier chains, if needed.
551        if (MayAlias && AliasChain)
552          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
553        if (BarrierChain)
554          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
555      }
556    }
557  }
558  if (PrevMI)
559    FirstDbgValue = PrevMI;
560
561  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
562    Defs[i].clear();
563    Uses[i].clear();
564  }
565  PendingLoads.clear();
566}
567
568void ScheduleDAGInstrs::FinishBlock() {
569  // Nothing to do.
570}
571
572void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
573  // Compute the latency for the node.
574  if (!InstrItins || InstrItins->isEmpty()) {
575    SU->Latency = 1;
576
577    // Simplistic target-independent heuristic: assume that loads take
578    // extra time.
579    if (SU->getInstr()->mayLoad())
580      SU->Latency += 2;
581  } else {
582    SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
583  }
584}
585
586void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
587                                              SDep& dep) const {
588  if (!InstrItins || InstrItins->isEmpty())
589    return;
590
591  // For a data dependency with a known register...
592  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
593    return;
594
595  const unsigned Reg = dep.getReg();
596
597  // ... find the definition of the register in the defining
598  // instruction
599  MachineInstr *DefMI = Def->getInstr();
600  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
601  if (DefIdx != -1) {
602    const MachineOperand &MO = DefMI->getOperand(DefIdx);
603    if (MO.isReg() && MO.isImplicit() &&
604        DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
605      // This is an implicit def, getOperandLatency() won't return the correct
606      // latency. e.g.
607      //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
608      //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
609      // What we want is to compute latency between def of %D6/%D7 and use of
610      // %Q3 instead.
611      DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
612    }
613    MachineInstr *UseMI = Use->getInstr();
614    // For all uses of the register, calculate the maxmimum latency
615    int Latency = -1;
616    if (UseMI) {
617      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
618        const MachineOperand &MO = UseMI->getOperand(i);
619        if (!MO.isReg() || !MO.isUse())
620          continue;
621        unsigned MOReg = MO.getReg();
622        if (MOReg != Reg)
623          continue;
624
625        int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
626                                              UseMI, i);
627        Latency = std::max(Latency, UseCycle);
628      }
629    } else {
630      // UseMI is null, then it must be a scheduling barrier.
631      if (!InstrItins || InstrItins->isEmpty())
632        return;
633      unsigned DefClass = DefMI->getDesc().getSchedClass();
634      Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
635    }
636
637    // If we found a latency, then replace the existing dependence latency.
638    if (Latency >= 0)
639      dep.setLatency(Latency);
640  }
641}
642
643void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
644  SU->getInstr()->dump();
645}
646
647std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
648  std::string s;
649  raw_string_ostream oss(s);
650  if (SU == &EntrySU)
651    oss << "<entry>";
652  else if (SU == &ExitSU)
653    oss << "<exit>";
654  else
655    SU->getInstr()->print(oss);
656  return oss.str();
657}
658
659// EmitSchedule - Emit the machine code in scheduled order.
660MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
661  Begin = InsertPos;
662
663  // If first instruction was a DBG_VALUE then put it back.
664  if (FirstDbgValue)
665    BB->splice(InsertPos, BB, FirstDbgValue);
666
667  // Then re-insert them according to the given schedule.
668  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
669    if (SUnit *SU = Sequence[i])
670      BB->splice(InsertPos, BB, SU->getInstr());
671    else
672      // Null SUnit* is a noop.
673      EmitNoop();
674
675    // Update the Begin iterator, as the first instruction in the block
676    // may have been scheduled later.
677    if (i == 0)
678      Begin = prior(InsertPos);
679  }
680
681  // Reinsert any remaining debug_values.
682  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
683         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
684    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
685    MachineInstr *DbgValue = P.first;
686    MachineBasicBlock::iterator OrigPrivMI = P.second;
687    BB->splice(++OrigPrivMI, BB, DbgValue);
688  }
689  DbgValues.clear();
690  FirstDbgValue = NULL;
691  return BB;
692}
693