ScheduleDAGInstrs.cpp revision 8f82a0867343058f4e01d640abbfae76af6886b4
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "llvm/Operator.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineMemOperand.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/PseudoSourceValue.h"
24#include "llvm/CodeGen/RegisterPressure.h"
25#include "llvm/CodeGen/ScheduleDAGILP.h"
26#include "llvm/CodeGen/ScheduleDAGInstrs.h"
27#include "llvm/MC/MCInstrItineraries.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetSubtargetInfo.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/Format.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/MapVector.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallPtrSet.h"
39using namespace llvm;
40
41static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
42    cl::ZeroOrMore, cl::init(false),
43    cl::desc("Enable use of AA during MI GAD construction"));
44
45ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
46                                     const MachineLoopInfo &mli,
47                                     const MachineDominatorTree &mdt,
48                                     bool IsPostRAFlag,
49                                     LiveIntervals *lis)
50  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
51    IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) {
52  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
53  DbgValues.clear();
54  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
55         "Virtual registers must be removed prior to PostRA scheduling");
56
57  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
58  SchedModel.init(*ST.getSchedModel(), &ST, TII);
59}
60
61/// getUnderlyingObjectFromInt - This is the function that does the work of
62/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
63static const Value *getUnderlyingObjectFromInt(const Value *V) {
64  do {
65    if (const Operator *U = dyn_cast<Operator>(V)) {
66      // If we find a ptrtoint, we can transfer control back to the
67      // regular getUnderlyingObjectFromInt.
68      if (U->getOpcode() == Instruction::PtrToInt)
69        return U->getOperand(0);
70      // If we find an add of a constant, a multiplied value, or a phi, it's
71      // likely that the other operand will lead us to the base
72      // object. We don't have to worry about the case where the
73      // object address is somehow being computed by the multiply,
74      // because our callers only care when the result is an
75      // identifiable object.
76      if (U->getOpcode() != Instruction::Add ||
77          (!isa<ConstantInt>(U->getOperand(1)) &&
78           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
79           !isa<PHINode>(U->getOperand(1))))
80        return V;
81      V = U->getOperand(0);
82    } else {
83      return V;
84    }
85    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
86  } while (1);
87}
88
89/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
90/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
91static const Value *getUnderlyingObject(const Value *V) {
92  // First just call Value::getUnderlyingObject to let it do what it does.
93  do {
94    V = GetUnderlyingObject(V);
95    // If it found an inttoptr, use special code to continue climing.
96    if (Operator::getOpcode(V) != Instruction::IntToPtr)
97      break;
98    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
99    // If that succeeded in finding a pointer, continue the search.
100    if (!O->getType()->isPointerTy())
101      break;
102    V = O;
103  } while (1);
104  return V;
105}
106
107/// getUnderlyingObjectForInstr - If this machine instr has memory reference
108/// information and it can be tracked to a normal reference to a known
109/// object, return the Value for that object. Otherwise return null.
110static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
111                                                const MachineFrameInfo *MFI,
112                                                bool &MayAlias) {
113  MayAlias = true;
114  if (!MI->hasOneMemOperand() ||
115      !(*MI->memoperands_begin())->getValue() ||
116      (*MI->memoperands_begin())->isVolatile())
117    return 0;
118
119  const Value *V = (*MI->memoperands_begin())->getValue();
120  if (!V)
121    return 0;
122
123  V = getUnderlyingObject(V);
124  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
125    // For now, ignore PseudoSourceValues which may alias LLVM IR values
126    // because the code that uses this function has no way to cope with
127    // such aliases.
128    if (PSV->isAliased(MFI))
129      return 0;
130
131    MayAlias = PSV->mayAlias(MFI);
132    return V;
133  }
134
135  if (isIdentifiedObject(V))
136    return V;
137
138  return 0;
139}
140
141void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
142  BB = bb;
143}
144
145void ScheduleDAGInstrs::finishBlock() {
146  // Subclasses should no longer refer to the old block.
147  BB = 0;
148}
149
150/// Initialize the map with the number of registers.
151void Reg2SUnitsMap::setRegLimit(unsigned Limit) {
152  PhysRegSet.setUniverse(Limit);
153  SUnits.resize(Limit);
154}
155
156/// Clear the map without deallocating storage.
157void Reg2SUnitsMap::clear() {
158  for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
159    SUnits[*I].clear();
160  }
161  PhysRegSet.clear();
162}
163
164/// Initialize the DAG and common scheduler state for the current scheduling
165/// region. This does not actually create the DAG, only clears it. The
166/// scheduling driver may call BuildSchedGraph multiple times per scheduling
167/// region.
168void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
169                                    MachineBasicBlock::iterator begin,
170                                    MachineBasicBlock::iterator end,
171                                    unsigned endcount) {
172  assert(bb == BB && "startBlock should set BB");
173  RegionBegin = begin;
174  RegionEnd = end;
175  EndIndex = endcount;
176  MISUnitMap.clear();
177
178  ScheduleDAG::clearDAG();
179}
180
181/// Close the current scheduling region. Don't clear any state in case the
182/// driver wants to refer to the previous scheduling region.
183void ScheduleDAGInstrs::exitRegion() {
184  // Nothing to do.
185}
186
187/// addSchedBarrierDeps - Add dependencies from instructions in the current
188/// list of instructions being scheduled to scheduling barrier by adding
189/// the exit SU to the register defs and use list. This is because we want to
190/// make sure instructions which define registers that are either used by
191/// the terminator or are live-out are properly scheduled. This is
192/// especially important when the definition latency of the return value(s)
193/// are too high to be hidden by the branch or when the liveout registers
194/// used by instructions in the fallthrough block.
195void ScheduleDAGInstrs::addSchedBarrierDeps() {
196  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
197  ExitSU.setInstr(ExitMI);
198  bool AllDepKnown = ExitMI &&
199    (ExitMI->isCall() || ExitMI->isBarrier());
200  if (ExitMI && AllDepKnown) {
201    // If it's a call or a barrier, add dependencies on the defs and uses of
202    // instruction.
203    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
204      const MachineOperand &MO = ExitMI->getOperand(i);
205      if (!MO.isReg() || MO.isDef()) continue;
206      unsigned Reg = MO.getReg();
207      if (Reg == 0) continue;
208
209      if (TRI->isPhysicalRegister(Reg))
210        Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
211      else {
212        assert(!IsPostRA && "Virtual register encountered after regalloc.");
213        addVRegUseDeps(&ExitSU, i);
214      }
215    }
216  } else {
217    // For others, e.g. fallthrough, conditional branch, assume the exit
218    // uses all the registers that are livein to the successor blocks.
219    assert(Uses.empty() && "Uses in set before adding deps?");
220    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
221           SE = BB->succ_end(); SI != SE; ++SI)
222      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
223             E = (*SI)->livein_end(); I != E; ++I) {
224        unsigned Reg = *I;
225        if (!Uses.contains(Reg))
226          Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
227      }
228  }
229}
230
231/// MO is an operand of SU's instruction that defines a physical register. Add
232/// data dependencies from SU to any uses of the physical register.
233void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
234  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
235  assert(MO.isDef() && "expect physreg def");
236
237  // Ask the target if address-backscheduling is desirable, and if so how much.
238  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
239
240  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
241       Alias.isValid(); ++Alias) {
242    if (!Uses.contains(*Alias))
243      continue;
244    std::vector<PhysRegSUOper> &UseList = Uses[*Alias];
245    for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
246      SUnit *UseSU = UseList[i].SU;
247      if (UseSU == SU)
248        continue;
249
250      // Adjust the dependence latency using operand def/use information,
251      // then allow the target to perform its own adjustments.
252      int UseOp = UseList[i].OpIdx;
253      MachineInstr *RegUse = 0;
254      SDep Dep;
255      if (UseOp < 0)
256        Dep = SDep(SU, SDep::Artificial);
257      else {
258        Dep = SDep(SU, SDep::Data, *Alias);
259        RegUse = UseSU->getInstr();
260        Dep.setMinLatency(
261          SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
262                                           RegUse, UseOp, /*FindMin=*/true));
263      }
264      Dep.setLatency(
265        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
266                                         RegUse, UseOp, /*FindMin=*/false));
267
268      ST.adjustSchedDependency(SU, UseSU, Dep);
269      UseSU->addPred(Dep);
270    }
271  }
272}
273
274/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
275/// this SUnit to following instructions in the same scheduling region that
276/// depend the physical register referenced at OperIdx.
277void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
278  const MachineInstr *MI = SU->getInstr();
279  const MachineOperand &MO = MI->getOperand(OperIdx);
280
281  // Optionally add output and anti dependencies. For anti
282  // dependencies we use a latency of 0 because for a multi-issue
283  // target we want to allow the defining instruction to issue
284  // in the same cycle as the using instruction.
285  // TODO: Using a latency of 1 here for output dependencies assumes
286  //       there's no cost for reusing registers.
287  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
288  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
289       Alias.isValid(); ++Alias) {
290    if (!Defs.contains(*Alias))
291      continue;
292    std::vector<PhysRegSUOper> &DefList = Defs[*Alias];
293    for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
294      SUnit *DefSU = DefList[i].SU;
295      if (DefSU == &ExitSU)
296        continue;
297      if (DefSU != SU &&
298          (Kind != SDep::Output || !MO.isDead() ||
299           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
300        if (Kind == SDep::Anti)
301          DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
302        else {
303          SDep Dep(SU, Kind, /*Reg=*/*Alias);
304          unsigned OutLatency =
305            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr());
306          Dep.setMinLatency(OutLatency);
307          Dep.setLatency(OutLatency);
308          DefSU->addPred(Dep);
309        }
310      }
311    }
312  }
313
314  if (!MO.isDef()) {
315    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
316    // retrieve the existing SUnits list for this register's uses.
317    // Push this SUnit on the use list.
318    Uses[MO.getReg()].push_back(PhysRegSUOper(SU, OperIdx));
319  }
320  else {
321    addPhysRegDataDeps(SU, OperIdx);
322
323    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
324    // retrieve the existing SUnits list for this register's defs.
325    std::vector<PhysRegSUOper> &DefList = Defs[MO.getReg()];
326
327    // clear this register's use list
328    if (Uses.contains(MO.getReg()))
329      Uses[MO.getReg()].clear();
330
331    if (!MO.isDead())
332      DefList.clear();
333
334    // Calls will not be reordered because of chain dependencies (see
335    // below). Since call operands are dead, calls may continue to be added
336    // to the DefList making dependence checking quadratic in the size of
337    // the block. Instead, we leave only one call at the back of the
338    // DefList.
339    if (SU->isCall) {
340      while (!DefList.empty() && DefList.back().SU->isCall)
341        DefList.pop_back();
342    }
343    // Defs are pushed in the order they are visited and never reordered.
344    DefList.push_back(PhysRegSUOper(SU, OperIdx));
345  }
346}
347
348/// addVRegDefDeps - Add register output and data dependencies from this SUnit
349/// to instructions that occur later in the same scheduling region if they read
350/// from or write to the virtual register defined at OperIdx.
351///
352/// TODO: Hoist loop induction variable increments. This has to be
353/// reevaluated. Generally, IV scheduling should be done before coalescing.
354void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
355  const MachineInstr *MI = SU->getInstr();
356  unsigned Reg = MI->getOperand(OperIdx).getReg();
357
358  // Singly defined vregs do not have output/anti dependencies.
359  // The current operand is a def, so we have at least one.
360  // Check here if there are any others...
361  if (MRI.hasOneDef(Reg))
362    return;
363
364  // Add output dependence to the next nearest def of this vreg.
365  //
366  // Unless this definition is dead, the output dependence should be
367  // transitively redundant with antidependencies from this definition's
368  // uses. We're conservative for now until we have a way to guarantee the uses
369  // are not eliminated sometime during scheduling. The output dependence edge
370  // is also useful if output latency exceeds def-use latency.
371  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
372  if (DefI == VRegDefs.end())
373    VRegDefs.insert(VReg2SUnit(Reg, SU));
374  else {
375    SUnit *DefSU = DefI->SU;
376    if (DefSU != SU && DefSU != &ExitSU) {
377      SDep Dep(SU, SDep::Output, Reg);
378      unsigned OutLatency =
379        SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr());
380      Dep.setMinLatency(OutLatency);
381      Dep.setLatency(OutLatency);
382      DefSU->addPred(Dep);
383    }
384    DefI->SU = SU;
385  }
386}
387
388/// addVRegUseDeps - Add a register data dependency if the instruction that
389/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
390/// register antidependency from this SUnit to instructions that occur later in
391/// the same scheduling region if they write the virtual register.
392///
393/// TODO: Handle ExitSU "uses" properly.
394void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
395  MachineInstr *MI = SU->getInstr();
396  unsigned Reg = MI->getOperand(OperIdx).getReg();
397
398  // Lookup this operand's reaching definition.
399  assert(LIS && "vreg dependencies requires LiveIntervals");
400  LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
401  VNInfo *VNI = LRQ.valueIn();
402
403  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
404  assert(VNI && "No value to read by operand");
405  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
406  // Phis and other noninstructions (after coalescing) have a NULL Def.
407  if (Def) {
408    SUnit *DefSU = getSUnit(Def);
409    if (DefSU) {
410      // The reaching Def lives within this scheduling region.
411      // Create a data dependence.
412      SDep dep(DefSU, SDep::Data, Reg);
413      // Adjust the dependence latency using operand def/use information, then
414      // allow the target to perform its own adjustments.
415      int DefOp = Def->findRegisterDefOperandIdx(Reg);
416      dep.setLatency(
417        SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, false));
418      dep.setMinLatency(
419        SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, true));
420
421      const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
422      ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
423      SU->addPred(dep);
424    }
425  }
426
427  // Add antidependence to the following def of the vreg it uses.
428  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
429  if (DefI != VRegDefs.end() && DefI->SU != SU)
430    DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
431}
432
433/// Return true if MI is an instruction we are unable to reason about
434/// (like a call or something with unmodeled side effects).
435static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
436  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
437      (MI->hasOrderedMemoryRef() &&
438       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
439    return true;
440  return false;
441}
442
443// This MI might have either incomplete info, or known to be unsafe
444// to deal with (i.e. volatile object).
445static inline bool isUnsafeMemoryObject(MachineInstr *MI,
446                                        const MachineFrameInfo *MFI) {
447  if (!MI || MI->memoperands_empty())
448    return true;
449  // We purposefully do no check for hasOneMemOperand() here
450  // in hope to trigger an assert downstream in order to
451  // finish implementation.
452  if ((*MI->memoperands_begin())->isVolatile() ||
453       MI->hasUnmodeledSideEffects())
454    return true;
455
456  const Value *V = (*MI->memoperands_begin())->getValue();
457  if (!V)
458    return true;
459
460  V = getUnderlyingObject(V);
461  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
462    // Similarly to getUnderlyingObjectForInstr:
463    // For now, ignore PseudoSourceValues which may alias LLVM IR values
464    // because the code that uses this function has no way to cope with
465    // such aliases.
466    if (PSV->isAliased(MFI))
467      return true;
468  }
469  // Does this pointer refer to a distinct and identifiable object?
470  if (!isIdentifiedObject(V))
471    return true;
472
473  return false;
474}
475
476/// This returns true if the two MIs need a chain edge betwee them.
477/// If these are not even memory operations, we still may need
478/// chain deps between them. The question really is - could
479/// these two MIs be reordered during scheduling from memory dependency
480/// point of view.
481static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
482                             MachineInstr *MIa,
483                             MachineInstr *MIb) {
484  // Cover a trivial case - no edge is need to itself.
485  if (MIa == MIb)
486    return false;
487
488  if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
489    return true;
490
491  // If we are dealing with two "normal" loads, we do not need an edge
492  // between them - they could be reordered.
493  if (!MIa->mayStore() && !MIb->mayStore())
494    return false;
495
496  // To this point analysis is generic. From here on we do need AA.
497  if (!AA)
498    return true;
499
500  MachineMemOperand *MMOa = *MIa->memoperands_begin();
501  MachineMemOperand *MMOb = *MIb->memoperands_begin();
502
503  // FIXME: Need to handle multiple memory operands to support all targets.
504  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
505    llvm_unreachable("Multiple memory operands.");
506
507  // The following interface to AA is fashioned after DAGCombiner::isAlias
508  // and operates with MachineMemOperand offset with some important
509  // assumptions:
510  //   - LLVM fundamentally assumes flat address spaces.
511  //   - MachineOperand offset can *only* result from legalization and
512  //     cannot affect queries other than the trivial case of overlap
513  //     checking.
514  //   - These offsets never wrap and never step outside
515  //     of allocated objects.
516  //   - There should never be any negative offsets here.
517  //
518  // FIXME: Modify API to hide this math from "user"
519  // FIXME: Even before we go to AA we can reason locally about some
520  // memory objects. It can save compile time, and possibly catch some
521  // corner cases not currently covered.
522
523  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
524  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
525
526  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
527  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
528  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
529
530  AliasAnalysis::AliasResult AAResult = AA->alias(
531  AliasAnalysis::Location(MMOa->getValue(), Overlapa,
532                          MMOa->getTBAAInfo()),
533  AliasAnalysis::Location(MMOb->getValue(), Overlapb,
534                          MMOb->getTBAAInfo()));
535
536  return (AAResult != AliasAnalysis::NoAlias);
537}
538
539/// This recursive function iterates over chain deps of SUb looking for
540/// "latest" node that needs a chain edge to SUa.
541static unsigned
542iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
543                 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
544                 SmallPtrSet<const SUnit*, 16> &Visited) {
545  if (!SUa || !SUb || SUb == ExitSU)
546    return *Depth;
547
548  // Remember visited nodes.
549  if (!Visited.insert(SUb))
550      return *Depth;
551  // If there is _some_ dependency already in place, do not
552  // descend any further.
553  // TODO: Need to make sure that if that dependency got eliminated or ignored
554  // for any reason in the future, we would not violate DAG topology.
555  // Currently it does not happen, but makes an implicit assumption about
556  // future implementation.
557  //
558  // Independently, if we encounter node that is some sort of global
559  // object (like a call) we already have full set of dependencies to it
560  // and we can stop descending.
561  if (SUa->isSucc(SUb) ||
562      isGlobalMemoryObject(AA, SUb->getInstr()))
563    return *Depth;
564
565  // If we do need an edge, or we have exceeded depth budget,
566  // add that edge to the predecessors chain of SUb,
567  // and stop descending.
568  if (*Depth > 200 ||
569      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
570    SUb->addPred(SDep(SUa, SDep::MayAliasMem));
571    return *Depth;
572  }
573  // Track current depth.
574  (*Depth)++;
575  // Iterate over chain dependencies only.
576  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
577       I != E; ++I)
578    if (I->isCtrl())
579      iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
580  return *Depth;
581}
582
583/// This function assumes that "downward" from SU there exist
584/// tail/leaf of already constructed DAG. It iterates downward and
585/// checks whether SU can be aliasing any node dominated
586/// by it.
587static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
588                            SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
589                            unsigned LatencyToLoad) {
590  if (!SU)
591    return;
592
593  SmallPtrSet<const SUnit*, 16> Visited;
594  unsigned Depth = 0;
595
596  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
597       I != IE; ++I) {
598    if (SU == *I)
599      continue;
600    if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
601      SDep Dep(SU, SDep::MayAliasMem);
602      Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
603      (*I)->addPred(Dep);
604    }
605    // Now go through all the chain successors and iterate from them.
606    // Keep track of visited nodes.
607    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
608         JE = (*I)->Succs.end(); J != JE; ++J)
609      if (J->isCtrl())
610        iterateChainSucc (AA, MFI, SU, J->getSUnit(),
611                          ExitSU, &Depth, Visited);
612  }
613}
614
615/// Check whether two objects need a chain edge, if so, add it
616/// otherwise remember the rejected SU.
617static inline
618void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
619                         SUnit *SUa, SUnit *SUb,
620                         std::set<SUnit *> &RejectList,
621                         unsigned TrueMemOrderLatency = 0,
622                         bool isNormalMemory = false) {
623  // If this is a false dependency,
624  // do not add the edge, but rememeber the rejected node.
625  if (!EnableAASchedMI ||
626      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
627    SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
628    Dep.setLatency(TrueMemOrderLatency);
629    SUb->addPred(Dep);
630  }
631  else {
632    // Duplicate entries should be ignored.
633    RejectList.insert(SUb);
634    DEBUG(dbgs() << "\tReject chain dep between SU("
635          << SUa->NodeNum << ") and SU("
636          << SUb->NodeNum << ")\n");
637  }
638}
639
640/// Create an SUnit for each real instruction, numbered in top-down toplological
641/// order. The instruction order A < B, implies that no edge exists from B to A.
642///
643/// Map each real instruction to its SUnit.
644///
645/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
646/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
647/// instead of pointers.
648///
649/// MachineScheduler relies on initSUnits numbering the nodes by their order in
650/// the original instruction list.
651void ScheduleDAGInstrs::initSUnits() {
652  // We'll be allocating one SUnit for each real instruction in the region,
653  // which is contained within a basic block.
654  SUnits.reserve(BB->size());
655
656  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
657    MachineInstr *MI = I;
658    if (MI->isDebugValue())
659      continue;
660
661    SUnit *SU = newSUnit(MI);
662    MISUnitMap[MI] = SU;
663
664    SU->isCall = MI->isCall();
665    SU->isCommutable = MI->isCommutable();
666
667    // Assign the Latency field of SU using target-provided information.
668    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
669  }
670}
671
672/// If RegPressure is non null, compute register pressure as a side effect. The
673/// DAG builder is an efficient place to do it because it already visits
674/// operands.
675void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
676                                        RegPressureTracker *RPTracker) {
677  // Create an SUnit for each real instruction.
678  initSUnits();
679
680  // We build scheduling units by walking a block's instruction list from bottom
681  // to top.
682
683  // Remember where a generic side-effecting instruction is as we procede.
684  SUnit *BarrierChain = 0, *AliasChain = 0;
685
686  // Memory references to specific known memory locations are tracked
687  // so that they can be given more precise dependencies. We track
688  // separately the known memory locations that may alias and those
689  // that are known not to alias
690  MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
691  MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
692  std::set<SUnit*> RejectMemNodes;
693
694  // Remove any stale debug info; sometimes BuildSchedGraph is called again
695  // without emitting the info from the previous call.
696  DbgValues.clear();
697  FirstDbgValue = NULL;
698
699  assert(Defs.empty() && Uses.empty() &&
700         "Only BuildGraph should update Defs/Uses");
701  Defs.setRegLimit(TRI->getNumRegs());
702  Uses.setRegLimit(TRI->getNumRegs());
703
704  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
705  // FIXME: Allow SparseSet to reserve space for the creation of virtual
706  // registers during scheduling. Don't artificially inflate the Universe
707  // because we want to assert that vregs are not created during DAG building.
708  VRegDefs.setUniverse(MRI.getNumVirtRegs());
709
710  // Model data dependencies between instructions being scheduled and the
711  // ExitSU.
712  addSchedBarrierDeps();
713
714  // Walk the list of instructions, from bottom moving up.
715  MachineInstr *PrevMI = NULL;
716  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
717       MII != MIE; --MII) {
718    MachineInstr *MI = prior(MII);
719    if (MI && PrevMI) {
720      DbgValues.push_back(std::make_pair(PrevMI, MI));
721      PrevMI = NULL;
722    }
723
724    if (MI->isDebugValue()) {
725      PrevMI = MI;
726      continue;
727    }
728    if (RPTracker) {
729      RPTracker->recede();
730      assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
731    }
732
733    assert((!MI->isTerminator() || CanHandleTerminators) && !MI->isLabel() &&
734           "Cannot schedule terminators or labels!");
735
736    SUnit *SU = MISUnitMap[MI];
737    assert(SU && "No SUnit mapped to this MI");
738
739    // Add register-based dependencies (data, anti, and output).
740    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
741      const MachineOperand &MO = MI->getOperand(j);
742      if (!MO.isReg()) continue;
743      unsigned Reg = MO.getReg();
744      if (Reg == 0) continue;
745
746      if (TRI->isPhysicalRegister(Reg))
747        addPhysRegDeps(SU, j);
748      else {
749        assert(!IsPostRA && "Virtual register encountered!");
750        if (MO.isDef())
751          addVRegDefDeps(SU, j);
752        else if (MO.readsReg()) // ignore undef operands
753          addVRegUseDeps(SU, j);
754      }
755    }
756
757    // Add chain dependencies.
758    // Chain dependencies used to enforce memory order should have
759    // latency of 0 (except for true dependency of Store followed by
760    // aliased Load... we estimate that with a single cycle of latency
761    // assuming the hardware will bypass)
762    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
763    // after stack slots are lowered to actual addresses.
764    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
765    // produce more precise dependence information.
766    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
767    if (isGlobalMemoryObject(AA, MI)) {
768      // Be conservative with these and add dependencies on all memory
769      // references, even those that are known to not alias.
770      for (MapVector<const Value *, SUnit *>::iterator I =
771             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
772        I->second->addPred(SDep(SU, SDep::Barrier));
773      }
774      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
775             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
776        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
777          SDep Dep(SU, SDep::Barrier);
778          Dep.setLatency(TrueMemOrderLatency);
779          I->second[i]->addPred(Dep);
780        }
781      }
782      // Add SU to the barrier chain.
783      if (BarrierChain)
784        BarrierChain->addPred(SDep(SU, SDep::Barrier));
785      BarrierChain = SU;
786      // This is a barrier event that acts as a pivotal node in the DAG,
787      // so it is safe to clear list of exposed nodes.
788      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
789                      TrueMemOrderLatency);
790      RejectMemNodes.clear();
791      NonAliasMemDefs.clear();
792      NonAliasMemUses.clear();
793
794      // fall-through
795    new_alias_chain:
796      // Chain all possibly aliasing memory references though SU.
797      if (AliasChain) {
798        unsigned ChainLatency = 0;
799        if (AliasChain->getInstr()->mayLoad())
800          ChainLatency = TrueMemOrderLatency;
801        addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes,
802                           ChainLatency);
803      }
804      AliasChain = SU;
805      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
806        addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
807                           TrueMemOrderLatency);
808      for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
809           E = AliasMemDefs.end(); I != E; ++I)
810        addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
811      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
812           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
813        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
814          addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes,
815                             TrueMemOrderLatency);
816      }
817      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
818                      TrueMemOrderLatency);
819      PendingLoads.clear();
820      AliasMemDefs.clear();
821      AliasMemUses.clear();
822    } else if (MI->mayStore()) {
823      bool MayAlias = true;
824      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
825        // A store to a specific PseudoSourceValue. Add precise dependencies.
826        // Record the def in MemDefs, first adding a dep if there is
827        // an existing def.
828        MapVector<const Value *, SUnit *>::iterator I =
829          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
830        MapVector<const Value *, SUnit *>::iterator IE =
831          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
832        if (I != IE) {
833          addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
834          I->second = SU;
835        } else {
836          if (MayAlias)
837            AliasMemDefs[V] = SU;
838          else
839            NonAliasMemDefs[V] = SU;
840        }
841        // Handle the uses in MemUses, if there are any.
842        MapVector<const Value *, std::vector<SUnit *> >::iterator J =
843          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
844        MapVector<const Value *, std::vector<SUnit *> >::iterator JE =
845          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
846        if (J != JE) {
847          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
848            addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes,
849                               TrueMemOrderLatency, true);
850          J->second.clear();
851        }
852        if (MayAlias) {
853          // Add dependencies from all the PendingLoads, i.e. loads
854          // with no underlying object.
855          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
856            addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
857                               TrueMemOrderLatency);
858          // Add dependence on alias chain, if needed.
859          if (AliasChain)
860            addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
861          // But we also should check dependent instructions for the
862          // SU in question.
863          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
864                          TrueMemOrderLatency);
865        }
866        // Add dependence on barrier chain, if needed.
867        // There is no point to check aliasing on barrier event. Even if
868        // SU and barrier _could_ be reordered, they should not. In addition,
869        // we have lost all RejectMemNodes below barrier.
870        if (BarrierChain)
871          BarrierChain->addPred(SDep(SU, SDep::Barrier));
872      } else {
873        // Treat all other stores conservatively.
874        goto new_alias_chain;
875      }
876
877      if (!ExitSU.isPred(SU))
878        // Push store's up a bit to avoid them getting in between cmp
879        // and branches.
880        ExitSU.addPred(SDep(SU, SDep::Artificial));
881    } else if (MI->mayLoad()) {
882      bool MayAlias = true;
883      if (MI->isInvariantLoad(AA)) {
884        // Invariant load, no chain dependencies needed!
885      } else {
886        if (const Value *V =
887            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
888          // A load from a specific PseudoSourceValue. Add precise dependencies.
889          MapVector<const Value *, SUnit *>::iterator I =
890            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
891          MapVector<const Value *, SUnit *>::iterator IE =
892            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
893          if (I != IE)
894            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
895          if (MayAlias)
896            AliasMemUses[V].push_back(SU);
897          else
898            NonAliasMemUses[V].push_back(SU);
899        } else {
900          // A load with no underlying object. Depend on all
901          // potentially aliasing stores.
902          for (MapVector<const Value *, SUnit *>::iterator I =
903                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
904            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
905
906          PendingLoads.push_back(SU);
907          MayAlias = true;
908        }
909        if (MayAlias)
910          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
911        // Add dependencies on alias and barrier chains, if needed.
912        if (MayAlias && AliasChain)
913          addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
914        if (BarrierChain)
915          BarrierChain->addPred(SDep(SU, SDep::Barrier));
916      }
917    }
918  }
919  if (PrevMI)
920    FirstDbgValue = PrevMI;
921
922  Defs.clear();
923  Uses.clear();
924  VRegDefs.clear();
925  PendingLoads.clear();
926}
927
928void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
929#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
930  SU->getInstr()->dump();
931#endif
932}
933
934std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
935  std::string s;
936  raw_string_ostream oss(s);
937  if (SU == &EntrySU)
938    oss << "<entry>";
939  else if (SU == &ExitSU)
940    oss << "<exit>";
941  else
942    SU->getInstr()->print(oss);
943  return oss.str();
944}
945
946/// Return the basic block label. It is not necessarilly unique because a block
947/// contains multiple scheduling regions. But it is fine for visualization.
948std::string ScheduleDAGInstrs::getDAGName() const {
949  return "dag." + BB->getFullName();
950}
951
952namespace {
953/// \brief Manage the stack used by a reverse depth-first search over the DAG.
954class SchedDAGReverseDFS {
955  std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
956public:
957  bool isComplete() const { return DFSStack.empty(); }
958
959  void follow(const SUnit *SU) {
960    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
961  }
962  void advance() { ++DFSStack.back().second; }
963
964  void backtrack() { DFSStack.pop_back(); }
965
966  const SUnit *getCurr() const { return DFSStack.back().first; }
967
968  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
969
970  SUnit::const_pred_iterator getPredEnd() const {
971    return getCurr()->Preds.end();
972  }
973};
974} // anonymous
975
976void ScheduleDAGILP::resize(unsigned NumSUnits) {
977  ILPValues.resize(NumSUnits);
978}
979
980ILPValue ScheduleDAGILP::getILP(const SUnit *SU) {
981  return ILPValues[SU->NodeNum];
982}
983
984// A leaf node has an ILP of 1/1.
985static ILPValue initILP(const SUnit *SU) {
986  unsigned Cnt = SU->getInstr()->isTransient() ? 0 : 1;
987  return ILPValue(Cnt, 1 + SU->getDepth());
988}
989
990/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
991/// search from this root.
992void ScheduleDAGILP::computeILP(const SUnit *Root) {
993  if (!IsBottomUp)
994    llvm_unreachable("Top-down ILP metric is unimplemnted");
995
996  SchedDAGReverseDFS DFS;
997  // Mark a node visited by validating it.
998  ILPValues[Root->NodeNum] = initILP(Root);
999  DFS.follow(Root);
1000  for (;;) {
1001    // Traverse the leftmost path as far as possible.
1002    while (DFS.getPred() != DFS.getPredEnd()) {
1003      const SUnit *PredSU = DFS.getPred()->getSUnit();
1004      DFS.advance();
1005      // If the pred is already valid, skip it.
1006      if (ILPValues[PredSU->NodeNum].isValid())
1007        continue;
1008      ILPValues[PredSU->NodeNum] = initILP(PredSU);
1009      DFS.follow(PredSU);
1010    }
1011    // Visit the top of the stack in postorder and backtrack.
1012    unsigned PredCount = ILPValues[DFS.getCurr()->NodeNum].InstrCount;
1013    DFS.backtrack();
1014    if (DFS.isComplete())
1015      break;
1016    // Add the recently finished predecessor's bottom-up descendent count.
1017    ILPValues[DFS.getCurr()->NodeNum].InstrCount += PredCount;
1018  }
1019}
1020
1021#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1022void ILPValue::print(raw_ostream &OS) const {
1023  if (!isValid())
1024    OS << "BADILP";
1025  OS << InstrCount << " / " << Cycles << " = "
1026     << format("%g", ((double)InstrCount / Cycles));
1027}
1028
1029void ILPValue::dump() const {
1030  dbgs() << *this << '\n';
1031}
1032
1033namespace llvm {
1034
1035raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1036  Val.print(OS);
1037  return OS;
1038}
1039
1040} // namespace llvm
1041#endif // !NDEBUG || LLVM_ENABLE_DUMP
1042