ScheduleDAGInstrs.cpp revision c91317828c58e9780e7d6b6c127dc87cf61fa1f5
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineMemOperand.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/PseudoSourceValue.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26#include "llvm/Target/TargetSubtarget.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/ADT/SmallSet.h"
30using namespace llvm;
31
32ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
33                                     const MachineLoopInfo &mli,
34                                     const MachineDominatorTree &mdt)
35  : ScheduleDAG(mf), MLI(mli), MDT(mdt), LoopRegs(MLI, MDT) {
36  MFI = mf.getFrameInfo();
37}
38
39/// Run - perform scheduling.
40///
41void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
42                            MachineBasicBlock::iterator begin,
43                            MachineBasicBlock::iterator end,
44                            unsigned endcount) {
45  BB = bb;
46  Begin = begin;
47  InsertPosIndex = endcount;
48
49  ScheduleDAG::Run(bb, end);
50}
51
52/// getUnderlyingObjectFromInt - This is the function that does the work of
53/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
54static const Value *getUnderlyingObjectFromInt(const Value *V) {
55  do {
56    if (const Operator *U = dyn_cast<Operator>(V)) {
57      // If we find a ptrtoint, we can transfer control back to the
58      // regular getUnderlyingObjectFromInt.
59      if (U->getOpcode() == Instruction::PtrToInt)
60        return U->getOperand(0);
61      // If we find an add of a constant or a multiplied value, it's
62      // likely that the other operand will lead us to the base
63      // object. We don't have to worry about the case where the
64      // object address is somehow being computed by the multiply,
65      // because our callers only care when the result is an
66      // identifibale object.
67      if (U->getOpcode() != Instruction::Add ||
68          (!isa<ConstantInt>(U->getOperand(1)) &&
69           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
70        return V;
71      V = U->getOperand(0);
72    } else {
73      return V;
74    }
75    assert(isa<IntegerType>(V->getType()) && "Unexpected operand type!");
76  } while (1);
77}
78
79/// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
80/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
81static const Value *getUnderlyingObject(const Value *V) {
82  // First just call Value::getUnderlyingObject to let it do what it does.
83  do {
84    V = V->getUnderlyingObject();
85    // If it found an inttoptr, use special code to continue climing.
86    if (Operator::getOpcode(V) != Instruction::IntToPtr)
87      break;
88    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
89    // If that succeeded in finding a pointer, continue the search.
90    if (!isa<PointerType>(O->getType()))
91      break;
92    V = O;
93  } while (1);
94  return V;
95}
96
97/// getUnderlyingObjectForInstr - If this machine instr has memory reference
98/// information and it can be tracked to a normal reference to a known
99/// object, return the Value for that object. Otherwise return null.
100static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
101                                                const MachineFrameInfo *MFI) {
102  if (!MI->hasOneMemOperand() ||
103      !(*MI->memoperands_begin())->getValue() ||
104      (*MI->memoperands_begin())->isVolatile())
105    return 0;
106
107  const Value *V = (*MI->memoperands_begin())->getValue();
108  if (!V)
109    return 0;
110
111  V = getUnderlyingObject(V);
112  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
113    // For now, ignore PseudoSourceValues which may alias LLVM IR values
114    // because the code that uses this function has no way to cope with
115    // such aliases.
116    if (PSV->isAliased(MFI))
117      return 0;
118    return V;
119  }
120
121  if (isIdentifiedObject(V))
122    return V;
123
124  return 0;
125}
126
127void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
128  if (MachineLoop *ML = MLI.getLoopFor(BB))
129    if (BB == ML->getLoopLatch()) {
130      MachineBasicBlock *Header = ML->getHeader();
131      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
132           E = Header->livein_end(); I != E; ++I)
133        LoopLiveInRegs.insert(*I);
134      LoopRegs.VisitLoop(ML);
135    }
136}
137
138void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
139  // We'll be allocating one SUnit for each instruction, plus one for
140  // the region exit node.
141  SUnits.reserve(BB->size());
142
143  // We build scheduling units by walking a block's instruction list from bottom
144  // to top.
145
146  // Remember where a generic side-effecting instruction is as we procede. If
147  // ChainMMO is null, this is assumed to have arbitrary side-effects. If
148  // ChainMMO is non-null, then Chain makes only a single memory reference.
149  SUnit *Chain = 0;
150  MachineMemOperand *ChainMMO = 0;
151
152  // Memory references to specific known memory locations are tracked so that
153  // they can be given more precise dependencies.
154  std::map<const Value *, SUnit *> MemDefs;
155  std::map<const Value *, std::vector<SUnit *> > MemUses;
156
157  // Check to see if the scheduler cares about latencies.
158  bool UnitLatencies = ForceUnitLatencies();
159
160  // Ask the target if address-backscheduling is desirable, and if so how much.
161  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
162  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
163
164  // Walk the list of instructions, from bottom moving up.
165  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
166       MII != MIE; --MII) {
167    MachineInstr *MI = prior(MII);
168    const TargetInstrDesc &TID = MI->getDesc();
169    assert(!TID.isTerminator() && !MI->isLabel() &&
170           "Cannot schedule terminators or labels!");
171    // Create the SUnit for this MI.
172    SUnit *SU = NewSUnit(MI);
173
174    // Assign the Latency field of SU using target-provided information.
175    if (UnitLatencies)
176      SU->Latency = 1;
177    else
178      ComputeLatency(SU);
179
180    // Add register-based dependencies (data, anti, and output).
181    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
182      const MachineOperand &MO = MI->getOperand(j);
183      if (!MO.isReg()) continue;
184      unsigned Reg = MO.getReg();
185      if (Reg == 0) continue;
186
187      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
188      std::vector<SUnit *> &UseList = Uses[Reg];
189      std::vector<SUnit *> &DefList = Defs[Reg];
190      // Optionally add output and anti dependencies. For anti
191      // dependencies we use a latency of 0 because for a multi-issue
192      // target we want to allow the defining instruction to issue
193      // in the same cycle as the using instruction.
194      // TODO: Using a latency of 1 here for output dependencies assumes
195      //       there's no cost for reusing registers.
196      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
197      unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
198      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
199        SUnit *DefSU = DefList[i];
200        if (DefSU != SU &&
201            (Kind != SDep::Output || !MO.isDead() ||
202             !DefSU->getInstr()->registerDefIsDead(Reg)))
203          DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
204      }
205      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
206        std::vector<SUnit *> &DefList = Defs[*Alias];
207        for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
208          SUnit *DefSU = DefList[i];
209          if (DefSU != SU &&
210              (Kind != SDep::Output || !MO.isDead() ||
211               !DefSU->getInstr()->registerDefIsDead(Reg)))
212            DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
213        }
214      }
215
216      if (MO.isDef()) {
217        // Add any data dependencies.
218        unsigned DataLatency = SU->Latency;
219        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
220          SUnit *UseSU = UseList[i];
221          if (UseSU != SU) {
222            unsigned LDataLatency = DataLatency;
223            // Optionally add in a special extra latency for nodes that
224            // feed addresses.
225            // TODO: Do this for register aliases too.
226            // TODO: Perhaps we should get rid of
227            // SpecialAddressLatency and just move this into
228            // adjustSchedDependency for the targets that care about
229            // it.
230            if (SpecialAddressLatency != 0 && !UnitLatencies) {
231              MachineInstr *UseMI = UseSU->getInstr();
232              const TargetInstrDesc &UseTID = UseMI->getDesc();
233              int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
234              assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
235              if ((UseTID.mayLoad() || UseTID.mayStore()) &&
236                  (unsigned)RegUseIndex < UseTID.getNumOperands() &&
237                  UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
238                LDataLatency += SpecialAddressLatency;
239            }
240            // Adjust the dependence latency using operand def/use
241            // information (if any), and then allow the target to
242            // perform its own adjustments.
243            const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
244            if (!UnitLatencies) {
245              ComputeOperandLatency(SU, UseSU, (SDep &)dep);
246              ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
247            }
248            UseSU->addPred(dep);
249          }
250        }
251        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
252          std::vector<SUnit *> &UseList = Uses[*Alias];
253          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
254            SUnit *UseSU = UseList[i];
255            if (UseSU != SU) {
256              const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
257              if (!UnitLatencies) {
258                ComputeOperandLatency(SU, UseSU, (SDep &)dep);
259                ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
260              }
261              UseSU->addPred(dep);
262            }
263          }
264        }
265
266        // If a def is going to wrap back around to the top of the loop,
267        // backschedule it.
268        if (!UnitLatencies && DefList.empty()) {
269          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
270          if (I != LoopRegs.Deps.end()) {
271            const MachineOperand *UseMO = I->second.first;
272            unsigned Count = I->second.second;
273            const MachineInstr *UseMI = UseMO->getParent();
274            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
275            const TargetInstrDesc &UseTID = UseMI->getDesc();
276            // TODO: If we knew the total depth of the region here, we could
277            // handle the case where the whole loop is inside the region but
278            // is large enough that the isScheduleHigh trick isn't needed.
279            if (UseMOIdx < UseTID.getNumOperands()) {
280              // Currently, we only support scheduling regions consisting of
281              // single basic blocks. Check to see if the instruction is in
282              // the same region by checking to see if it has the same parent.
283              if (UseMI->getParent() != MI->getParent()) {
284                unsigned Latency = SU->Latency;
285                if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
286                  Latency += SpecialAddressLatency;
287                // This is a wild guess as to the portion of the latency which
288                // will be overlapped by work done outside the current
289                // scheduling region.
290                Latency -= std::min(Latency, Count);
291                // Add the artifical edge.
292                ExitSU.addPred(SDep(SU, SDep::Order, Latency,
293                                    /*Reg=*/0, /*isNormalMemory=*/false,
294                                    /*isMustAlias=*/false,
295                                    /*isArtificial=*/true));
296              } else if (SpecialAddressLatency > 0 &&
297                         UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
298                // The entire loop body is within the current scheduling region
299                // and the latency of this operation is assumed to be greater
300                // than the latency of the loop.
301                // TODO: Recursively mark data-edge predecessors as
302                //       isScheduleHigh too.
303                SU->isScheduleHigh = true;
304              }
305            }
306            LoopRegs.Deps.erase(I);
307          }
308        }
309
310        UseList.clear();
311        if (!MO.isDead())
312          DefList.clear();
313        DefList.push_back(SU);
314      } else {
315        UseList.push_back(SU);
316      }
317    }
318
319    // Add chain dependencies.
320    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
321    // after stack slots are lowered to actual addresses.
322    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
323    // produce more precise dependence information.
324    if (TID.isCall() || TID.hasUnmodeledSideEffects()) {
325    new_chain:
326      // This is the conservative case. Add dependencies on all memory
327      // references.
328      if (Chain)
329        Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
330      Chain = SU;
331      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
332        PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
333      PendingLoads.clear();
334      for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
335           E = MemDefs.end(); I != E; ++I) {
336        I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
337        I->second = SU;
338      }
339      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
340           MemUses.begin(), E = MemUses.end(); I != E; ++I) {
341        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
342          I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency));
343        I->second.clear();
344      }
345      // See if it is known to just have a single memory reference.
346      MachineInstr *ChainMI = Chain->getInstr();
347      const TargetInstrDesc &ChainTID = ChainMI->getDesc();
348      if (!ChainTID.isCall() &&
349          !ChainTID.hasUnmodeledSideEffects() &&
350          ChainMI->hasOneMemOperand() &&
351          !(*ChainMI->memoperands_begin())->isVolatile() &&
352          (*ChainMI->memoperands_begin())->getValue())
353        // We know that the Chain accesses one specific memory location.
354        ChainMMO = *ChainMI->memoperands_begin();
355      else
356        // Unknown memory accesses. Assume the worst.
357        ChainMMO = 0;
358    } else if (TID.mayStore()) {
359      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI)) {
360        // A store to a specific PseudoSourceValue. Add precise dependencies.
361        // Handle the def in MemDefs, if there is one.
362        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
363        if (I != MemDefs.end()) {
364          I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
365                                  /*isNormalMemory=*/true));
366          I->second = SU;
367        } else {
368          MemDefs[V] = SU;
369        }
370        // Handle the uses in MemUses, if there are any.
371        std::map<const Value *, std::vector<SUnit *> >::iterator J =
372          MemUses.find(V);
373        if (J != MemUses.end()) {
374          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
375            J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
376                                       /*isNormalMemory=*/true));
377          J->second.clear();
378        }
379        // Add dependencies from all the PendingLoads, since without
380        // memoperands we must assume they alias anything.
381        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
382          PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
383        // Add a general dependence too, if needed.
384        if (Chain)
385          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
386      } else
387        // Treat all other stores conservatively.
388        goto new_chain;
389    } else if (TID.mayLoad()) {
390      if (MI->isInvariantLoad(AA)) {
391        // Invariant load, no chain dependencies needed!
392      } else if (const Value *V = getUnderlyingObjectForInstr(MI, MFI)) {
393        // A load from a specific PseudoSourceValue. Add precise dependencies.
394        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
395        if (I != MemDefs.end())
396          I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
397                                  /*isNormalMemory=*/true));
398        MemUses[V].push_back(SU);
399
400        // Add a general dependence too, if needed.
401        if (Chain && (!ChainMMO ||
402                      (ChainMMO->isStore() || ChainMMO->isVolatile())))
403          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
404      } else if (MI->hasVolatileMemoryRef()) {
405        // Treat volatile loads conservatively. Note that this includes
406        // cases where memoperand information is unavailable.
407        goto new_chain;
408      } else {
409        // A normal load. Depend on the general chain, as well as on
410        // all stores. In the absense of MachineMemOperand information,
411        // we can't even assume that the load doesn't alias well-behaved
412        // memory locations.
413        if (Chain)
414          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
415        for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
416             E = MemDefs.end(); I != E; ++I)
417          I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
418        PendingLoads.push_back(SU);
419      }
420    }
421  }
422
423  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
424    Defs[i].clear();
425    Uses[i].clear();
426  }
427  PendingLoads.clear();
428}
429
430void ScheduleDAGInstrs::FinishBlock() {
431  // Nothing to do.
432}
433
434void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
435  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
436
437  // Compute the latency for the node.
438  SU->Latency =
439    InstrItins.getStageLatency(SU->getInstr()->getDesc().getSchedClass());
440
441  // Simplistic target-independent heuristic: assume that loads take
442  // extra time.
443  if (InstrItins.isEmpty())
444    if (SU->getInstr()->getDesc().mayLoad())
445      SU->Latency += 2;
446}
447
448void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
449                                              SDep& dep) const {
450  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
451  if (InstrItins.isEmpty())
452    return;
453
454  // For a data dependency with a known register...
455  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
456    return;
457
458  const unsigned Reg = dep.getReg();
459
460  // ... find the definition of the register in the defining
461  // instruction
462  MachineInstr *DefMI = Def->getInstr();
463  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
464  if (DefIdx != -1) {
465    int DefCycle = InstrItins.getOperandCycle(DefMI->getDesc().getSchedClass(), DefIdx);
466    if (DefCycle >= 0) {
467      MachineInstr *UseMI = Use->getInstr();
468      const unsigned UseClass = UseMI->getDesc().getSchedClass();
469
470      // For all uses of the register, calculate the maxmimum latency
471      int Latency = -1;
472      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
473        const MachineOperand &MO = UseMI->getOperand(i);
474        if (!MO.isReg() || !MO.isUse())
475          continue;
476        unsigned MOReg = MO.getReg();
477        if (MOReg != Reg)
478          continue;
479
480        int UseCycle = InstrItins.getOperandCycle(UseClass, i);
481        if (UseCycle >= 0)
482          Latency = std::max(Latency, DefCycle - UseCycle + 1);
483      }
484
485      // If we found a latency, then replace the existing dependence latency.
486      if (Latency >= 0)
487        dep.setLatency(Latency);
488    }
489  }
490}
491
492void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
493  SU->getInstr()->dump();
494}
495
496std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
497  std::string s;
498  raw_string_ostream oss(s);
499  if (SU == &EntrySU)
500    oss << "<entry>";
501  else if (SU == &ExitSU)
502    oss << "<exit>";
503  else
504    SU->getInstr()->print(oss);
505  return oss.str();
506}
507
508// EmitSchedule - Emit the machine code in scheduled order.
509MachineBasicBlock *ScheduleDAGInstrs::
510EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) {
511  // For MachineInstr-based scheduling, we're rescheduling the instructions in
512  // the block, so start by removing them from the block.
513  while (Begin != InsertPos) {
514    MachineBasicBlock::iterator I = Begin;
515    ++Begin;
516    BB->remove(I);
517  }
518
519  // Then re-insert them according to the given schedule.
520  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
521    SUnit *SU = Sequence[i];
522    if (!SU) {
523      // Null SUnit* is a noop.
524      EmitNoop();
525      continue;
526    }
527
528    BB->insert(InsertPos, SU->getInstr());
529  }
530
531  // Update the Begin iterator, as the first instruction in the block
532  // may have been scheduled later.
533  if (!Sequence.empty())
534    Begin = Sequence[0]->getInstr();
535
536  return BB;
537}
538