ScheduleDAGInstrs.cpp revision b86a0cdb674549d8493043331cecd9cbf53b80da
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "misched"
16#include "llvm/CodeGen/ScheduleDAGInstrs.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/CodeGen/LiveIntervalAnalysis.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineMemOperand.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/RegisterPressure.h"
28#include "llvm/CodeGen/ScheduleDFS.h"
29#include "llvm/IR/Operator.h"
30#include "llvm/MC/MCInstrItineraries.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/Format.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include "llvm/Target/TargetSubtargetInfo.h"
39using namespace llvm;
40
41static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
42    cl::ZeroOrMore, cl::init(false),
43    cl::desc("Enable use of AA during MI GAD construction"));
44
45ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
46                                     const MachineLoopInfo &mli,
47                                     const MachineDominatorTree &mdt,
48                                     bool IsPostRAFlag,
49                                     LiveIntervals *lis)
50  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
51    IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) {
52  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
53  DbgValues.clear();
54  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
55         "Virtual registers must be removed prior to PostRA scheduling");
56
57  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
58  SchedModel.init(*ST.getSchedModel(), &ST, TII);
59}
60
61/// getUnderlyingObjectFromInt - This is the function that does the work of
62/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
63static const Value *getUnderlyingObjectFromInt(const Value *V) {
64  do {
65    if (const Operator *U = dyn_cast<Operator>(V)) {
66      // If we find a ptrtoint, we can transfer control back to the
67      // regular getUnderlyingObjectFromInt.
68      if (U->getOpcode() == Instruction::PtrToInt)
69        return U->getOperand(0);
70      // If we find an add of a constant, a multiplied value, or a phi, it's
71      // likely that the other operand will lead us to the base
72      // object. We don't have to worry about the case where the
73      // object address is somehow being computed by the multiply,
74      // because our callers only care when the result is an
75      // identifiable object.
76      if (U->getOpcode() != Instruction::Add ||
77          (!isa<ConstantInt>(U->getOperand(1)) &&
78           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
79           !isa<PHINode>(U->getOperand(1))))
80        return V;
81      V = U->getOperand(0);
82    } else {
83      return V;
84    }
85    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
86  } while (1);
87}
88
89/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
90/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
91static void getUnderlyingObjects(const Value *V,
92                                 SmallVectorImpl<Value *> &Objects) {
93  SmallPtrSet<const Value*, 16> Visited;
94  SmallVector<const Value *, 4> Working(1, V);
95  do {
96    V = Working.pop_back_val();
97
98    SmallVector<Value *, 4> Objs;
99    GetUnderlyingObjects(const_cast<Value *>(V), Objs);
100
101    for (SmallVector<Value *, 4>::iterator I = Objs.begin(), IE = Objs.end();
102         I != IE; ++I) {
103      V = *I;
104      if (!Visited.insert(V))
105        continue;
106      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
107        const Value *O =
108          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
109        if (O->getType()->isPointerTy()) {
110          Working.push_back(O);
111          continue;
112        }
113      }
114      Objects.push_back(const_cast<Value *>(V));
115    }
116  } while (!Working.empty());
117}
118
119/// getUnderlyingObjectsForInstr - If this machine instr has memory reference
120/// information and it can be tracked to a normal reference to a known
121/// object, return the Value for that object.
122static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
123              const MachineFrameInfo *MFI,
124              SmallVectorImpl<std::pair<const Value *, bool> > &Objects) {
125  if (!MI->hasOneMemOperand() ||
126      !(*MI->memoperands_begin())->getValue() ||
127      (*MI->memoperands_begin())->isVolatile())
128    return;
129
130  const Value *V = (*MI->memoperands_begin())->getValue();
131  if (!V)
132    return;
133
134  SmallVector<Value *, 4> Objs;
135  getUnderlyingObjects(V, Objs);
136
137  for (SmallVector<Value *, 4>::iterator I = Objs.begin(), IE = Objs.end();
138       I != IE; ++I) {
139    bool MayAlias = true;
140    V = *I;
141
142    if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
143      // For now, ignore PseudoSourceValues which may alias LLVM IR values
144      // because the code that uses this function has no way to cope with
145      // such aliases.
146
147      if (PSV->isAliased(MFI)) {
148        Objects.clear();
149        return;
150      }
151
152      MayAlias = PSV->mayAlias(MFI);
153    } else if (!isIdentifiedObject(V)) {
154      Objects.clear();
155      return;
156    }
157
158    Objects.push_back(std::make_pair(V, MayAlias));
159  }
160}
161
162void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
163  BB = bb;
164}
165
166void ScheduleDAGInstrs::finishBlock() {
167  // Subclasses should no longer refer to the old block.
168  BB = 0;
169}
170
171/// Initialize the DAG and common scheduler state for the current scheduling
172/// region. This does not actually create the DAG, only clears it. The
173/// scheduling driver may call BuildSchedGraph multiple times per scheduling
174/// region.
175void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
176                                    MachineBasicBlock::iterator begin,
177                                    MachineBasicBlock::iterator end,
178                                    unsigned endcount) {
179  assert(bb == BB && "startBlock should set BB");
180  RegionBegin = begin;
181  RegionEnd = end;
182  EndIndex = endcount;
183  MISUnitMap.clear();
184
185  ScheduleDAG::clearDAG();
186}
187
188/// Close the current scheduling region. Don't clear any state in case the
189/// driver wants to refer to the previous scheduling region.
190void ScheduleDAGInstrs::exitRegion() {
191  // Nothing to do.
192}
193
194/// addSchedBarrierDeps - Add dependencies from instructions in the current
195/// list of instructions being scheduled to scheduling barrier by adding
196/// the exit SU to the register defs and use list. This is because we want to
197/// make sure instructions which define registers that are either used by
198/// the terminator or are live-out are properly scheduled. This is
199/// especially important when the definition latency of the return value(s)
200/// are too high to be hidden by the branch or when the liveout registers
201/// used by instructions in the fallthrough block.
202void ScheduleDAGInstrs::addSchedBarrierDeps() {
203  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
204  ExitSU.setInstr(ExitMI);
205  bool AllDepKnown = ExitMI &&
206    (ExitMI->isCall() || ExitMI->isBarrier());
207  if (ExitMI && AllDepKnown) {
208    // If it's a call or a barrier, add dependencies on the defs and uses of
209    // instruction.
210    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
211      const MachineOperand &MO = ExitMI->getOperand(i);
212      if (!MO.isReg() || MO.isDef()) continue;
213      unsigned Reg = MO.getReg();
214      if (Reg == 0) continue;
215
216      if (TRI->isPhysicalRegister(Reg))
217        Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
218      else {
219        assert(!IsPostRA && "Virtual register encountered after regalloc.");
220        if (MO.readsReg()) // ignore undef operands
221          addVRegUseDeps(&ExitSU, i);
222      }
223    }
224  } else {
225    // For others, e.g. fallthrough, conditional branch, assume the exit
226    // uses all the registers that are livein to the successor blocks.
227    assert(Uses.empty() && "Uses in set before adding deps?");
228    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
229           SE = BB->succ_end(); SI != SE; ++SI)
230      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
231             E = (*SI)->livein_end(); I != E; ++I) {
232        unsigned Reg = *I;
233        if (!Uses.contains(Reg))
234          Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
235      }
236  }
237}
238
239/// MO is an operand of SU's instruction that defines a physical register. Add
240/// data dependencies from SU to any uses of the physical register.
241void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
242  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
243  assert(MO.isDef() && "expect physreg def");
244
245  // Ask the target if address-backscheduling is desirable, and if so how much.
246  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
247
248  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
249       Alias.isValid(); ++Alias) {
250    if (!Uses.contains(*Alias))
251      continue;
252    for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
253      SUnit *UseSU = I->SU;
254      if (UseSU == SU)
255        continue;
256
257      // Adjust the dependence latency using operand def/use information,
258      // then allow the target to perform its own adjustments.
259      int UseOp = I->OpIdx;
260      MachineInstr *RegUse = 0;
261      SDep Dep;
262      if (UseOp < 0)
263        Dep = SDep(SU, SDep::Artificial);
264      else {
265        // Set the hasPhysRegDefs only for physreg defs that have a use within
266        // the scheduling region.
267        SU->hasPhysRegDefs = true;
268        Dep = SDep(SU, SDep::Data, *Alias);
269        RegUse = UseSU->getInstr();
270      }
271      Dep.setLatency(
272        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
273                                         UseOp));
274
275      ST.adjustSchedDependency(SU, UseSU, Dep);
276      UseSU->addPred(Dep);
277    }
278  }
279}
280
281/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
282/// this SUnit to following instructions in the same scheduling region that
283/// depend the physical register referenced at OperIdx.
284void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
285  const MachineInstr *MI = SU->getInstr();
286  const MachineOperand &MO = MI->getOperand(OperIdx);
287
288  // Optionally add output and anti dependencies. For anti
289  // dependencies we use a latency of 0 because for a multi-issue
290  // target we want to allow the defining instruction to issue
291  // in the same cycle as the using instruction.
292  // TODO: Using a latency of 1 here for output dependencies assumes
293  //       there's no cost for reusing registers.
294  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
295  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
296       Alias.isValid(); ++Alias) {
297    if (!Defs.contains(*Alias))
298      continue;
299    for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
300      SUnit *DefSU = I->SU;
301      if (DefSU == &ExitSU)
302        continue;
303      if (DefSU != SU &&
304          (Kind != SDep::Output || !MO.isDead() ||
305           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
306        if (Kind == SDep::Anti)
307          DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
308        else {
309          SDep Dep(SU, Kind, /*Reg=*/*Alias);
310          Dep.setLatency(
311            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
312          DefSU->addPred(Dep);
313        }
314      }
315    }
316  }
317
318  if (!MO.isDef()) {
319    SU->hasPhysRegUses = true;
320    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
321    // retrieve the existing SUnits list for this register's uses.
322    // Push this SUnit on the use list.
323    Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
324  }
325  else {
326    addPhysRegDataDeps(SU, OperIdx);
327    unsigned Reg = MO.getReg();
328
329    // clear this register's use list
330    if (Uses.contains(Reg))
331      Uses.eraseAll(Reg);
332
333    if (!MO.isDead()) {
334      Defs.eraseAll(Reg);
335    } else if (SU->isCall) {
336      // Calls will not be reordered because of chain dependencies (see
337      // below). Since call operands are dead, calls may continue to be added
338      // to the DefList making dependence checking quadratic in the size of
339      // the block. Instead, we leave only one call at the back of the
340      // DefList.
341      Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
342      Reg2SUnitsMap::iterator B = P.first;
343      Reg2SUnitsMap::iterator I = P.second;
344      for (bool isBegin = I == B; !isBegin; /* empty */) {
345        isBegin = (--I) == B;
346        if (!I->SU->isCall)
347          break;
348        I = Defs.erase(I);
349      }
350    }
351
352    // Defs are pushed in the order they are visited and never reordered.
353    Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
354  }
355}
356
357/// addVRegDefDeps - Add register output and data dependencies from this SUnit
358/// to instructions that occur later in the same scheduling region if they read
359/// from or write to the virtual register defined at OperIdx.
360///
361/// TODO: Hoist loop induction variable increments. This has to be
362/// reevaluated. Generally, IV scheduling should be done before coalescing.
363void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
364  const MachineInstr *MI = SU->getInstr();
365  unsigned Reg = MI->getOperand(OperIdx).getReg();
366
367  // Singly defined vregs do not have output/anti dependencies.
368  // The current operand is a def, so we have at least one.
369  // Check here if there are any others...
370  if (MRI.hasOneDef(Reg))
371    return;
372
373  // Add output dependence to the next nearest def of this vreg.
374  //
375  // Unless this definition is dead, the output dependence should be
376  // transitively redundant with antidependencies from this definition's
377  // uses. We're conservative for now until we have a way to guarantee the uses
378  // are not eliminated sometime during scheduling. The output dependence edge
379  // is also useful if output latency exceeds def-use latency.
380  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
381  if (DefI == VRegDefs.end())
382    VRegDefs.insert(VReg2SUnit(Reg, SU));
383  else {
384    SUnit *DefSU = DefI->SU;
385    if (DefSU != SU && DefSU != &ExitSU) {
386      SDep Dep(SU, SDep::Output, Reg);
387      Dep.setLatency(
388        SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
389      DefSU->addPred(Dep);
390    }
391    DefI->SU = SU;
392  }
393}
394
395/// addVRegUseDeps - Add a register data dependency if the instruction that
396/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
397/// register antidependency from this SUnit to instructions that occur later in
398/// the same scheduling region if they write the virtual register.
399///
400/// TODO: Handle ExitSU "uses" properly.
401void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
402  MachineInstr *MI = SU->getInstr();
403  unsigned Reg = MI->getOperand(OperIdx).getReg();
404
405  // Lookup this operand's reaching definition.
406  assert(LIS && "vreg dependencies requires LiveIntervals");
407  LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
408  VNInfo *VNI = LRQ.valueIn();
409
410  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
411  assert(VNI && "No value to read by operand");
412  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
413  // Phis and other noninstructions (after coalescing) have a NULL Def.
414  if (Def) {
415    SUnit *DefSU = getSUnit(Def);
416    if (DefSU) {
417      // The reaching Def lives within this scheduling region.
418      // Create a data dependence.
419      SDep dep(DefSU, SDep::Data, Reg);
420      // Adjust the dependence latency using operand def/use information, then
421      // allow the target to perform its own adjustments.
422      int DefOp = Def->findRegisterDefOperandIdx(Reg);
423      dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
424
425      const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
426      ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
427      SU->addPred(dep);
428    }
429  }
430
431  // Add antidependence to the following def of the vreg it uses.
432  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
433  if (DefI != VRegDefs.end() && DefI->SU != SU)
434    DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
435}
436
437/// Return true if MI is an instruction we are unable to reason about
438/// (like a call or something with unmodeled side effects).
439static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
440  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
441      (MI->hasOrderedMemoryRef() &&
442       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
443    return true;
444  return false;
445}
446
447// This MI might have either incomplete info, or known to be unsafe
448// to deal with (i.e. volatile object).
449static inline bool isUnsafeMemoryObject(MachineInstr *MI,
450                                        const MachineFrameInfo *MFI) {
451  if (!MI || MI->memoperands_empty())
452    return true;
453  // We purposefully do no check for hasOneMemOperand() here
454  // in hope to trigger an assert downstream in order to
455  // finish implementation.
456  if ((*MI->memoperands_begin())->isVolatile() ||
457       MI->hasUnmodeledSideEffects())
458    return true;
459  const Value *V = (*MI->memoperands_begin())->getValue();
460  if (!V)
461    return true;
462
463  SmallVector<Value *, 4> Objs;
464  getUnderlyingObjects(V, Objs);
465  for (SmallVector<Value *, 4>::iterator I = Objs.begin(),
466       IE = Objs.end(); I != IE; ++I) {
467    V = *I;
468
469    if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
470      // Similarly to getUnderlyingObjectForInstr:
471      // For now, ignore PseudoSourceValues which may alias LLVM IR values
472      // because the code that uses this function has no way to cope with
473      // such aliases.
474      if (PSV->isAliased(MFI))
475        return true;
476    }
477
478    // Does this pointer refer to a distinct and identifiable object?
479    if (!isIdentifiedObject(V))
480      return true;
481  }
482
483  return false;
484}
485
486/// This returns true if the two MIs need a chain edge betwee them.
487/// If these are not even memory operations, we still may need
488/// chain deps between them. The question really is - could
489/// these two MIs be reordered during scheduling from memory dependency
490/// point of view.
491static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
492                             MachineInstr *MIa,
493                             MachineInstr *MIb) {
494  // Cover a trivial case - no edge is need to itself.
495  if (MIa == MIb)
496    return false;
497
498  if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
499    return true;
500
501  // If we are dealing with two "normal" loads, we do not need an edge
502  // between them - they could be reordered.
503  if (!MIa->mayStore() && !MIb->mayStore())
504    return false;
505
506  // To this point analysis is generic. From here on we do need AA.
507  if (!AA)
508    return true;
509
510  MachineMemOperand *MMOa = *MIa->memoperands_begin();
511  MachineMemOperand *MMOb = *MIb->memoperands_begin();
512
513  // FIXME: Need to handle multiple memory operands to support all targets.
514  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
515    llvm_unreachable("Multiple memory operands.");
516
517  // The following interface to AA is fashioned after DAGCombiner::isAlias
518  // and operates with MachineMemOperand offset with some important
519  // assumptions:
520  //   - LLVM fundamentally assumes flat address spaces.
521  //   - MachineOperand offset can *only* result from legalization and
522  //     cannot affect queries other than the trivial case of overlap
523  //     checking.
524  //   - These offsets never wrap and never step outside
525  //     of allocated objects.
526  //   - There should never be any negative offsets here.
527  //
528  // FIXME: Modify API to hide this math from "user"
529  // FIXME: Even before we go to AA we can reason locally about some
530  // memory objects. It can save compile time, and possibly catch some
531  // corner cases not currently covered.
532
533  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
534  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
535
536  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
537  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
538  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
539
540  AliasAnalysis::AliasResult AAResult = AA->alias(
541  AliasAnalysis::Location(MMOa->getValue(), Overlapa,
542                          MMOa->getTBAAInfo()),
543  AliasAnalysis::Location(MMOb->getValue(), Overlapb,
544                          MMOb->getTBAAInfo()));
545
546  return (AAResult != AliasAnalysis::NoAlias);
547}
548
549/// This recursive function iterates over chain deps of SUb looking for
550/// "latest" node that needs a chain edge to SUa.
551static unsigned
552iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
553                 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
554                 SmallPtrSet<const SUnit*, 16> &Visited) {
555  if (!SUa || !SUb || SUb == ExitSU)
556    return *Depth;
557
558  // Remember visited nodes.
559  if (!Visited.insert(SUb))
560      return *Depth;
561  // If there is _some_ dependency already in place, do not
562  // descend any further.
563  // TODO: Need to make sure that if that dependency got eliminated or ignored
564  // for any reason in the future, we would not violate DAG topology.
565  // Currently it does not happen, but makes an implicit assumption about
566  // future implementation.
567  //
568  // Independently, if we encounter node that is some sort of global
569  // object (like a call) we already have full set of dependencies to it
570  // and we can stop descending.
571  if (SUa->isSucc(SUb) ||
572      isGlobalMemoryObject(AA, SUb->getInstr()))
573    return *Depth;
574
575  // If we do need an edge, or we have exceeded depth budget,
576  // add that edge to the predecessors chain of SUb,
577  // and stop descending.
578  if (*Depth > 200 ||
579      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
580    SUb->addPred(SDep(SUa, SDep::MayAliasMem));
581    return *Depth;
582  }
583  // Track current depth.
584  (*Depth)++;
585  // Iterate over chain dependencies only.
586  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
587       I != E; ++I)
588    if (I->isCtrl())
589      iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
590  return *Depth;
591}
592
593/// This function assumes that "downward" from SU there exist
594/// tail/leaf of already constructed DAG. It iterates downward and
595/// checks whether SU can be aliasing any node dominated
596/// by it.
597static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
598                            SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
599                            unsigned LatencyToLoad) {
600  if (!SU)
601    return;
602
603  SmallPtrSet<const SUnit*, 16> Visited;
604  unsigned Depth = 0;
605
606  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
607       I != IE; ++I) {
608    if (SU == *I)
609      continue;
610    if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
611      SDep Dep(SU, SDep::MayAliasMem);
612      Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
613      (*I)->addPred(Dep);
614    }
615    // Now go through all the chain successors and iterate from them.
616    // Keep track of visited nodes.
617    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
618         JE = (*I)->Succs.end(); J != JE; ++J)
619      if (J->isCtrl())
620        iterateChainSucc (AA, MFI, SU, J->getSUnit(),
621                          ExitSU, &Depth, Visited);
622  }
623}
624
625/// Check whether two objects need a chain edge, if so, add it
626/// otherwise remember the rejected SU.
627static inline
628void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
629                         SUnit *SUa, SUnit *SUb,
630                         std::set<SUnit *> &RejectList,
631                         unsigned TrueMemOrderLatency = 0,
632                         bool isNormalMemory = false) {
633  // If this is a false dependency,
634  // do not add the edge, but rememeber the rejected node.
635  if (!EnableAASchedMI ||
636      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
637    SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
638    Dep.setLatency(TrueMemOrderLatency);
639    SUb->addPred(Dep);
640  }
641  else {
642    // Duplicate entries should be ignored.
643    RejectList.insert(SUb);
644    DEBUG(dbgs() << "\tReject chain dep between SU("
645          << SUa->NodeNum << ") and SU("
646          << SUb->NodeNum << ")\n");
647  }
648}
649
650/// Create an SUnit for each real instruction, numbered in top-down toplological
651/// order. The instruction order A < B, implies that no edge exists from B to A.
652///
653/// Map each real instruction to its SUnit.
654///
655/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
656/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
657/// instead of pointers.
658///
659/// MachineScheduler relies on initSUnits numbering the nodes by their order in
660/// the original instruction list.
661void ScheduleDAGInstrs::initSUnits() {
662  // We'll be allocating one SUnit for each real instruction in the region,
663  // which is contained within a basic block.
664  SUnits.reserve(BB->size());
665
666  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
667    MachineInstr *MI = I;
668    if (MI->isDebugValue())
669      continue;
670
671    SUnit *SU = newSUnit(MI);
672    MISUnitMap[MI] = SU;
673
674    SU->isCall = MI->isCall();
675    SU->isCommutable = MI->isCommutable();
676
677    // Assign the Latency field of SU using target-provided information.
678    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
679  }
680}
681
682/// If RegPressure is non null, compute register pressure as a side effect. The
683/// DAG builder is an efficient place to do it because it already visits
684/// operands.
685void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
686                                        RegPressureTracker *RPTracker) {
687  // Create an SUnit for each real instruction.
688  initSUnits();
689
690  // We build scheduling units by walking a block's instruction list from bottom
691  // to top.
692
693  // Remember where a generic side-effecting instruction is as we procede.
694  SUnit *BarrierChain = 0, *AliasChain = 0;
695
696  // Memory references to specific known memory locations are tracked
697  // so that they can be given more precise dependencies. We track
698  // separately the known memory locations that may alias and those
699  // that are known not to alias
700  MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
701  MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
702  std::set<SUnit*> RejectMemNodes;
703
704  // Remove any stale debug info; sometimes BuildSchedGraph is called again
705  // without emitting the info from the previous call.
706  DbgValues.clear();
707  FirstDbgValue = NULL;
708
709  assert(Defs.empty() && Uses.empty() &&
710         "Only BuildGraph should update Defs/Uses");
711  Defs.setUniverse(TRI->getNumRegs());
712  Uses.setUniverse(TRI->getNumRegs());
713
714  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
715  // FIXME: Allow SparseSet to reserve space for the creation of virtual
716  // registers during scheduling. Don't artificially inflate the Universe
717  // because we want to assert that vregs are not created during DAG building.
718  VRegDefs.setUniverse(MRI.getNumVirtRegs());
719
720  // Model data dependencies between instructions being scheduled and the
721  // ExitSU.
722  addSchedBarrierDeps();
723
724  // Walk the list of instructions, from bottom moving up.
725  MachineInstr *DbgMI = NULL;
726  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
727       MII != MIE; --MII) {
728    MachineInstr *MI = prior(MII);
729    if (MI && DbgMI) {
730      DbgValues.push_back(std::make_pair(DbgMI, MI));
731      DbgMI = NULL;
732    }
733
734    if (MI->isDebugValue()) {
735      DbgMI = MI;
736      continue;
737    }
738    if (RPTracker) {
739      RPTracker->recede();
740      assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
741    }
742
743    assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) &&
744           "Cannot schedule terminators or labels!");
745
746    SUnit *SU = MISUnitMap[MI];
747    assert(SU && "No SUnit mapped to this MI");
748
749    // Add register-based dependencies (data, anti, and output).
750    bool HasVRegDef = false;
751    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
752      const MachineOperand &MO = MI->getOperand(j);
753      if (!MO.isReg()) continue;
754      unsigned Reg = MO.getReg();
755      if (Reg == 0) continue;
756
757      if (TRI->isPhysicalRegister(Reg))
758        addPhysRegDeps(SU, j);
759      else {
760        assert(!IsPostRA && "Virtual register encountered!");
761        if (MO.isDef()) {
762          HasVRegDef = true;
763          addVRegDefDeps(SU, j);
764        }
765        else if (MO.readsReg()) // ignore undef operands
766          addVRegUseDeps(SU, j);
767      }
768    }
769    // If we haven't seen any uses in this scheduling region, create a
770    // dependence edge to ExitSU to model the live-out latency. This is required
771    // for vreg defs with no in-region use, and prefetches with no vreg def.
772    //
773    // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
774    // check currently relies on being called before adding chain deps.
775    if (SU->NumSuccs == 0 && SU->Latency > 1
776        && (HasVRegDef || MI->mayLoad())) {
777      SDep Dep(SU, SDep::Artificial);
778      Dep.setLatency(SU->Latency - 1);
779      ExitSU.addPred(Dep);
780    }
781
782    // Add chain dependencies.
783    // Chain dependencies used to enforce memory order should have
784    // latency of 0 (except for true dependency of Store followed by
785    // aliased Load... we estimate that with a single cycle of latency
786    // assuming the hardware will bypass)
787    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
788    // after stack slots are lowered to actual addresses.
789    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
790    // produce more precise dependence information.
791    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
792    if (isGlobalMemoryObject(AA, MI)) {
793      // Be conservative with these and add dependencies on all memory
794      // references, even those that are known to not alias.
795      for (MapVector<const Value *, SUnit *>::iterator I =
796             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
797        I->second->addPred(SDep(SU, SDep::Barrier));
798      }
799      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
800             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
801        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
802          SDep Dep(SU, SDep::Barrier);
803          Dep.setLatency(TrueMemOrderLatency);
804          I->second[i]->addPred(Dep);
805        }
806      }
807      // Add SU to the barrier chain.
808      if (BarrierChain)
809        BarrierChain->addPred(SDep(SU, SDep::Barrier));
810      BarrierChain = SU;
811      // This is a barrier event that acts as a pivotal node in the DAG,
812      // so it is safe to clear list of exposed nodes.
813      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
814                      TrueMemOrderLatency);
815      RejectMemNodes.clear();
816      NonAliasMemDefs.clear();
817      NonAliasMemUses.clear();
818
819      // fall-through
820    new_alias_chain:
821      // Chain all possibly aliasing memory references though SU.
822      if (AliasChain) {
823        unsigned ChainLatency = 0;
824        if (AliasChain->getInstr()->mayLoad())
825          ChainLatency = TrueMemOrderLatency;
826        addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes,
827                           ChainLatency);
828      }
829      AliasChain = SU;
830      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
831        addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
832                           TrueMemOrderLatency);
833      for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
834           E = AliasMemDefs.end(); I != E; ++I)
835        addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
836      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
837           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
838        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
839          addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes,
840                             TrueMemOrderLatency);
841      }
842      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
843                      TrueMemOrderLatency);
844      PendingLoads.clear();
845      AliasMemDefs.clear();
846      AliasMemUses.clear();
847    } else if (MI->mayStore()) {
848      SmallVector<std::pair<const Value *, bool>, 4> Objs;
849      getUnderlyingObjectsForInstr(MI, MFI, Objs);
850
851      if (Objs.empty()) {
852        // Treat all other stores conservatively.
853        goto new_alias_chain;
854      }
855
856      bool MayAlias = false;
857      for (SmallVector<std::pair<const Value *, bool>, 4>::iterator
858           K = Objs.begin(), KE = Objs.end(); K != KE; ++K) {
859        const Value *V = K->first;
860        bool ThisMayAlias = K->second;
861        if (ThisMayAlias)
862          MayAlias = true;
863
864        // A store to a specific PseudoSourceValue. Add precise dependencies.
865        // Record the def in MemDefs, first adding a dep if there is
866        // an existing def.
867        MapVector<const Value *, SUnit *>::iterator I =
868          ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
869        MapVector<const Value *, SUnit *>::iterator IE =
870          ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
871        if (I != IE) {
872          addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
873          I->second = SU;
874        } else {
875          if (ThisMayAlias)
876            AliasMemDefs[V] = SU;
877          else
878            NonAliasMemDefs[V] = SU;
879        }
880        // Handle the uses in MemUses, if there are any.
881        MapVector<const Value *, std::vector<SUnit *> >::iterator J =
882          ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
883        MapVector<const Value *, std::vector<SUnit *> >::iterator JE =
884          ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
885        if (J != JE) {
886          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
887            addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes,
888                               TrueMemOrderLatency, true);
889          J->second.clear();
890        }
891      }
892      if (MayAlias) {
893        // Add dependencies from all the PendingLoads, i.e. loads
894        // with no underlying object.
895        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
896          addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
897                             TrueMemOrderLatency);
898        // Add dependence on alias chain, if needed.
899        if (AliasChain)
900          addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
901        // But we also should check dependent instructions for the
902        // SU in question.
903        adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
904                        TrueMemOrderLatency);
905      }
906      // Add dependence on barrier chain, if needed.
907      // There is no point to check aliasing on barrier event. Even if
908      // SU and barrier _could_ be reordered, they should not. In addition,
909      // we have lost all RejectMemNodes below barrier.
910      if (BarrierChain)
911        BarrierChain->addPred(SDep(SU, SDep::Barrier));
912
913      if (!ExitSU.isPred(SU))
914        // Push store's up a bit to avoid them getting in between cmp
915        // and branches.
916        ExitSU.addPred(SDep(SU, SDep::Artificial));
917    } else if (MI->mayLoad()) {
918      bool MayAlias = true;
919      if (MI->isInvariantLoad(AA)) {
920        // Invariant load, no chain dependencies needed!
921      } else {
922        SmallVector<std::pair<const Value *, bool>, 4> Objs;
923        getUnderlyingObjectsForInstr(MI, MFI, Objs);
924
925        if (Objs.empty()) {
926          // A load with no underlying object. Depend on all
927          // potentially aliasing stores.
928          for (MapVector<const Value *, SUnit *>::iterator I =
929                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
930            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
931
932          PendingLoads.push_back(SU);
933          MayAlias = true;
934        } else {
935          MayAlias = false;
936        }
937
938        for (SmallVector<std::pair<const Value *, bool>, 4>::iterator
939             J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
940          const Value *V = J->first;
941          bool ThisMayAlias = J->second;
942
943          if (ThisMayAlias)
944            MayAlias = true;
945
946          // A load from a specific PseudoSourceValue. Add precise dependencies.
947          MapVector<const Value *, SUnit *>::iterator I =
948            ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
949          MapVector<const Value *, SUnit *>::iterator IE =
950            ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
951          if (I != IE)
952            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
953          if (ThisMayAlias)
954            AliasMemUses[V].push_back(SU);
955          else
956            NonAliasMemUses[V].push_back(SU);
957        }
958        if (MayAlias)
959          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
960        // Add dependencies on alias and barrier chains, if needed.
961        if (MayAlias && AliasChain)
962          addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
963        if (BarrierChain)
964          BarrierChain->addPred(SDep(SU, SDep::Barrier));
965      }
966    }
967  }
968  if (DbgMI)
969    FirstDbgValue = DbgMI;
970
971  Defs.clear();
972  Uses.clear();
973  VRegDefs.clear();
974  PendingLoads.clear();
975}
976
977void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
978#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
979  SU->getInstr()->dump();
980#endif
981}
982
983std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
984  std::string s;
985  raw_string_ostream oss(s);
986  if (SU == &EntrySU)
987    oss << "<entry>";
988  else if (SU == &ExitSU)
989    oss << "<exit>";
990  else
991    SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true);
992  return oss.str();
993}
994
995/// Return the basic block label. It is not necessarilly unique because a block
996/// contains multiple scheduling regions. But it is fine for visualization.
997std::string ScheduleDAGInstrs::getDAGName() const {
998  return "dag." + BB->getFullName();
999}
1000
1001//===----------------------------------------------------------------------===//
1002// SchedDFSResult Implementation
1003//===----------------------------------------------------------------------===//
1004
1005namespace llvm {
1006/// \brief Internal state used to compute SchedDFSResult.
1007class SchedDFSImpl {
1008  SchedDFSResult &R;
1009
1010  /// Join DAG nodes into equivalence classes by their subtree.
1011  IntEqClasses SubtreeClasses;
1012  /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1013  std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1014
1015  struct RootData {
1016    unsigned NodeID;
1017    unsigned ParentNodeID;  // Parent node (member of the parent subtree).
1018    unsigned SubInstrCount; // Instr count in this tree only, not children.
1019
1020    RootData(unsigned id): NodeID(id),
1021                           ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1022                           SubInstrCount(0) {}
1023
1024    unsigned getSparseSetIndex() const { return NodeID; }
1025  };
1026
1027  SparseSet<RootData> RootSet;
1028
1029public:
1030  SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1031    RootSet.setUniverse(R.DFSNodeData.size());
1032  }
1033
1034  /// Return true if this node been visited by the DFS traversal.
1035  ///
1036  /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1037  /// ID. Later, SubtreeID is updated but remains valid.
1038  bool isVisited(const SUnit *SU) const {
1039    return R.DFSNodeData[SU->NodeNum].SubtreeID
1040      != SchedDFSResult::InvalidSubtreeID;
1041  }
1042
1043  /// Initialize this node's instruction count. We don't need to flag the node
1044  /// visited until visitPostorder because the DAG cannot have cycles.
1045  void visitPreorder(const SUnit *SU) {
1046    R.DFSNodeData[SU->NodeNum].InstrCount =
1047      SU->getInstr()->isTransient() ? 0 : 1;
1048  }
1049
1050  /// Called once for each node after all predecessors are visited. Revisit this
1051  /// node's predecessors and potentially join them now that we know the ILP of
1052  /// the other predecessors.
1053  void visitPostorderNode(const SUnit *SU) {
1054    // Mark this node as the root of a subtree. It may be joined with its
1055    // successors later.
1056    R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1057    RootData RData(SU->NodeNum);
1058    RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1059
1060    // If any predecessors are still in their own subtree, they either cannot be
1061    // joined or are large enough to remain separate. If this parent node's
1062    // total instruction count is not greater than a child subtree by at least
1063    // the subtree limit, then try to join it now since splitting subtrees is
1064    // only useful if multiple high-pressure paths are possible.
1065    unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1066    for (SUnit::const_pred_iterator
1067           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1068      if (PI->getKind() != SDep::Data)
1069        continue;
1070      unsigned PredNum = PI->getSUnit()->NodeNum;
1071      if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1072        joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1073
1074      // Either link or merge the TreeData entry from the child to the parent.
1075      if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1076        // If the predecessor's parent is invalid, this is a tree edge and the
1077        // current node is the parent.
1078        if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1079          RootSet[PredNum].ParentNodeID = SU->NodeNum;
1080      }
1081      else if (RootSet.count(PredNum)) {
1082        // The predecessor is not a root, but is still in the root set. This
1083        // must be the new parent that it was just joined to. Note that
1084        // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1085        // set to the original parent.
1086        RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1087        RootSet.erase(PredNum);
1088      }
1089    }
1090    RootSet[SU->NodeNum] = RData;
1091  }
1092
1093  /// Called once for each tree edge after calling visitPostOrderNode on the
1094  /// predecessor. Increment the parent node's instruction count and
1095  /// preemptively join this subtree to its parent's if it is small enough.
1096  void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1097    R.DFSNodeData[Succ->NodeNum].InstrCount
1098      += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1099    joinPredSubtree(PredDep, Succ);
1100  }
1101
1102  /// Add a connection for cross edges.
1103  void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1104    ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1105  }
1106
1107  /// Set each node's subtree ID to the representative ID and record connections
1108  /// between trees.
1109  void finalize() {
1110    SubtreeClasses.compress();
1111    R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1112    assert(SubtreeClasses.getNumClasses() == RootSet.size()
1113           && "number of roots should match trees");
1114    for (SparseSet<RootData>::const_iterator
1115           RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1116      unsigned TreeID = SubtreeClasses[RI->NodeID];
1117      if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1118        R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1119      R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1120      // Note that SubInstrCount may be greater than InstrCount if we joined
1121      // subtrees across a cross edge. InstrCount will be attributed to the
1122      // original parent, while SubInstrCount will be attributed to the joined
1123      // parent.
1124    }
1125    R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1126    R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1127    DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1128    for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1129      R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1130      DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1131            << R.DFSNodeData[Idx].SubtreeID << '\n');
1132    }
1133    for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1134           I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1135         I != E; ++I) {
1136      unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1137      unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1138      if (PredTree == SuccTree)
1139        continue;
1140      unsigned Depth = I->first->getDepth();
1141      addConnection(PredTree, SuccTree, Depth);
1142      addConnection(SuccTree, PredTree, Depth);
1143    }
1144  }
1145
1146protected:
1147  /// Join the predecessor subtree with the successor that is its DFS
1148  /// parent. Apply some heuristics before joining.
1149  bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1150                       bool CheckLimit = true) {
1151    assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1152
1153    // Check if the predecessor is already joined.
1154    const SUnit *PredSU = PredDep.getSUnit();
1155    unsigned PredNum = PredSU->NodeNum;
1156    if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1157      return false;
1158
1159    // Four is the magic number of successors before a node is considered a
1160    // pinch point.
1161    unsigned NumDataSucs = 0;
1162    for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1163           SE = PredSU->Succs.end(); SI != SE; ++SI) {
1164      if (SI->getKind() == SDep::Data) {
1165        if (++NumDataSucs >= 4)
1166          return false;
1167      }
1168    }
1169    if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1170      return false;
1171    R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1172    SubtreeClasses.join(Succ->NodeNum, PredNum);
1173    return true;
1174  }
1175
1176  /// Called by finalize() to record a connection between trees.
1177  void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1178    if (!Depth)
1179      return;
1180
1181    do {
1182      SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1183        R.SubtreeConnections[FromTree];
1184      for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1185             I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1186        if (I->TreeID == ToTree) {
1187          I->Level = std::max(I->Level, Depth);
1188          return;
1189        }
1190      }
1191      Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1192      FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1193    } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1194  }
1195};
1196} // namespace llvm
1197
1198namespace {
1199/// \brief Manage the stack used by a reverse depth-first search over the DAG.
1200class SchedDAGReverseDFS {
1201  std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1202public:
1203  bool isComplete() const { return DFSStack.empty(); }
1204
1205  void follow(const SUnit *SU) {
1206    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1207  }
1208  void advance() { ++DFSStack.back().second; }
1209
1210  const SDep *backtrack() {
1211    DFSStack.pop_back();
1212    return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second);
1213  }
1214
1215  const SUnit *getCurr() const { return DFSStack.back().first; }
1216
1217  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1218
1219  SUnit::const_pred_iterator getPredEnd() const {
1220    return getCurr()->Preds.end();
1221  }
1222};
1223} // anonymous
1224
1225static bool hasDataSucc(const SUnit *SU) {
1226  for (SUnit::const_succ_iterator
1227         SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1228    if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1229      return true;
1230  }
1231  return false;
1232}
1233
1234/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1235/// search from this root.
1236void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1237  if (!IsBottomUp)
1238    llvm_unreachable("Top-down ILP metric is unimplemnted");
1239
1240  SchedDFSImpl Impl(*this);
1241  for (ArrayRef<SUnit>::const_iterator
1242         SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1243    const SUnit *SU = &*SI;
1244    if (Impl.isVisited(SU) || hasDataSucc(SU))
1245      continue;
1246
1247    SchedDAGReverseDFS DFS;
1248    Impl.visitPreorder(SU);
1249    DFS.follow(SU);
1250    for (;;) {
1251      // Traverse the leftmost path as far as possible.
1252      while (DFS.getPred() != DFS.getPredEnd()) {
1253        const SDep &PredDep = *DFS.getPred();
1254        DFS.advance();
1255        // Ignore non-data edges.
1256        if (PredDep.getKind() != SDep::Data
1257            || PredDep.getSUnit()->isBoundaryNode()) {
1258          continue;
1259        }
1260        // An already visited edge is a cross edge, assuming an acyclic DAG.
1261        if (Impl.isVisited(PredDep.getSUnit())) {
1262          Impl.visitCrossEdge(PredDep, DFS.getCurr());
1263          continue;
1264        }
1265        Impl.visitPreorder(PredDep.getSUnit());
1266        DFS.follow(PredDep.getSUnit());
1267      }
1268      // Visit the top of the stack in postorder and backtrack.
1269      const SUnit *Child = DFS.getCurr();
1270      const SDep *PredDep = DFS.backtrack();
1271      Impl.visitPostorderNode(Child);
1272      if (PredDep)
1273        Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1274      if (DFS.isComplete())
1275        break;
1276    }
1277  }
1278  Impl.finalize();
1279}
1280
1281/// The root of the given SubtreeID was just scheduled. For all subtrees
1282/// connected to this tree, record the depth of the connection so that the
1283/// nearest connected subtrees can be prioritized.
1284void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1285  for (SmallVectorImpl<Connection>::const_iterator
1286         I = SubtreeConnections[SubtreeID].begin(),
1287         E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1288    SubtreeConnectLevels[I->TreeID] =
1289      std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1290    DEBUG(dbgs() << "  Tree: " << I->TreeID
1291          << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1292  }
1293}
1294
1295#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1296void ILPValue::print(raw_ostream &OS) const {
1297  OS << InstrCount << " / " << Length << " = ";
1298  if (!Length)
1299    OS << "BADILP";
1300  else
1301    OS << format("%g", ((double)InstrCount / Length));
1302}
1303
1304void ILPValue::dump() const {
1305  dbgs() << *this << '\n';
1306}
1307
1308namespace llvm {
1309
1310raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1311  Val.print(OS);
1312  return OS;
1313}
1314
1315} // namespace llvm
1316#endif // !NDEBUG || LLVM_ENABLE_DUMP
1317