ScheduleDAGInstrs.cpp revision bfdf7f38523bd38ae0538861a2bfd8bdc46e5c33
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineMemOperand.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/PseudoSourceValue.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26#include "llvm/Target/TargetSubtarget.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/ADT/SmallSet.h"
30using namespace llvm;
31
32ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
33                                     const MachineLoopInfo &mli,
34                                     const MachineDominatorTree &mdt)
35  : ScheduleDAG(mf), MLI(mli), MDT(mdt), LoopRegs(MLI, MDT) {
36  MFI = mf.getFrameInfo();
37  DbgValueVec.clear();
38}
39
40/// Run - perform scheduling.
41///
42void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
43                            MachineBasicBlock::iterator begin,
44                            MachineBasicBlock::iterator end,
45                            unsigned endcount) {
46  BB = bb;
47  Begin = begin;
48  InsertPosIndex = endcount;
49
50  ScheduleDAG::Run(bb, end);
51}
52
53/// getUnderlyingObjectFromInt - This is the function that does the work of
54/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
55static const Value *getUnderlyingObjectFromInt(const Value *V) {
56  do {
57    if (const Operator *U = dyn_cast<Operator>(V)) {
58      // If we find a ptrtoint, we can transfer control back to the
59      // regular getUnderlyingObjectFromInt.
60      if (U->getOpcode() == Instruction::PtrToInt)
61        return U->getOperand(0);
62      // If we find an add of a constant or a multiplied value, it's
63      // likely that the other operand will lead us to the base
64      // object. We don't have to worry about the case where the
65      // object address is somehow being computed by the multiply,
66      // because our callers only care when the result is an
67      // identifibale object.
68      if (U->getOpcode() != Instruction::Add ||
69          (!isa<ConstantInt>(U->getOperand(1)) &&
70           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
71        return V;
72      V = U->getOperand(0);
73    } else {
74      return V;
75    }
76    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
77  } while (1);
78}
79
80/// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
81/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
82static const Value *getUnderlyingObject(const Value *V) {
83  // First just call Value::getUnderlyingObject to let it do what it does.
84  do {
85    V = V->getUnderlyingObject();
86    // If it found an inttoptr, use special code to continue climing.
87    if (Operator::getOpcode(V) != Instruction::IntToPtr)
88      break;
89    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
90    // If that succeeded in finding a pointer, continue the search.
91    if (!O->getType()->isPointerTy())
92      break;
93    V = O;
94  } while (1);
95  return V;
96}
97
98/// getUnderlyingObjectForInstr - If this machine instr has memory reference
99/// information and it can be tracked to a normal reference to a known
100/// object, return the Value for that object. Otherwise return null.
101static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
102                                                const MachineFrameInfo *MFI,
103                                                bool &MayAlias) {
104  MayAlias = true;
105  if (!MI->hasOneMemOperand() ||
106      !(*MI->memoperands_begin())->getValue() ||
107      (*MI->memoperands_begin())->isVolatile())
108    return 0;
109
110  const Value *V = (*MI->memoperands_begin())->getValue();
111  if (!V)
112    return 0;
113
114  V = getUnderlyingObject(V);
115  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
116    // For now, ignore PseudoSourceValues which may alias LLVM IR values
117    // because the code that uses this function has no way to cope with
118    // such aliases.
119    if (PSV->isAliased(MFI))
120      return 0;
121
122    MayAlias = PSV->mayAlias(MFI);
123    return V;
124  }
125
126  if (isIdentifiedObject(V))
127    return V;
128
129  return 0;
130}
131
132void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
133  if (MachineLoop *ML = MLI.getLoopFor(BB))
134    if (BB == ML->getLoopLatch()) {
135      MachineBasicBlock *Header = ML->getHeader();
136      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
137           E = Header->livein_end(); I != E; ++I)
138        LoopLiveInRegs.insert(*I);
139      LoopRegs.VisitLoop(ML);
140    }
141}
142
143void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
144  // We'll be allocating one SUnit for each instruction, plus one for
145  // the region exit node.
146  SUnits.reserve(BB->size());
147
148  // We build scheduling units by walking a block's instruction list from bottom
149  // to top.
150
151  // Remember where a generic side-effecting instruction is as we procede.
152  SUnit *BarrierChain = 0, *AliasChain = 0;
153
154  // Memory references to specific known memory locations are tracked
155  // so that they can be given more precise dependencies. We track
156  // separately the known memory locations that may alias and those
157  // that are known not to alias
158  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
159  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
160
161  // Keep track of dangling debug references to registers.
162  std::pair<MachineInstr*, unsigned>
163        DanglingDebugValue[TargetRegisterInfo::FirstVirtualRegister];
164
165  // Check to see if the scheduler cares about latencies.
166  bool UnitLatencies = ForceUnitLatencies();
167
168  // Ask the target if address-backscheduling is desirable, and if so how much.
169  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
170  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
171
172  // Remove any stale debug info; sometimes BuildSchedGraph is called again
173  // without emitting the info from the previous call.
174  DbgValueVec.clear();
175  std::memset(DanglingDebugValue, 0, sizeof(DanglingDebugValue));
176
177  // Walk the list of instructions, from bottom moving up.
178  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
179       MII != MIE; --MII) {
180    MachineInstr *MI = prior(MII);
181    // DBG_VALUE does not have SUnit's built, so just remember these for later
182    // reinsertion.
183    if (MI->isDebugValue()) {
184      if (MI->getNumOperands()==3 && MI->getOperand(0).isReg() &&
185          MI->getOperand(0).getReg())
186        DanglingDebugValue[MI->getOperand(0).getReg()] =
187             std::make_pair(MI, DbgValueVec.size());
188      DbgValueVec.push_back(MI);
189      continue;
190    }
191    const TargetInstrDesc &TID = MI->getDesc();
192    assert(!TID.isTerminator() && !MI->isLabel() &&
193           "Cannot schedule terminators or labels!");
194    // Create the SUnit for this MI.
195    SUnit *SU = NewSUnit(MI);
196
197    // Assign the Latency field of SU using target-provided information.
198    if (UnitLatencies)
199      SU->Latency = 1;
200    else
201      ComputeLatency(SU);
202
203    // Add register-based dependencies (data, anti, and output).
204    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
205      const MachineOperand &MO = MI->getOperand(j);
206      if (!MO.isReg()) continue;
207      unsigned Reg = MO.getReg();
208      if (Reg == 0) continue;
209
210      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
211
212      if (MO.isDef() && DanglingDebugValue[Reg].first!=0) {
213        SU->setDbgInstr(DanglingDebugValue[Reg].first);
214        DbgValueVec[DanglingDebugValue[Reg].second] = 0;
215        DanglingDebugValue[Reg] = std::make_pair((MachineInstr*)0, 0);
216      }
217
218      std::vector<SUnit *> &UseList = Uses[Reg];
219      std::vector<SUnit *> &DefList = Defs[Reg];
220      // Optionally add output and anti dependencies. For anti
221      // dependencies we use a latency of 0 because for a multi-issue
222      // target we want to allow the defining instruction to issue
223      // in the same cycle as the using instruction.
224      // TODO: Using a latency of 1 here for output dependencies assumes
225      //       there's no cost for reusing registers.
226      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
227      unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
228      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
229        SUnit *DefSU = DefList[i];
230        if (DefSU != SU &&
231            (Kind != SDep::Output || !MO.isDead() ||
232             !DefSU->getInstr()->registerDefIsDead(Reg)))
233          DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
234      }
235      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
236        std::vector<SUnit *> &DefList = Defs[*Alias];
237        for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
238          SUnit *DefSU = DefList[i];
239          if (DefSU != SU &&
240              (Kind != SDep::Output || !MO.isDead() ||
241               !DefSU->getInstr()->registerDefIsDead(*Alias)))
242            DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
243        }
244      }
245
246      if (MO.isDef()) {
247        // Add any data dependencies.
248        unsigned DataLatency = SU->Latency;
249        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
250          SUnit *UseSU = UseList[i];
251          if (UseSU != SU) {
252            unsigned LDataLatency = DataLatency;
253            // Optionally add in a special extra latency for nodes that
254            // feed addresses.
255            // TODO: Do this for register aliases too.
256            // TODO: Perhaps we should get rid of
257            // SpecialAddressLatency and just move this into
258            // adjustSchedDependency for the targets that care about
259            // it.
260            if (SpecialAddressLatency != 0 && !UnitLatencies) {
261              MachineInstr *UseMI = UseSU->getInstr();
262              const TargetInstrDesc &UseTID = UseMI->getDesc();
263              int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
264              assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
265              if ((UseTID.mayLoad() || UseTID.mayStore()) &&
266                  (unsigned)RegUseIndex < UseTID.getNumOperands() &&
267                  UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
268                LDataLatency += SpecialAddressLatency;
269            }
270            // Adjust the dependence latency using operand def/use
271            // information (if any), and then allow the target to
272            // perform its own adjustments.
273            const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
274            if (!UnitLatencies) {
275              ComputeOperandLatency(SU, UseSU, (SDep &)dep);
276              ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
277            }
278            UseSU->addPred(dep);
279          }
280        }
281        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
282          std::vector<SUnit *> &UseList = Uses[*Alias];
283          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
284            SUnit *UseSU = UseList[i];
285            if (UseSU != SU) {
286              const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
287              if (!UnitLatencies) {
288                ComputeOperandLatency(SU, UseSU, (SDep &)dep);
289                ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
290              }
291              UseSU->addPred(dep);
292            }
293          }
294        }
295
296        // If a def is going to wrap back around to the top of the loop,
297        // backschedule it.
298        if (!UnitLatencies && DefList.empty()) {
299          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
300          if (I != LoopRegs.Deps.end()) {
301            const MachineOperand *UseMO = I->second.first;
302            unsigned Count = I->second.second;
303            const MachineInstr *UseMI = UseMO->getParent();
304            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
305            const TargetInstrDesc &UseTID = UseMI->getDesc();
306            // TODO: If we knew the total depth of the region here, we could
307            // handle the case where the whole loop is inside the region but
308            // is large enough that the isScheduleHigh trick isn't needed.
309            if (UseMOIdx < UseTID.getNumOperands()) {
310              // Currently, we only support scheduling regions consisting of
311              // single basic blocks. Check to see if the instruction is in
312              // the same region by checking to see if it has the same parent.
313              if (UseMI->getParent() != MI->getParent()) {
314                unsigned Latency = SU->Latency;
315                if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
316                  Latency += SpecialAddressLatency;
317                // This is a wild guess as to the portion of the latency which
318                // will be overlapped by work done outside the current
319                // scheduling region.
320                Latency -= std::min(Latency, Count);
321                // Add the artifical edge.
322                ExitSU.addPred(SDep(SU, SDep::Order, Latency,
323                                    /*Reg=*/0, /*isNormalMemory=*/false,
324                                    /*isMustAlias=*/false,
325                                    /*isArtificial=*/true));
326              } else if (SpecialAddressLatency > 0 &&
327                         UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
328                // The entire loop body is within the current scheduling region
329                // and the latency of this operation is assumed to be greater
330                // than the latency of the loop.
331                // TODO: Recursively mark data-edge predecessors as
332                //       isScheduleHigh too.
333                SU->isScheduleHigh = true;
334              }
335            }
336            LoopRegs.Deps.erase(I);
337          }
338        }
339
340        UseList.clear();
341        if (!MO.isDead())
342          DefList.clear();
343        DefList.push_back(SU);
344      } else {
345        UseList.push_back(SU);
346      }
347    }
348
349    // Add chain dependencies.
350    // Chain dependencies used to enforce memory order should have
351    // latency of 0 (except for true dependency of Store followed by
352    // aliased Load... we estimate that with a single cycle of latency
353    // assuming the hardware will bypass)
354    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
355    // after stack slots are lowered to actual addresses.
356    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
357    // produce more precise dependence information.
358#define STORE_LOAD_LATENCY 1
359    unsigned TrueMemOrderLatency = 0;
360    if (TID.isCall() || TID.hasUnmodeledSideEffects() ||
361        (MI->hasVolatileMemoryRef() &&
362         (!TID.mayLoad() || !MI->isInvariantLoad(AA)))) {
363      // Be conservative with these and add dependencies on all memory
364      // references, even those that are known to not alias.
365      for (std::map<const Value *, SUnit *>::iterator I =
366             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
367        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
368      }
369      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
370             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
371        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
372          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
373      }
374      NonAliasMemDefs.clear();
375      NonAliasMemUses.clear();
376      // Add SU to the barrier chain.
377      if (BarrierChain)
378        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
379      BarrierChain = SU;
380
381      // fall-through
382    new_alias_chain:
383      // Chain all possibly aliasing memory references though SU.
384      if (AliasChain)
385        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
386      AliasChain = SU;
387      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
388        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
389      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
390           E = AliasMemDefs.end(); I != E; ++I) {
391        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
392      }
393      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
394           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
395        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
396          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
397      }
398      PendingLoads.clear();
399      AliasMemDefs.clear();
400      AliasMemUses.clear();
401    } else if (TID.mayStore()) {
402      bool MayAlias = true;
403      TrueMemOrderLatency = STORE_LOAD_LATENCY;
404      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
405        // A store to a specific PseudoSourceValue. Add precise dependencies.
406        // Record the def in MemDefs, first adding a dep if there is
407        // an existing def.
408        std::map<const Value *, SUnit *>::iterator I =
409          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
410        std::map<const Value *, SUnit *>::iterator IE =
411          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
412        if (I != IE) {
413          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
414                                  /*isNormalMemory=*/true));
415          I->second = SU;
416        } else {
417          if (MayAlias)
418            AliasMemDefs[V] = SU;
419          else
420            NonAliasMemDefs[V] = SU;
421        }
422        // Handle the uses in MemUses, if there are any.
423        std::map<const Value *, std::vector<SUnit *> >::iterator J =
424          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
425        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
426          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
427        if (J != JE) {
428          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
429            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
430                                       /*Reg=*/0, /*isNormalMemory=*/true));
431          J->second.clear();
432        }
433        if (MayAlias) {
434          // Add dependencies from all the PendingLoads, i.e. loads
435          // with no underlying object.
436          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
437            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
438          // Add dependence on alias chain, if needed.
439          if (AliasChain)
440            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
441        }
442        // Add dependence on barrier chain, if needed.
443        if (BarrierChain)
444          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
445      } else {
446        // Treat all other stores conservatively.
447        goto new_alias_chain;
448      }
449    } else if (TID.mayLoad()) {
450      bool MayAlias = true;
451      TrueMemOrderLatency = 0;
452      if (MI->isInvariantLoad(AA)) {
453        // Invariant load, no chain dependencies needed!
454      } else {
455        if (const Value *V =
456            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
457          // A load from a specific PseudoSourceValue. Add precise dependencies.
458          std::map<const Value *, SUnit *>::iterator I =
459            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
460          std::map<const Value *, SUnit *>::iterator IE =
461            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
462          if (I != IE)
463            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
464                                    /*isNormalMemory=*/true));
465          if (MayAlias)
466            AliasMemUses[V].push_back(SU);
467          else
468            NonAliasMemUses[V].push_back(SU);
469        } else {
470          // A load with no underlying object. Depend on all
471          // potentially aliasing stores.
472          for (std::map<const Value *, SUnit *>::iterator I =
473                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
474            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
475
476          PendingLoads.push_back(SU);
477          MayAlias = true;
478        }
479
480        // Add dependencies on alias and barrier chains, if needed.
481        if (MayAlias && AliasChain)
482          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
483        if (BarrierChain)
484          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
485      }
486    }
487  }
488
489  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
490    Defs[i].clear();
491    Uses[i].clear();
492  }
493  PendingLoads.clear();
494}
495
496void ScheduleDAGInstrs::FinishBlock() {
497  // Nothing to do.
498}
499
500void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
501  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
502
503  // Compute the latency for the node.
504  SU->Latency =
505    InstrItins.getStageLatency(SU->getInstr()->getDesc().getSchedClass());
506
507  // Simplistic target-independent heuristic: assume that loads take
508  // extra time.
509  if (InstrItins.isEmpty())
510    if (SU->getInstr()->getDesc().mayLoad())
511      SU->Latency += 2;
512}
513
514void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
515                                              SDep& dep) const {
516  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
517  if (InstrItins.isEmpty())
518    return;
519
520  // For a data dependency with a known register...
521  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
522    return;
523
524  const unsigned Reg = dep.getReg();
525
526  // ... find the definition of the register in the defining
527  // instruction
528  MachineInstr *DefMI = Def->getInstr();
529  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
530  if (DefIdx != -1) {
531    int DefCycle = InstrItins.getOperandCycle(DefMI->getDesc().getSchedClass(), DefIdx);
532    if (DefCycle >= 0) {
533      MachineInstr *UseMI = Use->getInstr();
534      const unsigned UseClass = UseMI->getDesc().getSchedClass();
535
536      // For all uses of the register, calculate the maxmimum latency
537      int Latency = -1;
538      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
539        const MachineOperand &MO = UseMI->getOperand(i);
540        if (!MO.isReg() || !MO.isUse())
541          continue;
542        unsigned MOReg = MO.getReg();
543        if (MOReg != Reg)
544          continue;
545
546        int UseCycle = InstrItins.getOperandCycle(UseClass, i);
547        if (UseCycle >= 0)
548          Latency = std::max(Latency, DefCycle - UseCycle + 1);
549      }
550
551      // If we found a latency, then replace the existing dependence latency.
552      if (Latency >= 0)
553        dep.setLatency(Latency);
554    }
555  }
556}
557
558void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
559  SU->getInstr()->dump();
560}
561
562std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
563  std::string s;
564  raw_string_ostream oss(s);
565  if (SU == &EntrySU)
566    oss << "<entry>";
567  else if (SU == &ExitSU)
568    oss << "<exit>";
569  else
570    SU->getInstr()->print(oss);
571  return oss.str();
572}
573
574// EmitSchedule - Emit the machine code in scheduled order.
575MachineBasicBlock *ScheduleDAGInstrs::
576EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) {
577  // For MachineInstr-based scheduling, we're rescheduling the instructions in
578  // the block, so start by removing them from the block.
579  while (Begin != InsertPos) {
580    MachineBasicBlock::iterator I = Begin;
581    ++Begin;
582    BB->remove(I);
583  }
584
585  // First reinsert any remaining debug_values; these are either constants,
586  // or refer to live-in registers.  The beginning of the block is the right
587  // place for the latter.  The former might reasonably be placed elsewhere
588  // using some kind of ordering algorithm, but right now it doesn't matter.
589  for (int i = DbgValueVec.size()-1; i>=0; --i)
590    if (DbgValueVec[i])
591      BB->insert(InsertPos, DbgValueVec[i]);
592
593  // Then re-insert them according to the given schedule.
594  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
595    SUnit *SU = Sequence[i];
596    if (!SU) {
597      // Null SUnit* is a noop.
598      EmitNoop();
599      continue;
600    }
601
602    BB->insert(InsertPos, SU->getInstr());
603    if (SU->getDbgInstr())
604      BB->insert(InsertPos, SU->getDbgInstr());
605  }
606
607  // Update the Begin iterator, as the first instruction in the block
608  // may have been scheduled later.
609  if (!DbgValueVec.empty()) {
610    for (int i = DbgValueVec.size()-1; i>=0; --i)
611      if (DbgValueVec[i]!=0) {
612        Begin = DbgValueVec[DbgValueVec.size()-1];
613        break;
614      }
615  } else if (!Sequence.empty())
616    Begin = Sequence[0]->getInstr();
617
618  DbgValueVec.clear();
619  return BB;
620}
621