ScheduleDAGInstrs.cpp revision a78d3228e8b2a14915ea9908dbaaf2c934803e11
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "llvm/Operator.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineMemOperand.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/PseudoSourceValue.h"
24#include "llvm/CodeGen/RegisterPressure.h"
25#include "llvm/CodeGen/ScheduleDAGILP.h"
26#include "llvm/CodeGen/ScheduleDAGInstrs.h"
27#include "llvm/MC/MCInstrItineraries.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetSubtargetInfo.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/Format.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/SmallPtrSet.h"
38using namespace llvm;
39
40static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
41    cl::ZeroOrMore, cl::init(false),
42    cl::desc("Enable use of AA during MI GAD construction"));
43
44ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
45                                     const MachineLoopInfo &mli,
46                                     const MachineDominatorTree &mdt,
47                                     bool IsPostRAFlag,
48                                     LiveIntervals *lis)
49  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
50    IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) {
51  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
52  DbgValues.clear();
53  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
54         "Virtual registers must be removed prior to PostRA scheduling");
55
56  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
57  SchedModel.init(*ST.getSchedModel(), &ST, TII);
58}
59
60/// getUnderlyingObjectFromInt - This is the function that does the work of
61/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
62static const Value *getUnderlyingObjectFromInt(const Value *V) {
63  do {
64    if (const Operator *U = dyn_cast<Operator>(V)) {
65      // If we find a ptrtoint, we can transfer control back to the
66      // regular getUnderlyingObjectFromInt.
67      if (U->getOpcode() == Instruction::PtrToInt)
68        return U->getOperand(0);
69      // If we find an add of a constant or a multiplied value, it's
70      // likely that the other operand will lead us to the base
71      // object. We don't have to worry about the case where the
72      // object address is somehow being computed by the multiply,
73      // because our callers only care when the result is an
74      // identifiable object.
75      if (U->getOpcode() != Instruction::Add ||
76          (!isa<ConstantInt>(U->getOperand(1)) &&
77           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
78        return V;
79      V = U->getOperand(0);
80    } else {
81      return V;
82    }
83    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
84  } while (1);
85}
86
87/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
88/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
89static const Value *getUnderlyingObject(const Value *V) {
90  // First just call Value::getUnderlyingObject to let it do what it does.
91  do {
92    V = GetUnderlyingObject(V);
93    // If it found an inttoptr, use special code to continue climing.
94    if (Operator::getOpcode(V) != Instruction::IntToPtr)
95      break;
96    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
97    // If that succeeded in finding a pointer, continue the search.
98    if (!O->getType()->isPointerTy())
99      break;
100    V = O;
101  } while (1);
102  return V;
103}
104
105/// getUnderlyingObjectForInstr - If this machine instr has memory reference
106/// information and it can be tracked to a normal reference to a known
107/// object, return the Value for that object. Otherwise return null.
108static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
109                                                const MachineFrameInfo *MFI,
110                                                bool &MayAlias) {
111  MayAlias = true;
112  if (!MI->hasOneMemOperand() ||
113      !(*MI->memoperands_begin())->getValue() ||
114      (*MI->memoperands_begin())->isVolatile())
115    return 0;
116
117  const Value *V = (*MI->memoperands_begin())->getValue();
118  if (!V)
119    return 0;
120
121  V = getUnderlyingObject(V);
122  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
123    // For now, ignore PseudoSourceValues which may alias LLVM IR values
124    // because the code that uses this function has no way to cope with
125    // such aliases.
126    if (PSV->isAliased(MFI))
127      return 0;
128
129    MayAlias = PSV->mayAlias(MFI);
130    return V;
131  }
132
133  if (isIdentifiedObject(V))
134    return V;
135
136  return 0;
137}
138
139void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
140  BB = bb;
141}
142
143void ScheduleDAGInstrs::finishBlock() {
144  // Subclasses should no longer refer to the old block.
145  BB = 0;
146}
147
148/// Initialize the map with the number of registers.
149void Reg2SUnitsMap::setRegLimit(unsigned Limit) {
150  PhysRegSet.setUniverse(Limit);
151  SUnits.resize(Limit);
152}
153
154/// Clear the map without deallocating storage.
155void Reg2SUnitsMap::clear() {
156  for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
157    SUnits[*I].clear();
158  }
159  PhysRegSet.clear();
160}
161
162/// Initialize the DAG and common scheduler state for the current scheduling
163/// region. This does not actually create the DAG, only clears it. The
164/// scheduling driver may call BuildSchedGraph multiple times per scheduling
165/// region.
166void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
167                                    MachineBasicBlock::iterator begin,
168                                    MachineBasicBlock::iterator end,
169                                    unsigned endcount) {
170  assert(bb == BB && "startBlock should set BB");
171  RegionBegin = begin;
172  RegionEnd = end;
173  EndIndex = endcount;
174  MISUnitMap.clear();
175
176  ScheduleDAG::clearDAG();
177}
178
179/// Close the current scheduling region. Don't clear any state in case the
180/// driver wants to refer to the previous scheduling region.
181void ScheduleDAGInstrs::exitRegion() {
182  // Nothing to do.
183}
184
185/// addSchedBarrierDeps - Add dependencies from instructions in the current
186/// list of instructions being scheduled to scheduling barrier by adding
187/// the exit SU to the register defs and use list. This is because we want to
188/// make sure instructions which define registers that are either used by
189/// the terminator or are live-out are properly scheduled. This is
190/// especially important when the definition latency of the return value(s)
191/// are too high to be hidden by the branch or when the liveout registers
192/// used by instructions in the fallthrough block.
193void ScheduleDAGInstrs::addSchedBarrierDeps() {
194  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
195  ExitSU.setInstr(ExitMI);
196  bool AllDepKnown = ExitMI &&
197    (ExitMI->isCall() || ExitMI->isBarrier());
198  if (ExitMI && AllDepKnown) {
199    // If it's a call or a barrier, add dependencies on the defs and uses of
200    // instruction.
201    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
202      const MachineOperand &MO = ExitMI->getOperand(i);
203      if (!MO.isReg() || MO.isDef()) continue;
204      unsigned Reg = MO.getReg();
205      if (Reg == 0) continue;
206
207      if (TRI->isPhysicalRegister(Reg))
208        Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
209      else {
210        assert(!IsPostRA && "Virtual register encountered after regalloc.");
211        addVRegUseDeps(&ExitSU, i);
212      }
213    }
214  } else {
215    // For others, e.g. fallthrough, conditional branch, assume the exit
216    // uses all the registers that are livein to the successor blocks.
217    assert(Uses.empty() && "Uses in set before adding deps?");
218    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
219           SE = BB->succ_end(); SI != SE; ++SI)
220      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
221             E = (*SI)->livein_end(); I != E; ++I) {
222        unsigned Reg = *I;
223        if (!Uses.contains(Reg))
224          Uses[Reg].push_back(PhysRegSUOper(&ExitSU, -1));
225      }
226  }
227}
228
229/// MO is an operand of SU's instruction that defines a physical register. Add
230/// data dependencies from SU to any uses of the physical register.
231void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
232  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
233  assert(MO.isDef() && "expect physreg def");
234
235  // Ask the target if address-backscheduling is desirable, and if so how much.
236  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
237
238  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
239       Alias.isValid(); ++Alias) {
240    if (!Uses.contains(*Alias))
241      continue;
242    std::vector<PhysRegSUOper> &UseList = Uses[*Alias];
243    for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
244      SUnit *UseSU = UseList[i].SU;
245      if (UseSU == SU)
246        continue;
247
248      SDep dep(SU, SDep::Data, *Alias);
249
250      // Adjust the dependence latency using operand def/use information,
251      // then allow the target to perform its own adjustments.
252      int UseOp = UseList[i].OpIdx;
253      MachineInstr *RegUse = UseOp < 0 ? 0 : UseSU->getInstr();
254      dep.setLatency(
255        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
256                                         RegUse, UseOp, /*FindMin=*/false));
257      dep.setMinLatency(
258        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
259                                         RegUse, UseOp, /*FindMin=*/true));
260
261      ST.adjustSchedDependency(SU, UseSU, dep);
262      UseSU->addPred(dep);
263    }
264  }
265}
266
267/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
268/// this SUnit to following instructions in the same scheduling region that
269/// depend the physical register referenced at OperIdx.
270void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
271  const MachineInstr *MI = SU->getInstr();
272  const MachineOperand &MO = MI->getOperand(OperIdx);
273
274  // Optionally add output and anti dependencies. For anti
275  // dependencies we use a latency of 0 because for a multi-issue
276  // target we want to allow the defining instruction to issue
277  // in the same cycle as the using instruction.
278  // TODO: Using a latency of 1 here for output dependencies assumes
279  //       there's no cost for reusing registers.
280  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
281  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
282       Alias.isValid(); ++Alias) {
283    if (!Defs.contains(*Alias))
284      continue;
285    std::vector<PhysRegSUOper> &DefList = Defs[*Alias];
286    for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
287      SUnit *DefSU = DefList[i].SU;
288      if (DefSU == &ExitSU)
289        continue;
290      if (DefSU != SU &&
291          (Kind != SDep::Output || !MO.isDead() ||
292           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
293        if (Kind == SDep::Anti)
294          DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
295        else {
296          SDep Dep(SU, Kind, /*Reg=*/*Alias);
297          unsigned OutLatency =
298            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr());
299          Dep.setMinLatency(OutLatency);
300          Dep.setLatency(OutLatency);
301          DefSU->addPred(Dep);
302        }
303      }
304    }
305  }
306
307  if (!MO.isDef()) {
308    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
309    // retrieve the existing SUnits list for this register's uses.
310    // Push this SUnit on the use list.
311    Uses[MO.getReg()].push_back(PhysRegSUOper(SU, OperIdx));
312  }
313  else {
314    addPhysRegDataDeps(SU, OperIdx);
315
316    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
317    // retrieve the existing SUnits list for this register's defs.
318    std::vector<PhysRegSUOper> &DefList = Defs[MO.getReg()];
319
320    // clear this register's use list
321    if (Uses.contains(MO.getReg()))
322      Uses[MO.getReg()].clear();
323
324    if (!MO.isDead())
325      DefList.clear();
326
327    // Calls will not be reordered because of chain dependencies (see
328    // below). Since call operands are dead, calls may continue to be added
329    // to the DefList making dependence checking quadratic in the size of
330    // the block. Instead, we leave only one call at the back of the
331    // DefList.
332    if (SU->isCall) {
333      while (!DefList.empty() && DefList.back().SU->isCall)
334        DefList.pop_back();
335    }
336    // Defs are pushed in the order they are visited and never reordered.
337    DefList.push_back(PhysRegSUOper(SU, OperIdx));
338  }
339}
340
341/// addVRegDefDeps - Add register output and data dependencies from this SUnit
342/// to instructions that occur later in the same scheduling region if they read
343/// from or write to the virtual register defined at OperIdx.
344///
345/// TODO: Hoist loop induction variable increments. This has to be
346/// reevaluated. Generally, IV scheduling should be done before coalescing.
347void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
348  const MachineInstr *MI = SU->getInstr();
349  unsigned Reg = MI->getOperand(OperIdx).getReg();
350
351  // Singly defined vregs do not have output/anti dependencies.
352  // The current operand is a def, so we have at least one.
353  // Check here if there are any others...
354  if (MRI.hasOneDef(Reg))
355    return;
356
357  // Add output dependence to the next nearest def of this vreg.
358  //
359  // Unless this definition is dead, the output dependence should be
360  // transitively redundant with antidependencies from this definition's
361  // uses. We're conservative for now until we have a way to guarantee the uses
362  // are not eliminated sometime during scheduling. The output dependence edge
363  // is also useful if output latency exceeds def-use latency.
364  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
365  if (DefI == VRegDefs.end())
366    VRegDefs.insert(VReg2SUnit(Reg, SU));
367  else {
368    SUnit *DefSU = DefI->SU;
369    if (DefSU != SU && DefSU != &ExitSU) {
370      SDep Dep(SU, SDep::Output, Reg);
371      unsigned OutLatency =
372        SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr());
373      Dep.setMinLatency(OutLatency);
374      Dep.setLatency(OutLatency);
375      DefSU->addPred(Dep);
376    }
377    DefI->SU = SU;
378  }
379}
380
381/// addVRegUseDeps - Add a register data dependency if the instruction that
382/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
383/// register antidependency from this SUnit to instructions that occur later in
384/// the same scheduling region if they write the virtual register.
385///
386/// TODO: Handle ExitSU "uses" properly.
387void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
388  MachineInstr *MI = SU->getInstr();
389  unsigned Reg = MI->getOperand(OperIdx).getReg();
390
391  // Lookup this operand's reaching definition.
392  assert(LIS && "vreg dependencies requires LiveIntervals");
393  LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
394  VNInfo *VNI = LRQ.valueIn();
395
396  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
397  assert(VNI && "No value to read by operand");
398  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
399  // Phis and other noninstructions (after coalescing) have a NULL Def.
400  if (Def) {
401    SUnit *DefSU = getSUnit(Def);
402    if (DefSU) {
403      // The reaching Def lives within this scheduling region.
404      // Create a data dependence.
405      SDep dep(DefSU, SDep::Data, Reg);
406      // Adjust the dependence latency using operand def/use information, then
407      // allow the target to perform its own adjustments.
408      int DefOp = Def->findRegisterDefOperandIdx(Reg);
409      dep.setLatency(
410        SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, false));
411      dep.setMinLatency(
412        SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx, true));
413
414      const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
415      ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
416      SU->addPred(dep);
417    }
418  }
419
420  // Add antidependence to the following def of the vreg it uses.
421  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
422  if (DefI != VRegDefs.end() && DefI->SU != SU)
423    DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
424}
425
426/// Return true if MI is an instruction we are unable to reason about
427/// (like a call or something with unmodeled side effects).
428static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
429  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
430      (MI->hasOrderedMemoryRef() &&
431       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
432    return true;
433  return false;
434}
435
436// This MI might have either incomplete info, or known to be unsafe
437// to deal with (i.e. volatile object).
438static inline bool isUnsafeMemoryObject(MachineInstr *MI,
439                                        const MachineFrameInfo *MFI) {
440  if (!MI || MI->memoperands_empty())
441    return true;
442  // We purposefully do no check for hasOneMemOperand() here
443  // in hope to trigger an assert downstream in order to
444  // finish implementation.
445  if ((*MI->memoperands_begin())->isVolatile() ||
446       MI->hasUnmodeledSideEffects())
447    return true;
448
449  const Value *V = (*MI->memoperands_begin())->getValue();
450  if (!V)
451    return true;
452
453  V = getUnderlyingObject(V);
454  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
455    // Similarly to getUnderlyingObjectForInstr:
456    // For now, ignore PseudoSourceValues which may alias LLVM IR values
457    // because the code that uses this function has no way to cope with
458    // such aliases.
459    if (PSV->isAliased(MFI))
460      return true;
461  }
462  // Does this pointer refer to a distinct and identifiable object?
463  if (!isIdentifiedObject(V))
464    return true;
465
466  return false;
467}
468
469/// This returns true if the two MIs need a chain edge betwee them.
470/// If these are not even memory operations, we still may need
471/// chain deps between them. The question really is - could
472/// these two MIs be reordered during scheduling from memory dependency
473/// point of view.
474static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
475                             MachineInstr *MIa,
476                             MachineInstr *MIb) {
477  // Cover a trivial case - no edge is need to itself.
478  if (MIa == MIb)
479    return false;
480
481  if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
482    return true;
483
484  // If we are dealing with two "normal" loads, we do not need an edge
485  // between them - they could be reordered.
486  if (!MIa->mayStore() && !MIb->mayStore())
487    return false;
488
489  // To this point analysis is generic. From here on we do need AA.
490  if (!AA)
491    return true;
492
493  MachineMemOperand *MMOa = *MIa->memoperands_begin();
494  MachineMemOperand *MMOb = *MIb->memoperands_begin();
495
496  // FIXME: Need to handle multiple memory operands to support all targets.
497  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
498    llvm_unreachable("Multiple memory operands.");
499
500  // The following interface to AA is fashioned after DAGCombiner::isAlias
501  // and operates with MachineMemOperand offset with some important
502  // assumptions:
503  //   - LLVM fundamentally assumes flat address spaces.
504  //   - MachineOperand offset can *only* result from legalization and
505  //     cannot affect queries other than the trivial case of overlap
506  //     checking.
507  //   - These offsets never wrap and never step outside
508  //     of allocated objects.
509  //   - There should never be any negative offsets here.
510  //
511  // FIXME: Modify API to hide this math from "user"
512  // FIXME: Even before we go to AA we can reason locally about some
513  // memory objects. It can save compile time, and possibly catch some
514  // corner cases not currently covered.
515
516  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
517  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
518
519  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
520  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
521  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
522
523  AliasAnalysis::AliasResult AAResult = AA->alias(
524  AliasAnalysis::Location(MMOa->getValue(), Overlapa,
525                          MMOa->getTBAAInfo()),
526  AliasAnalysis::Location(MMOb->getValue(), Overlapb,
527                          MMOb->getTBAAInfo()));
528
529  return (AAResult != AliasAnalysis::NoAlias);
530}
531
532/// This recursive function iterates over chain deps of SUb looking for
533/// "latest" node that needs a chain edge to SUa.
534static unsigned
535iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
536                 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
537                 SmallPtrSet<const SUnit*, 16> &Visited) {
538  if (!SUa || !SUb || SUb == ExitSU)
539    return *Depth;
540
541  // Remember visited nodes.
542  if (!Visited.insert(SUb))
543      return *Depth;
544  // If there is _some_ dependency already in place, do not
545  // descend any further.
546  // TODO: Need to make sure that if that dependency got eliminated or ignored
547  // for any reason in the future, we would not violate DAG topology.
548  // Currently it does not happen, but makes an implicit assumption about
549  // future implementation.
550  //
551  // Independently, if we encounter node that is some sort of global
552  // object (like a call) we already have full set of dependencies to it
553  // and we can stop descending.
554  if (SUa->isSucc(SUb) ||
555      isGlobalMemoryObject(AA, SUb->getInstr()))
556    return *Depth;
557
558  // If we do need an edge, or we have exceeded depth budget,
559  // add that edge to the predecessors chain of SUb,
560  // and stop descending.
561  if (*Depth > 200 ||
562      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
563    SUb->addPred(SDep(SUa, SDep::MayAliasMem));
564    return *Depth;
565  }
566  // Track current depth.
567  (*Depth)++;
568  // Iterate over chain dependencies only.
569  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
570       I != E; ++I)
571    if (I->isCtrl())
572      iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
573  return *Depth;
574}
575
576/// This function assumes that "downward" from SU there exist
577/// tail/leaf of already constructed DAG. It iterates downward and
578/// checks whether SU can be aliasing any node dominated
579/// by it.
580static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
581                            SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
582                            unsigned LatencyToLoad) {
583  if (!SU)
584    return;
585
586  SmallPtrSet<const SUnit*, 16> Visited;
587  unsigned Depth = 0;
588
589  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
590       I != IE; ++I) {
591    if (SU == *I)
592      continue;
593    if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
594      SDep Dep(SU, SDep::MayAliasMem);
595      Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
596      (*I)->addPred(Dep);
597    }
598    // Now go through all the chain successors and iterate from them.
599    // Keep track of visited nodes.
600    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
601         JE = (*I)->Succs.end(); J != JE; ++J)
602      if (J->isCtrl())
603        iterateChainSucc (AA, MFI, SU, J->getSUnit(),
604                          ExitSU, &Depth, Visited);
605  }
606}
607
608/// Check whether two objects need a chain edge, if so, add it
609/// otherwise remember the rejected SU.
610static inline
611void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
612                         SUnit *SUa, SUnit *SUb,
613                         std::set<SUnit *> &RejectList,
614                         unsigned TrueMemOrderLatency = 0,
615                         bool isNormalMemory = false) {
616  // If this is a false dependency,
617  // do not add the edge, but rememeber the rejected node.
618  if (!EnableAASchedMI ||
619      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
620    SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
621    Dep.setLatency(TrueMemOrderLatency);
622    SUb->addPred(Dep);
623  }
624  else {
625    // Duplicate entries should be ignored.
626    RejectList.insert(SUb);
627    DEBUG(dbgs() << "\tReject chain dep between SU("
628          << SUa->NodeNum << ") and SU("
629          << SUb->NodeNum << ")\n");
630  }
631}
632
633/// Create an SUnit for each real instruction, numbered in top-down toplological
634/// order. The instruction order A < B, implies that no edge exists from B to A.
635///
636/// Map each real instruction to its SUnit.
637///
638/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
639/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
640/// instead of pointers.
641///
642/// MachineScheduler relies on initSUnits numbering the nodes by their order in
643/// the original instruction list.
644void ScheduleDAGInstrs::initSUnits() {
645  // We'll be allocating one SUnit for each real instruction in the region,
646  // which is contained within a basic block.
647  SUnits.reserve(BB->size());
648
649  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
650    MachineInstr *MI = I;
651    if (MI->isDebugValue())
652      continue;
653
654    SUnit *SU = newSUnit(MI);
655    MISUnitMap[MI] = SU;
656
657    SU->isCall = MI->isCall();
658    SU->isCommutable = MI->isCommutable();
659
660    // Assign the Latency field of SU using target-provided information.
661    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
662  }
663}
664
665/// If RegPressure is non null, compute register pressure as a side effect. The
666/// DAG builder is an efficient place to do it because it already visits
667/// operands.
668void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
669                                        RegPressureTracker *RPTracker) {
670  // Create an SUnit for each real instruction.
671  initSUnits();
672
673  // We build scheduling units by walking a block's instruction list from bottom
674  // to top.
675
676  // Remember where a generic side-effecting instruction is as we procede.
677  SUnit *BarrierChain = 0, *AliasChain = 0;
678
679  // Memory references to specific known memory locations are tracked
680  // so that they can be given more precise dependencies. We track
681  // separately the known memory locations that may alias and those
682  // that are known not to alias
683  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
684  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
685  std::set<SUnit*> RejectMemNodes;
686
687  // Remove any stale debug info; sometimes BuildSchedGraph is called again
688  // without emitting the info from the previous call.
689  DbgValues.clear();
690  FirstDbgValue = NULL;
691
692  assert(Defs.empty() && Uses.empty() &&
693         "Only BuildGraph should update Defs/Uses");
694  Defs.setRegLimit(TRI->getNumRegs());
695  Uses.setRegLimit(TRI->getNumRegs());
696
697  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
698  // FIXME: Allow SparseSet to reserve space for the creation of virtual
699  // registers during scheduling. Don't artificially inflate the Universe
700  // because we want to assert that vregs are not created during DAG building.
701  VRegDefs.setUniverse(MRI.getNumVirtRegs());
702
703  // Model data dependencies between instructions being scheduled and the
704  // ExitSU.
705  addSchedBarrierDeps();
706
707  // Walk the list of instructions, from bottom moving up.
708  MachineInstr *PrevMI = NULL;
709  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
710       MII != MIE; --MII) {
711    MachineInstr *MI = prior(MII);
712    if (MI && PrevMI) {
713      DbgValues.push_back(std::make_pair(PrevMI, MI));
714      PrevMI = NULL;
715    }
716
717    if (MI->isDebugValue()) {
718      PrevMI = MI;
719      continue;
720    }
721    if (RPTracker) {
722      RPTracker->recede();
723      assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
724    }
725
726    assert((!MI->isTerminator() || CanHandleTerminators) && !MI->isLabel() &&
727           "Cannot schedule terminators or labels!");
728
729    SUnit *SU = MISUnitMap[MI];
730    assert(SU && "No SUnit mapped to this MI");
731
732    // Add register-based dependencies (data, anti, and output).
733    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
734      const MachineOperand &MO = MI->getOperand(j);
735      if (!MO.isReg()) continue;
736      unsigned Reg = MO.getReg();
737      if (Reg == 0) continue;
738
739      if (TRI->isPhysicalRegister(Reg))
740        addPhysRegDeps(SU, j);
741      else {
742        assert(!IsPostRA && "Virtual register encountered!");
743        if (MO.isDef())
744          addVRegDefDeps(SU, j);
745        else if (MO.readsReg()) // ignore undef operands
746          addVRegUseDeps(SU, j);
747      }
748    }
749
750    // Add chain dependencies.
751    // Chain dependencies used to enforce memory order should have
752    // latency of 0 (except for true dependency of Store followed by
753    // aliased Load... we estimate that with a single cycle of latency
754    // assuming the hardware will bypass)
755    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
756    // after stack slots are lowered to actual addresses.
757    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
758    // produce more precise dependence information.
759    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
760    if (isGlobalMemoryObject(AA, MI)) {
761      // Be conservative with these and add dependencies on all memory
762      // references, even those that are known to not alias.
763      for (std::map<const Value *, SUnit *>::iterator I =
764             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
765        I->second->addPred(SDep(SU, SDep::Barrier));
766      }
767      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
768             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
769        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
770          SDep Dep(SU, SDep::Barrier);
771          Dep.setLatency(TrueMemOrderLatency);
772          I->second[i]->addPred(Dep);
773        }
774      }
775      // Add SU to the barrier chain.
776      if (BarrierChain)
777        BarrierChain->addPred(SDep(SU, SDep::Barrier));
778      BarrierChain = SU;
779      // This is a barrier event that acts as a pivotal node in the DAG,
780      // so it is safe to clear list of exposed nodes.
781      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
782                      TrueMemOrderLatency);
783      RejectMemNodes.clear();
784      NonAliasMemDefs.clear();
785      NonAliasMemUses.clear();
786
787      // fall-through
788    new_alias_chain:
789      // Chain all possibly aliasing memory references though SU.
790      if (AliasChain) {
791        unsigned ChainLatency = 0;
792        if (AliasChain->getInstr()->mayLoad())
793          ChainLatency = TrueMemOrderLatency;
794        addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes,
795                           ChainLatency);
796      }
797      AliasChain = SU;
798      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
799        addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
800                           TrueMemOrderLatency);
801      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
802           E = AliasMemDefs.end(); I != E; ++I)
803        addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
804      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
805           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
806        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
807          addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes,
808                             TrueMemOrderLatency);
809      }
810      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
811                      TrueMemOrderLatency);
812      PendingLoads.clear();
813      AliasMemDefs.clear();
814      AliasMemUses.clear();
815    } else if (MI->mayStore()) {
816      bool MayAlias = true;
817      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
818        // A store to a specific PseudoSourceValue. Add precise dependencies.
819        // Record the def in MemDefs, first adding a dep if there is
820        // an existing def.
821        std::map<const Value *, SUnit *>::iterator I =
822          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
823        std::map<const Value *, SUnit *>::iterator IE =
824          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
825        if (I != IE) {
826          addChainDependency(AA, MFI, SU, I->second, RejectMemNodes,
827                             0, true);
828          I->second = SU;
829        } else {
830          if (MayAlias)
831            AliasMemDefs[V] = SU;
832          else
833            NonAliasMemDefs[V] = SU;
834        }
835        // Handle the uses in MemUses, if there are any.
836        std::map<const Value *, std::vector<SUnit *> >::iterator J =
837          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
838        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
839          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
840        if (J != JE) {
841          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
842            addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes,
843                               TrueMemOrderLatency, true);
844          J->second.clear();
845        }
846        if (MayAlias) {
847          // Add dependencies from all the PendingLoads, i.e. loads
848          // with no underlying object.
849          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
850            addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
851                               TrueMemOrderLatency);
852          // Add dependence on alias chain, if needed.
853          if (AliasChain)
854            addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
855          // But we also should check dependent instructions for the
856          // SU in question.
857          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
858                          TrueMemOrderLatency);
859        }
860        // Add dependence on barrier chain, if needed.
861        // There is no point to check aliasing on barrier event. Even if
862        // SU and barrier _could_ be reordered, they should not. In addition,
863        // we have lost all RejectMemNodes below barrier.
864        if (BarrierChain)
865          BarrierChain->addPred(SDep(SU, SDep::Barrier));
866      } else {
867        // Treat all other stores conservatively.
868        goto new_alias_chain;
869      }
870
871      if (!ExitSU.isPred(SU))
872        // Push store's up a bit to avoid them getting in between cmp
873        // and branches.
874        ExitSU.addPred(SDep(SU, SDep::Artificial));
875    } else if (MI->mayLoad()) {
876      bool MayAlias = true;
877      if (MI->isInvariantLoad(AA)) {
878        // Invariant load, no chain dependencies needed!
879      } else {
880        if (const Value *V =
881            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
882          // A load from a specific PseudoSourceValue. Add precise dependencies.
883          std::map<const Value *, SUnit *>::iterator I =
884            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
885          std::map<const Value *, SUnit *>::iterator IE =
886            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
887          if (I != IE)
888            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
889          if (MayAlias)
890            AliasMemUses[V].push_back(SU);
891          else
892            NonAliasMemUses[V].push_back(SU);
893        } else {
894          // A load with no underlying object. Depend on all
895          // potentially aliasing stores.
896          for (std::map<const Value *, SUnit *>::iterator I =
897                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
898            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
899
900          PendingLoads.push_back(SU);
901          MayAlias = true;
902        }
903        if (MayAlias)
904          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
905        // Add dependencies on alias and barrier chains, if needed.
906        if (MayAlias && AliasChain)
907          addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
908        if (BarrierChain)
909          BarrierChain->addPred(SDep(SU, SDep::Barrier));
910      }
911    }
912  }
913  if (PrevMI)
914    FirstDbgValue = PrevMI;
915
916  Defs.clear();
917  Uses.clear();
918  VRegDefs.clear();
919  PendingLoads.clear();
920}
921
922void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
923#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
924  SU->getInstr()->dump();
925#endif
926}
927
928std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
929  std::string s;
930  raw_string_ostream oss(s);
931  if (SU == &EntrySU)
932    oss << "<entry>";
933  else if (SU == &ExitSU)
934    oss << "<exit>";
935  else
936    SU->getInstr()->print(oss);
937  return oss.str();
938}
939
940/// Return the basic block label. It is not necessarilly unique because a block
941/// contains multiple scheduling regions. But it is fine for visualization.
942std::string ScheduleDAGInstrs::getDAGName() const {
943  return "dag." + BB->getFullName();
944}
945
946namespace {
947/// \brief Manage the stack used by a reverse depth-first search over the DAG.
948class SchedDAGReverseDFS {
949  std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
950public:
951  bool isComplete() const { return DFSStack.empty(); }
952
953  void follow(const SUnit *SU) {
954    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
955  }
956  void advance() { ++DFSStack.back().second; }
957
958  void backtrack() { DFSStack.pop_back(); }
959
960  const SUnit *getCurr() const { return DFSStack.back().first; }
961
962  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
963
964  SUnit::const_pred_iterator getPredEnd() const {
965    return getCurr()->Preds.end();
966  }
967};
968} // anonymous
969
970void ScheduleDAGILP::resize(unsigned NumSUnits) {
971  ILPValues.resize(NumSUnits);
972}
973
974ILPValue ScheduleDAGILP::getILP(const SUnit *SU) {
975  return ILPValues[SU->NodeNum];
976}
977
978// A leaf node has an ILP of 1/1.
979static ILPValue initILP(const SUnit *SU) {
980  unsigned Cnt = SU->getInstr()->isTransient() ? 0 : 1;
981  return ILPValue(Cnt, 1 + SU->getDepth());
982}
983
984/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
985/// search from this root.
986void ScheduleDAGILP::computeILP(const SUnit *Root) {
987  if (!IsBottomUp)
988    llvm_unreachable("Top-down ILP metric is unimplemnted");
989
990  SchedDAGReverseDFS DFS;
991  // Mark a node visited by validating it.
992  ILPValues[Root->NodeNum] = initILP(Root);
993  DFS.follow(Root);
994  for (;;) {
995    // Traverse the leftmost path as far as possible.
996    while (DFS.getPred() != DFS.getPredEnd()) {
997      const SUnit *PredSU = DFS.getPred()->getSUnit();
998      DFS.advance();
999      // If the pred is already valid, skip it.
1000      if (ILPValues[PredSU->NodeNum].isValid())
1001        continue;
1002      ILPValues[PredSU->NodeNum] = initILP(PredSU);
1003      DFS.follow(PredSU);
1004    }
1005    // Visit the top of the stack in postorder and backtrack.
1006    unsigned PredCount = ILPValues[DFS.getCurr()->NodeNum].InstrCount;
1007    DFS.backtrack();
1008    if (DFS.isComplete())
1009      break;
1010    // Add the recently finished predecessor's bottom-up descendent count.
1011    ILPValues[DFS.getCurr()->NodeNum].InstrCount += PredCount;
1012  }
1013}
1014
1015#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1016void ILPValue::print(raw_ostream &OS) const {
1017  if (!isValid())
1018    OS << "BADILP";
1019  OS << InstrCount << " / " << Cycles << " = "
1020     << format("%g", ((double)InstrCount / Cycles));
1021}
1022
1023void ILPValue::dump() const {
1024  dbgs() << *this << '\n';
1025}
1026
1027namespace llvm {
1028
1029raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1030  Val.print(OS);
1031  return OS;
1032}
1033
1034} // namespace llvm
1035#endif // !NDEBUG || LLVM_ENABLE_DUMP
1036