ScheduleDAGInstrs.cpp revision ab8be96fd30ca9396e6b84fdddf1ac6208984cad
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineMemOperand.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/PseudoSourceValue.h"
24#include "llvm/MC/MCInstrItineraries.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetSubtarget.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/raw_ostream.h"
31#include "llvm/ADT/SmallSet.h"
32using namespace llvm;
33
34ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
35                                     const MachineLoopInfo &mli,
36                                     const MachineDominatorTree &mdt)
37  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
38    InstrItins(mf.getTarget().getInstrItineraryData()),
39    Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()),
40    LoopRegs(MLI, MDT), FirstDbgValue(0) {
41  DbgValues.clear();
42}
43
44/// Run - perform scheduling.
45///
46void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
47                            MachineBasicBlock::iterator begin,
48                            MachineBasicBlock::iterator end,
49                            unsigned endcount) {
50  BB = bb;
51  Begin = begin;
52  InsertPosIndex = endcount;
53
54  ScheduleDAG::Run(bb, end);
55}
56
57/// getUnderlyingObjectFromInt - This is the function that does the work of
58/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
59static const Value *getUnderlyingObjectFromInt(const Value *V) {
60  do {
61    if (const Operator *U = dyn_cast<Operator>(V)) {
62      // If we find a ptrtoint, we can transfer control back to the
63      // regular getUnderlyingObjectFromInt.
64      if (U->getOpcode() == Instruction::PtrToInt)
65        return U->getOperand(0);
66      // If we find an add of a constant or a multiplied value, it's
67      // likely that the other operand will lead us to the base
68      // object. We don't have to worry about the case where the
69      // object address is somehow being computed by the multiply,
70      // because our callers only care when the result is an
71      // identifibale object.
72      if (U->getOpcode() != Instruction::Add ||
73          (!isa<ConstantInt>(U->getOperand(1)) &&
74           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
75        return V;
76      V = U->getOperand(0);
77    } else {
78      return V;
79    }
80    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
81  } while (1);
82}
83
84/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
85/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
86static const Value *getUnderlyingObject(const Value *V) {
87  // First just call Value::getUnderlyingObject to let it do what it does.
88  do {
89    V = GetUnderlyingObject(V);
90    // If it found an inttoptr, use special code to continue climing.
91    if (Operator::getOpcode(V) != Instruction::IntToPtr)
92      break;
93    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
94    // If that succeeded in finding a pointer, continue the search.
95    if (!O->getType()->isPointerTy())
96      break;
97    V = O;
98  } while (1);
99  return V;
100}
101
102/// getUnderlyingObjectForInstr - If this machine instr has memory reference
103/// information and it can be tracked to a normal reference to a known
104/// object, return the Value for that object. Otherwise return null.
105static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
106                                                const MachineFrameInfo *MFI,
107                                                bool &MayAlias) {
108  MayAlias = true;
109  if (!MI->hasOneMemOperand() ||
110      !(*MI->memoperands_begin())->getValue() ||
111      (*MI->memoperands_begin())->isVolatile())
112    return 0;
113
114  const Value *V = (*MI->memoperands_begin())->getValue();
115  if (!V)
116    return 0;
117
118  V = getUnderlyingObject(V);
119  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
120    // For now, ignore PseudoSourceValues which may alias LLVM IR values
121    // because the code that uses this function has no way to cope with
122    // such aliases.
123    if (PSV->isAliased(MFI))
124      return 0;
125
126    MayAlias = PSV->mayAlias(MFI);
127    return V;
128  }
129
130  if (isIdentifiedObject(V))
131    return V;
132
133  return 0;
134}
135
136void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
137  if (MachineLoop *ML = MLI.getLoopFor(BB))
138    if (BB == ML->getLoopLatch()) {
139      MachineBasicBlock *Header = ML->getHeader();
140      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
141           E = Header->livein_end(); I != E; ++I)
142        LoopLiveInRegs.insert(*I);
143      LoopRegs.VisitLoop(ML);
144    }
145}
146
147/// AddSchedBarrierDeps - Add dependencies from instructions in the current
148/// list of instructions being scheduled to scheduling barrier by adding
149/// the exit SU to the register defs and use list. This is because we want to
150/// make sure instructions which define registers that are either used by
151/// the terminator or are live-out are properly scheduled. This is
152/// especially important when the definition latency of the return value(s)
153/// are too high to be hidden by the branch or when the liveout registers
154/// used by instructions in the fallthrough block.
155void ScheduleDAGInstrs::AddSchedBarrierDeps() {
156  MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
157  ExitSU.setInstr(ExitMI);
158  bool AllDepKnown = ExitMI &&
159    (ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier());
160  if (ExitMI && AllDepKnown) {
161    // If it's a call or a barrier, add dependencies on the defs and uses of
162    // instruction.
163    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
164      const MachineOperand &MO = ExitMI->getOperand(i);
165      if (!MO.isReg() || MO.isDef()) continue;
166      unsigned Reg = MO.getReg();
167      if (Reg == 0) continue;
168
169      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
170      Uses[Reg].push_back(&ExitSU);
171    }
172  } else {
173    // For others, e.g. fallthrough, conditional branch, assume the exit
174    // uses all the registers that are livein to the successor blocks.
175    SmallSet<unsigned, 8> Seen;
176    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
177           SE = BB->succ_end(); SI != SE; ++SI)
178      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
179             E = (*SI)->livein_end(); I != E; ++I) {
180        unsigned Reg = *I;
181        if (Seen.insert(Reg))
182          Uses[Reg].push_back(&ExitSU);
183      }
184  }
185}
186
187void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
188  // We'll be allocating one SUnit for each instruction, plus one for
189  // the region exit node.
190  SUnits.reserve(BB->size());
191
192  // We build scheduling units by walking a block's instruction list from bottom
193  // to top.
194
195  // Remember where a generic side-effecting instruction is as we procede.
196  SUnit *BarrierChain = 0, *AliasChain = 0;
197
198  // Memory references to specific known memory locations are tracked
199  // so that they can be given more precise dependencies. We track
200  // separately the known memory locations that may alias and those
201  // that are known not to alias
202  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
203  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
204
205  // Check to see if the scheduler cares about latencies.
206  bool UnitLatencies = ForceUnitLatencies();
207
208  // Ask the target if address-backscheduling is desirable, and if so how much.
209  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
210  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
211
212  // Remove any stale debug info; sometimes BuildSchedGraph is called again
213  // without emitting the info from the previous call.
214  DbgValues.clear();
215  FirstDbgValue = NULL;
216
217  // Model data dependencies between instructions being scheduled and the
218  // ExitSU.
219  AddSchedBarrierDeps();
220
221  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
222    assert(Defs[i].empty() && "Only BuildGraph should push/pop Defs");
223  }
224
225  // Walk the list of instructions, from bottom moving up.
226  MachineInstr *PrevMI = NULL;
227  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
228       MII != MIE; --MII) {
229    MachineInstr *MI = prior(MII);
230    if (MI && PrevMI) {
231      DbgValues.push_back(std::make_pair(PrevMI, MI));
232      PrevMI = NULL;
233    }
234
235    if (MI->isDebugValue()) {
236      PrevMI = MI;
237      continue;
238    }
239
240    const MCInstrDesc &MCID = MI->getDesc();
241    assert(!MCID.isTerminator() && !MI->isLabel() &&
242           "Cannot schedule terminators or labels!");
243    // Create the SUnit for this MI.
244    SUnit *SU = NewSUnit(MI);
245    SU->isCall = MCID.isCall();
246    SU->isCommutable = MCID.isCommutable();
247
248    // Assign the Latency field of SU using target-provided information.
249    if (UnitLatencies)
250      SU->Latency = 1;
251    else
252      ComputeLatency(SU);
253
254    // Add register-based dependencies (data, anti, and output).
255    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
256      const MachineOperand &MO = MI->getOperand(j);
257      if (!MO.isReg()) continue;
258      unsigned Reg = MO.getReg();
259      if (Reg == 0) continue;
260
261      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
262
263      std::vector<SUnit *> &UseList = Uses[Reg];
264      // Defs are push in the order they are visited and never reordered.
265      std::vector<SUnit *> &DefList = Defs[Reg];
266      // Optionally add output and anti dependencies. For anti
267      // dependencies we use a latency of 0 because for a multi-issue
268      // target we want to allow the defining instruction to issue
269      // in the same cycle as the using instruction.
270      // TODO: Using a latency of 1 here for output dependencies assumes
271      //       there's no cost for reusing registers.
272      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
273      unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
274      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
275        SUnit *DefSU = DefList[i];
276        if (DefSU == &ExitSU)
277          continue;
278        if (DefSU != SU &&
279            (Kind != SDep::Output || !MO.isDead() ||
280             !DefSU->getInstr()->registerDefIsDead(Reg)))
281          DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
282      }
283      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
284        std::vector<SUnit *> &MemDefList = Defs[*Alias];
285        for (unsigned i = 0, e = MemDefList.size(); i != e; ++i) {
286          SUnit *DefSU = MemDefList[i];
287          if (DefSU == &ExitSU)
288            continue;
289          if (DefSU != SU &&
290              (Kind != SDep::Output || !MO.isDead() ||
291               !DefSU->getInstr()->registerDefIsDead(*Alias)))
292            DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
293        }
294      }
295
296      if (MO.isDef()) {
297        // Add any data dependencies.
298        unsigned DataLatency = SU->Latency;
299        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
300          SUnit *UseSU = UseList[i];
301          if (UseSU == SU)
302            continue;
303          unsigned LDataLatency = DataLatency;
304          // Optionally add in a special extra latency for nodes that
305          // feed addresses.
306          // TODO: Do this for register aliases too.
307          // TODO: Perhaps we should get rid of
308          // SpecialAddressLatency and just move this into
309          // adjustSchedDependency for the targets that care about it.
310          if (SpecialAddressLatency != 0 && !UnitLatencies &&
311              UseSU != &ExitSU) {
312            MachineInstr *UseMI = UseSU->getInstr();
313            const MCInstrDesc &UseMCID = UseMI->getDesc();
314            int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
315            assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
316            if (RegUseIndex >= 0 &&
317                (UseMCID.mayLoad() || UseMCID.mayStore()) &&
318                (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
319                UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
320              LDataLatency += SpecialAddressLatency;
321          }
322          // Adjust the dependence latency using operand def/use
323          // information (if any), and then allow the target to
324          // perform its own adjustments.
325          const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
326          if (!UnitLatencies) {
327            ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
328            ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
329          }
330          UseSU->addPred(dep);
331        }
332        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
333          std::vector<SUnit *> &UseList = Uses[*Alias];
334          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
335            SUnit *UseSU = UseList[i];
336            if (UseSU == SU)
337              continue;
338            const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
339            if (!UnitLatencies) {
340              ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
341              ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
342            }
343            UseSU->addPred(dep);
344          }
345        }
346
347        // If a def is going to wrap back around to the top of the loop,
348        // backschedule it.
349        if (!UnitLatencies && DefList.empty()) {
350          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
351          if (I != LoopRegs.Deps.end()) {
352            const MachineOperand *UseMO = I->second.first;
353            unsigned Count = I->second.second;
354            const MachineInstr *UseMI = UseMO->getParent();
355            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
356            const MCInstrDesc &UseMCID = UseMI->getDesc();
357            // TODO: If we knew the total depth of the region here, we could
358            // handle the case where the whole loop is inside the region but
359            // is large enough that the isScheduleHigh trick isn't needed.
360            if (UseMOIdx < UseMCID.getNumOperands()) {
361              // Currently, we only support scheduling regions consisting of
362              // single basic blocks. Check to see if the instruction is in
363              // the same region by checking to see if it has the same parent.
364              if (UseMI->getParent() != MI->getParent()) {
365                unsigned Latency = SU->Latency;
366                if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
367                  Latency += SpecialAddressLatency;
368                // This is a wild guess as to the portion of the latency which
369                // will be overlapped by work done outside the current
370                // scheduling region.
371                Latency -= std::min(Latency, Count);
372                // Add the artificial edge.
373                ExitSU.addPred(SDep(SU, SDep::Order, Latency,
374                                    /*Reg=*/0, /*isNormalMemory=*/false,
375                                    /*isMustAlias=*/false,
376                                    /*isArtificial=*/true));
377              } else if (SpecialAddressLatency > 0 &&
378                         UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
379                // The entire loop body is within the current scheduling region
380                // and the latency of this operation is assumed to be greater
381                // than the latency of the loop.
382                // TODO: Recursively mark data-edge predecessors as
383                //       isScheduleHigh too.
384                SU->isScheduleHigh = true;
385              }
386            }
387            LoopRegs.Deps.erase(I);
388          }
389        }
390
391        UseList.clear();
392        if (!MO.isDead())
393          DefList.clear();
394
395        // Calls will not be reordered because of chain dependencies (see
396        // below). Since call operands are dead, calls may continue to be added
397        // to the DefList making dependence checking quadratic in the size of
398        // the block. Instead, we leave only one call at the back of the
399        // DefList.
400        if (SU->isCall) {
401          while (!DefList.empty() && DefList.back()->isCall)
402            DefList.pop_back();
403        }
404        DefList.push_back(SU);
405      } else {
406        UseList.push_back(SU);
407      }
408    }
409
410    // Add chain dependencies.
411    // Chain dependencies used to enforce memory order should have
412    // latency of 0 (except for true dependency of Store followed by
413    // aliased Load... we estimate that with a single cycle of latency
414    // assuming the hardware will bypass)
415    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
416    // after stack slots are lowered to actual addresses.
417    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
418    // produce more precise dependence information.
419#define STORE_LOAD_LATENCY 1
420    unsigned TrueMemOrderLatency = 0;
421    if (MCID.isCall() || MI->hasUnmodeledSideEffects() ||
422        (MI->hasVolatileMemoryRef() &&
423         (!MCID.mayLoad() || !MI->isInvariantLoad(AA)))) {
424      // Be conservative with these and add dependencies on all memory
425      // references, even those that are known to not alias.
426      for (std::map<const Value *, SUnit *>::iterator I =
427             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
428        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
429      }
430      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
431             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
432        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
433          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
434      }
435      NonAliasMemDefs.clear();
436      NonAliasMemUses.clear();
437      // Add SU to the barrier chain.
438      if (BarrierChain)
439        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
440      BarrierChain = SU;
441
442      // fall-through
443    new_alias_chain:
444      // Chain all possibly aliasing memory references though SU.
445      if (AliasChain)
446        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
447      AliasChain = SU;
448      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
449        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
450      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
451           E = AliasMemDefs.end(); I != E; ++I) {
452        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
453      }
454      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
455           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
456        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
457          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
458      }
459      PendingLoads.clear();
460      AliasMemDefs.clear();
461      AliasMemUses.clear();
462    } else if (MCID.mayStore()) {
463      bool MayAlias = true;
464      TrueMemOrderLatency = STORE_LOAD_LATENCY;
465      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
466        // A store to a specific PseudoSourceValue. Add precise dependencies.
467        // Record the def in MemDefs, first adding a dep if there is
468        // an existing def.
469        std::map<const Value *, SUnit *>::iterator I =
470          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
471        std::map<const Value *, SUnit *>::iterator IE =
472          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
473        if (I != IE) {
474          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
475                                  /*isNormalMemory=*/true));
476          I->second = SU;
477        } else {
478          if (MayAlias)
479            AliasMemDefs[V] = SU;
480          else
481            NonAliasMemDefs[V] = SU;
482        }
483        // Handle the uses in MemUses, if there are any.
484        std::map<const Value *, std::vector<SUnit *> >::iterator J =
485          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
486        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
487          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
488        if (J != JE) {
489          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
490            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
491                                       /*Reg=*/0, /*isNormalMemory=*/true));
492          J->second.clear();
493        }
494        if (MayAlias) {
495          // Add dependencies from all the PendingLoads, i.e. loads
496          // with no underlying object.
497          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
498            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
499          // Add dependence on alias chain, if needed.
500          if (AliasChain)
501            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
502        }
503        // Add dependence on barrier chain, if needed.
504        if (BarrierChain)
505          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
506      } else {
507        // Treat all other stores conservatively.
508        goto new_alias_chain;
509      }
510
511      if (!ExitSU.isPred(SU))
512        // Push store's up a bit to avoid them getting in between cmp
513        // and branches.
514        ExitSU.addPred(SDep(SU, SDep::Order, 0,
515                            /*Reg=*/0, /*isNormalMemory=*/false,
516                            /*isMustAlias=*/false,
517                            /*isArtificial=*/true));
518    } else if (MCID.mayLoad()) {
519      bool MayAlias = true;
520      TrueMemOrderLatency = 0;
521      if (MI->isInvariantLoad(AA)) {
522        // Invariant load, no chain dependencies needed!
523      } else {
524        if (const Value *V =
525            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
526          // A load from a specific PseudoSourceValue. Add precise dependencies.
527          std::map<const Value *, SUnit *>::iterator I =
528            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
529          std::map<const Value *, SUnit *>::iterator IE =
530            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
531          if (I != IE)
532            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
533                                    /*isNormalMemory=*/true));
534          if (MayAlias)
535            AliasMemUses[V].push_back(SU);
536          else
537            NonAliasMemUses[V].push_back(SU);
538        } else {
539          // A load with no underlying object. Depend on all
540          // potentially aliasing stores.
541          for (std::map<const Value *, SUnit *>::iterator I =
542                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
543            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
544
545          PendingLoads.push_back(SU);
546          MayAlias = true;
547        }
548
549        // Add dependencies on alias and barrier chains, if needed.
550        if (MayAlias && AliasChain)
551          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
552        if (BarrierChain)
553          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
554      }
555    }
556  }
557  if (PrevMI)
558    FirstDbgValue = PrevMI;
559
560  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
561    Defs[i].clear();
562    Uses[i].clear();
563  }
564  PendingLoads.clear();
565}
566
567void ScheduleDAGInstrs::FinishBlock() {
568  // Nothing to do.
569}
570
571void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
572  // Compute the latency for the node.
573  if (!InstrItins || InstrItins->isEmpty()) {
574    SU->Latency = 1;
575
576    // Simplistic target-independent heuristic: assume that loads take
577    // extra time.
578    if (SU->getInstr()->getDesc().mayLoad())
579      SU->Latency += 2;
580  } else {
581    SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
582  }
583}
584
585void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
586                                              SDep& dep) const {
587  if (!InstrItins || InstrItins->isEmpty())
588    return;
589
590  // For a data dependency with a known register...
591  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
592    return;
593
594  const unsigned Reg = dep.getReg();
595
596  // ... find the definition of the register in the defining
597  // instruction
598  MachineInstr *DefMI = Def->getInstr();
599  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
600  if (DefIdx != -1) {
601    const MachineOperand &MO = DefMI->getOperand(DefIdx);
602    if (MO.isReg() && MO.isImplicit() &&
603        DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
604      // This is an implicit def, getOperandLatency() won't return the correct
605      // latency. e.g.
606      //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
607      //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
608      // What we want is to compute latency between def of %D6/%D7 and use of
609      // %Q3 instead.
610      DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
611    }
612    MachineInstr *UseMI = Use->getInstr();
613    // For all uses of the register, calculate the maxmimum latency
614    int Latency = -1;
615    if (UseMI) {
616      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
617        const MachineOperand &MO = UseMI->getOperand(i);
618        if (!MO.isReg() || !MO.isUse())
619          continue;
620        unsigned MOReg = MO.getReg();
621        if (MOReg != Reg)
622          continue;
623
624        int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
625                                              UseMI, i);
626        Latency = std::max(Latency, UseCycle);
627      }
628    } else {
629      // UseMI is null, then it must be a scheduling barrier.
630      if (!InstrItins || InstrItins->isEmpty())
631        return;
632      unsigned DefClass = DefMI->getDesc().getSchedClass();
633      Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
634    }
635
636    // If we found a latency, then replace the existing dependence latency.
637    if (Latency >= 0)
638      dep.setLatency(Latency);
639  }
640}
641
642void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
643  SU->getInstr()->dump();
644}
645
646std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
647  std::string s;
648  raw_string_ostream oss(s);
649  if (SU == &EntrySU)
650    oss << "<entry>";
651  else if (SU == &ExitSU)
652    oss << "<exit>";
653  else
654    SU->getInstr()->print(oss);
655  return oss.str();
656}
657
658// EmitSchedule - Emit the machine code in scheduled order.
659MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
660  // For MachineInstr-based scheduling, we're rescheduling the instructions in
661  // the block, so start by removing them from the block.
662  while (Begin != InsertPos) {
663    MachineBasicBlock::iterator I = Begin;
664    ++Begin;
665    BB->remove(I);
666  }
667
668  // If first instruction was a DBG_VALUE then put it back.
669  if (FirstDbgValue)
670    BB->insert(InsertPos, FirstDbgValue);
671
672  // Then re-insert them according to the given schedule.
673  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
674    if (SUnit *SU = Sequence[i])
675      BB->insert(InsertPos, SU->getInstr());
676    else
677      // Null SUnit* is a noop.
678      EmitNoop();
679  }
680
681  // Update the Begin iterator, as the first instruction in the block
682  // may have been scheduled later.
683  if (!Sequence.empty())
684    Begin = Sequence[0]->getInstr();
685
686  // Reinsert any remaining debug_values.
687  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
688         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
689    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
690    MachineInstr *DbgValue = P.first;
691    MachineInstr *OrigPrivMI = P.second;
692    BB->insertAfter(OrigPrivMI, DbgValue);
693  }
694  DbgValues.clear();
695  FirstDbgValue = NULL;
696  return BB;
697}
698