ScheduleDAGInstrs.cpp revision d3a7486ef351697450cfe87b6cce82a3eb906874
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "llvm/Operator.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineMemOperand.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/PseudoSourceValue.h"
24#include "llvm/CodeGen/ScheduleDAGInstrs.h"
25#include "llvm/MC/MCInstrItineraries.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetSubtargetInfo.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/ADT/SmallSet.h"
33using namespace llvm;
34
35ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
36                                     const MachineLoopInfo &mli,
37                                     const MachineDominatorTree &mdt,
38                                     bool IsPostRAFlag,
39                                     LiveIntervals *lis)
40  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
41    InstrItins(mf.getTarget().getInstrItineraryData()), LIS(lis),
42    IsPostRA(IsPostRAFlag), UnitLatencies(false), LoopRegs(MLI, MDT),
43    FirstDbgValue(0) {
44  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
45  DbgValues.clear();
46  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
47         "Virtual registers must be removed prior to PostRA scheduling");
48}
49
50/// getUnderlyingObjectFromInt - This is the function that does the work of
51/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
52static const Value *getUnderlyingObjectFromInt(const Value *V) {
53  do {
54    if (const Operator *U = dyn_cast<Operator>(V)) {
55      // If we find a ptrtoint, we can transfer control back to the
56      // regular getUnderlyingObjectFromInt.
57      if (U->getOpcode() == Instruction::PtrToInt)
58        return U->getOperand(0);
59      // If we find an add of a constant or a multiplied value, it's
60      // likely that the other operand will lead us to the base
61      // object. We don't have to worry about the case where the
62      // object address is somehow being computed by the multiply,
63      // because our callers only care when the result is an
64      // identifibale object.
65      if (U->getOpcode() != Instruction::Add ||
66          (!isa<ConstantInt>(U->getOperand(1)) &&
67           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
68        return V;
69      V = U->getOperand(0);
70    } else {
71      return V;
72    }
73    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
74  } while (1);
75}
76
77/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
78/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
79static const Value *getUnderlyingObject(const Value *V) {
80  // First just call Value::getUnderlyingObject to let it do what it does.
81  do {
82    V = GetUnderlyingObject(V);
83    // If it found an inttoptr, use special code to continue climing.
84    if (Operator::getOpcode(V) != Instruction::IntToPtr)
85      break;
86    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
87    // If that succeeded in finding a pointer, continue the search.
88    if (!O->getType()->isPointerTy())
89      break;
90    V = O;
91  } while (1);
92  return V;
93}
94
95/// getUnderlyingObjectForInstr - If this machine instr has memory reference
96/// information and it can be tracked to a normal reference to a known
97/// object, return the Value for that object. Otherwise return null.
98static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
99                                                const MachineFrameInfo *MFI,
100                                                bool &MayAlias) {
101  MayAlias = true;
102  if (!MI->hasOneMemOperand() ||
103      !(*MI->memoperands_begin())->getValue() ||
104      (*MI->memoperands_begin())->isVolatile())
105    return 0;
106
107  const Value *V = (*MI->memoperands_begin())->getValue();
108  if (!V)
109    return 0;
110
111  V = getUnderlyingObject(V);
112  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
113    // For now, ignore PseudoSourceValues which may alias LLVM IR values
114    // because the code that uses this function has no way to cope with
115    // such aliases.
116    if (PSV->isAliased(MFI))
117      return 0;
118
119    MayAlias = PSV->mayAlias(MFI);
120    return V;
121  }
122
123  if (isIdentifiedObject(V))
124    return V;
125
126  return 0;
127}
128
129void ScheduleDAGInstrs::startBlock(MachineBasicBlock *BB) {
130  LoopRegs.Deps.clear();
131  if (MachineLoop *ML = MLI.getLoopFor(BB))
132    if (BB == ML->getLoopLatch())
133      LoopRegs.VisitLoop(ML);
134}
135
136void ScheduleDAGInstrs::finishBlock() {
137  // Nothing to do.
138}
139
140/// Initialize the map with the number of registers.
141void Reg2SUnitsMap::setRegLimit(unsigned Limit) {
142  PhysRegSet.setUniverse(Limit);
143  SUnits.resize(Limit);
144}
145
146/// Clear the map without deallocating storage.
147void Reg2SUnitsMap::clear() {
148  for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
149    SUnits[*I].clear();
150  }
151  PhysRegSet.clear();
152}
153
154/// Initialize the DAG and common scheduler state for the current scheduling
155/// region. This does not actually create the DAG, only clears it. The
156/// scheduling driver may call BuildSchedGraph multiple times per scheduling
157/// region.
158void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
159                                    MachineBasicBlock::iterator begin,
160                                    MachineBasicBlock::iterator end,
161                                    unsigned endcount) {
162  BB = bb;
163  RegionBegin = begin;
164  RegionEnd = end;
165  EndIndex = endcount;
166  MISUnitMap.clear();
167
168  // Check to see if the scheduler cares about latencies.
169  UnitLatencies = forceUnitLatencies();
170
171  ScheduleDAG::clearDAG();
172}
173
174/// Close the current scheduling region. Don't clear any state in case the
175/// driver wants to refer to the previous scheduling region.
176void ScheduleDAGInstrs::exitRegion() {
177  // Nothing to do.
178}
179
180/// addSchedBarrierDeps - Add dependencies from instructions in the current
181/// list of instructions being scheduled to scheduling barrier by adding
182/// the exit SU to the register defs and use list. This is because we want to
183/// make sure instructions which define registers that are either used by
184/// the terminator or are live-out are properly scheduled. This is
185/// especially important when the definition latency of the return value(s)
186/// are too high to be hidden by the branch or when the liveout registers
187/// used by instructions in the fallthrough block.
188void ScheduleDAGInstrs::addSchedBarrierDeps() {
189  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
190  ExitSU.setInstr(ExitMI);
191  bool AllDepKnown = ExitMI &&
192    (ExitMI->isCall() || ExitMI->isBarrier());
193  if (ExitMI && AllDepKnown) {
194    // If it's a call or a barrier, add dependencies on the defs and uses of
195    // instruction.
196    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
197      const MachineOperand &MO = ExitMI->getOperand(i);
198      if (!MO.isReg() || MO.isDef()) continue;
199      unsigned Reg = MO.getReg();
200      if (Reg == 0) continue;
201
202      if (TRI->isPhysicalRegister(Reg))
203        Uses[Reg].push_back(&ExitSU);
204      else {
205        assert(!IsPostRA && "Virtual register encountered after regalloc.");
206        addVRegUseDeps(&ExitSU, i);
207      }
208    }
209  } else {
210    // For others, e.g. fallthrough, conditional branch, assume the exit
211    // uses all the registers that are livein to the successor blocks.
212    SmallSet<unsigned, 8> Seen;
213    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
214           SE = BB->succ_end(); SI != SE; ++SI)
215      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
216             E = (*SI)->livein_end(); I != E; ++I) {
217        unsigned Reg = *I;
218        if (Seen.insert(Reg))
219          Uses[Reg].push_back(&ExitSU);
220      }
221  }
222}
223
224/// MO is an operand of SU's instruction that defines a physical register. Add
225/// data dependencies from SU to any uses of the physical register.
226void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU,
227                                           const MachineOperand &MO) {
228  assert(MO.isDef() && "expect physreg def");
229
230  // Ask the target if address-backscheduling is desirable, and if so how much.
231  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
232  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
233  unsigned DataLatency = SU->Latency;
234
235  for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
236    if (!Uses.contains(*Alias))
237      continue;
238    std::vector<SUnit*> &UseList = Uses[*Alias];
239    for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
240      SUnit *UseSU = UseList[i];
241      if (UseSU == SU)
242        continue;
243      unsigned LDataLatency = DataLatency;
244      // Optionally add in a special extra latency for nodes that
245      // feed addresses.
246      // TODO: Perhaps we should get rid of
247      // SpecialAddressLatency and just move this into
248      // adjustSchedDependency for the targets that care about it.
249      if (SpecialAddressLatency != 0 && !UnitLatencies &&
250          UseSU != &ExitSU) {
251        MachineInstr *UseMI = UseSU->getInstr();
252        const MCInstrDesc &UseMCID = UseMI->getDesc();
253        int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias);
254        assert(RegUseIndex >= 0 && "UseMI doesn't use register!");
255        if (RegUseIndex >= 0 &&
256            (UseMI->mayLoad() || UseMI->mayStore()) &&
257            (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
258            UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
259          LDataLatency += SpecialAddressLatency;
260      }
261      // Adjust the dependence latency using operand def/use
262      // information (if any), and then allow the target to
263      // perform its own adjustments.
264      const SDep& dep = SDep(SU, SDep::Data, LDataLatency, *Alias);
265      if (!UnitLatencies) {
266        computeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
267        ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
268      }
269      UseSU->addPred(dep);
270    }
271  }
272}
273
274/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
275/// this SUnit to following instructions in the same scheduling region that
276/// depend the physical register referenced at OperIdx.
277void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
278  const MachineInstr *MI = SU->getInstr();
279  const MachineOperand &MO = MI->getOperand(OperIdx);
280
281  // Optionally add output and anti dependencies. For anti
282  // dependencies we use a latency of 0 because for a multi-issue
283  // target we want to allow the defining instruction to issue
284  // in the same cycle as the using instruction.
285  // TODO: Using a latency of 1 here for output dependencies assumes
286  //       there's no cost for reusing registers.
287  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
288  for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
289    if (!Defs.contains(*Alias))
290      continue;
291    std::vector<SUnit *> &DefList = Defs[*Alias];
292    for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
293      SUnit *DefSU = DefList[i];
294      if (DefSU == &ExitSU)
295        continue;
296      if (DefSU != SU &&
297          (Kind != SDep::Output || !MO.isDead() ||
298           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
299        if (Kind == SDep::Anti)
300          DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
301        else {
302          unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
303                                                 DefSU->getInstr());
304          DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
305        }
306      }
307    }
308  }
309
310  if (!MO.isDef()) {
311    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
312    // retrieve the existing SUnits list for this register's uses.
313    // Push this SUnit on the use list.
314    Uses[MO.getReg()].push_back(SU);
315  }
316  else {
317    addPhysRegDataDeps(SU, MO);
318
319    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
320    // retrieve the existing SUnits list for this register's defs.
321    std::vector<SUnit *> &DefList = Defs[MO.getReg()];
322
323    // If a def is going to wrap back around to the top of the loop,
324    // backschedule it.
325    if (!UnitLatencies && DefList.empty()) {
326      LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(MO.getReg());
327      if (I != LoopRegs.Deps.end()) {
328        const MachineOperand *UseMO = I->second.first;
329        unsigned Count = I->second.second;
330        const MachineInstr *UseMI = UseMO->getParent();
331        unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
332        const MCInstrDesc &UseMCID = UseMI->getDesc();
333        const TargetSubtargetInfo &ST =
334          TM.getSubtarget<TargetSubtargetInfo>();
335        unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
336        // TODO: If we knew the total depth of the region here, we could
337        // handle the case where the whole loop is inside the region but
338        // is large enough that the isScheduleHigh trick isn't needed.
339        if (UseMOIdx < UseMCID.getNumOperands()) {
340          // Currently, we only support scheduling regions consisting of
341          // single basic blocks. Check to see if the instruction is in
342          // the same region by checking to see if it has the same parent.
343          if (UseMI->getParent() != MI->getParent()) {
344            unsigned Latency = SU->Latency;
345            if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
346              Latency += SpecialAddressLatency;
347            // This is a wild guess as to the portion of the latency which
348            // will be overlapped by work done outside the current
349            // scheduling region.
350            Latency -= std::min(Latency, Count);
351            // Add the artificial edge.
352            ExitSU.addPred(SDep(SU, SDep::Order, Latency,
353                                /*Reg=*/0, /*isNormalMemory=*/false,
354                                /*isMustAlias=*/false,
355                                /*isArtificial=*/true));
356          } else if (SpecialAddressLatency > 0 &&
357                     UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
358            // The entire loop body is within the current scheduling region
359            // and the latency of this operation is assumed to be greater
360            // than the latency of the loop.
361            // TODO: Recursively mark data-edge predecessors as
362            //       isScheduleHigh too.
363            SU->isScheduleHigh = true;
364          }
365        }
366        LoopRegs.Deps.erase(I);
367      }
368    }
369
370    // clear this register's use list
371    if (Uses.contains(MO.getReg()))
372      Uses[MO.getReg()].clear();
373
374    if (!MO.isDead())
375      DefList.clear();
376
377    // Calls will not be reordered because of chain dependencies (see
378    // below). Since call operands are dead, calls may continue to be added
379    // to the DefList making dependence checking quadratic in the size of
380    // the block. Instead, we leave only one call at the back of the
381    // DefList.
382    if (SU->isCall) {
383      while (!DefList.empty() && DefList.back()->isCall)
384        DefList.pop_back();
385    }
386    // Defs are pushed in the order they are visited and never reordered.
387    DefList.push_back(SU);
388  }
389}
390
391/// addVRegDefDeps - Add register output and data dependencies from this SUnit
392/// to instructions that occur later in the same scheduling region if they read
393/// from or write to the virtual register defined at OperIdx.
394///
395/// TODO: Hoist loop induction variable increments. This has to be
396/// reevaluated. Generally, IV scheduling should be done before coalescing.
397void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
398  const MachineInstr *MI = SU->getInstr();
399  unsigned Reg = MI->getOperand(OperIdx).getReg();
400
401  // SSA defs do not have output/anti dependencies.
402  // The current operand is a def, so we have at least one.
403  if (llvm::next(MRI.def_begin(Reg)) == MRI.def_end())
404    return;
405
406  // Add output dependence to the next nearest def of this vreg.
407  //
408  // Unless this definition is dead, the output dependence should be
409  // transitively redundant with antidependencies from this definition's
410  // uses. We're conservative for now until we have a way to guarantee the uses
411  // are not eliminated sometime during scheduling. The output dependence edge
412  // is also useful if output latency exceeds def-use latency.
413  VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
414  if (DefI == VRegDefs.end())
415    VRegDefs.insert(VReg2SUnit(Reg, SU));
416  else {
417    SUnit *DefSU = DefI->SU;
418    if (DefSU != SU && DefSU != &ExitSU) {
419      unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
420                                                  DefSU->getInstr());
421      DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
422    }
423    DefI->SU = SU;
424  }
425}
426
427/// addVRegUseDeps - Add a register data dependency if the instruction that
428/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
429/// register antidependency from this SUnit to instructions that occur later in
430/// the same scheduling region if they write the virtual register.
431///
432/// TODO: Handle ExitSU "uses" properly.
433void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
434  MachineInstr *MI = SU->getInstr();
435  unsigned Reg = MI->getOperand(OperIdx).getReg();
436
437  // Lookup this operand's reaching definition.
438  assert(LIS && "vreg dependencies requires LiveIntervals");
439  SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot();
440  LiveInterval *LI = &LIS->getInterval(Reg);
441  VNInfo *VNI = LI->getVNInfoBefore(UseIdx);
442  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
443  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
444  // Phis and other noninstructions (after coalescing) have a NULL Def.
445  if (Def) {
446    SUnit *DefSU = getSUnit(Def);
447    if (DefSU) {
448      // The reaching Def lives within this scheduling region.
449      // Create a data dependence.
450      //
451      // TODO: Handle "special" address latencies cleanly.
452      const SDep &dep = SDep(DefSU, SDep::Data, DefSU->Latency, Reg);
453      if (!UnitLatencies) {
454        // Adjust the dependence latency using operand def/use information, then
455        // allow the target to perform its own adjustments.
456        computeOperandLatency(DefSU, SU, const_cast<SDep &>(dep));
457        const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
458        ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
459      }
460      SU->addPred(dep);
461    }
462  }
463
464  // Add antidependence to the following def of the vreg it uses.
465  VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
466  if (DefI != VRegDefs.end() && DefI->SU != SU)
467    DefI->SU->addPred(SDep(SU, SDep::Anti, 0, Reg));
468}
469
470/// Create an SUnit for each real instruction, numbered in top-down toplological
471/// order. The instruction order A < B, implies that no edge exists from B to A.
472///
473/// Map each real instruction to its SUnit.
474///
475/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
476/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
477/// instead of pointers.
478///
479/// MachineScheduler relies on initSUnits numbering the nodes by their order in
480/// the original instruction list.
481void ScheduleDAGInstrs::initSUnits() {
482  // We'll be allocating one SUnit for each real instruction in the region,
483  // which is contained within a basic block.
484  SUnits.reserve(BB->size());
485
486  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
487    MachineInstr *MI = I;
488    if (MI->isDebugValue())
489      continue;
490
491    SUnit *SU = newSUnit(MI);
492    MISUnitMap[MI] = SU;
493
494    SU->isCall = MI->isCall();
495    SU->isCommutable = MI->isCommutable();
496
497    // Assign the Latency field of SU using target-provided information.
498    if (UnitLatencies)
499      SU->Latency = 1;
500    else
501      computeLatency(SU);
502  }
503}
504
505void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA) {
506  // Create an SUnit for each real instruction.
507  initSUnits();
508
509  // We build scheduling units by walking a block's instruction list from bottom
510  // to top.
511
512  // Remember where a generic side-effecting instruction is as we procede.
513  SUnit *BarrierChain = 0, *AliasChain = 0;
514
515  // Memory references to specific known memory locations are tracked
516  // so that they can be given more precise dependencies. We track
517  // separately the known memory locations that may alias and those
518  // that are known not to alias
519  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
520  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
521
522  // Remove any stale debug info; sometimes BuildSchedGraph is called again
523  // without emitting the info from the previous call.
524  DbgValues.clear();
525  FirstDbgValue = NULL;
526
527  assert(Defs.empty() && Uses.empty() &&
528         "Only BuildGraph should update Defs/Uses");
529  Defs.setRegLimit(TRI->getNumRegs());
530  Uses.setRegLimit(TRI->getNumRegs());
531
532  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
533  // FIXME: Allow SparseSet to reserve space for the creation of virtual
534  // registers during scheduling. Don't artificially inflate the Universe
535  // because we want to assert that vregs are not created during DAG building.
536  VRegDefs.setUniverse(MRI.getNumVirtRegs());
537
538  // Model data dependencies between instructions being scheduled and the
539  // ExitSU.
540  addSchedBarrierDeps();
541
542  // Walk the list of instructions, from bottom moving up.
543  MachineInstr *PrevMI = NULL;
544  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
545       MII != MIE; --MII) {
546    MachineInstr *MI = prior(MII);
547    if (MI && PrevMI) {
548      DbgValues.push_back(std::make_pair(PrevMI, MI));
549      PrevMI = NULL;
550    }
551
552    if (MI->isDebugValue()) {
553      PrevMI = MI;
554      continue;
555    }
556
557    assert(!MI->isTerminator() && !MI->isLabel() &&
558           "Cannot schedule terminators or labels!");
559
560    SUnit *SU = MISUnitMap[MI];
561    assert(SU && "No SUnit mapped to this MI");
562
563    // Add register-based dependencies (data, anti, and output).
564    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
565      const MachineOperand &MO = MI->getOperand(j);
566      if (!MO.isReg()) continue;
567      unsigned Reg = MO.getReg();
568      if (Reg == 0) continue;
569
570      if (TRI->isPhysicalRegister(Reg))
571        addPhysRegDeps(SU, j);
572      else {
573        assert(!IsPostRA && "Virtual register encountered!");
574        if (MO.isDef())
575          addVRegDefDeps(SU, j);
576        else if (MO.readsReg()) // ignore undef operands
577          addVRegUseDeps(SU, j);
578      }
579    }
580
581    // Add chain dependencies.
582    // Chain dependencies used to enforce memory order should have
583    // latency of 0 (except for true dependency of Store followed by
584    // aliased Load... we estimate that with a single cycle of latency
585    // assuming the hardware will bypass)
586    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
587    // after stack slots are lowered to actual addresses.
588    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
589    // produce more precise dependence information.
590#define STORE_LOAD_LATENCY 1
591    unsigned TrueMemOrderLatency = 0;
592    if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
593        (MI->hasVolatileMemoryRef() &&
594         (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) {
595      // Be conservative with these and add dependencies on all memory
596      // references, even those that are known to not alias.
597      for (std::map<const Value *, SUnit *>::iterator I =
598             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
599        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
600      }
601      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
602             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
603        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
604          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
605      }
606      NonAliasMemDefs.clear();
607      NonAliasMemUses.clear();
608      // Add SU to the barrier chain.
609      if (BarrierChain)
610        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
611      BarrierChain = SU;
612
613      // fall-through
614    new_alias_chain:
615      // Chain all possibly aliasing memory references though SU.
616      if (AliasChain)
617        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
618      AliasChain = SU;
619      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
620        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
621      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
622           E = AliasMemDefs.end(); I != E; ++I) {
623        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
624      }
625      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
626           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
627        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
628          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
629      }
630      PendingLoads.clear();
631      AliasMemDefs.clear();
632      AliasMemUses.clear();
633    } else if (MI->mayStore()) {
634      bool MayAlias = true;
635      TrueMemOrderLatency = STORE_LOAD_LATENCY;
636      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
637        // A store to a specific PseudoSourceValue. Add precise dependencies.
638        // Record the def in MemDefs, first adding a dep if there is
639        // an existing def.
640        std::map<const Value *, SUnit *>::iterator I =
641          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
642        std::map<const Value *, SUnit *>::iterator IE =
643          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
644        if (I != IE) {
645          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
646                                  /*isNormalMemory=*/true));
647          I->second = SU;
648        } else {
649          if (MayAlias)
650            AliasMemDefs[V] = SU;
651          else
652            NonAliasMemDefs[V] = SU;
653        }
654        // Handle the uses in MemUses, if there are any.
655        std::map<const Value *, std::vector<SUnit *> >::iterator J =
656          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
657        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
658          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
659        if (J != JE) {
660          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
661            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
662                                       /*Reg=*/0, /*isNormalMemory=*/true));
663          J->second.clear();
664        }
665        if (MayAlias) {
666          // Add dependencies from all the PendingLoads, i.e. loads
667          // with no underlying object.
668          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
669            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
670          // Add dependence on alias chain, if needed.
671          if (AliasChain)
672            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
673        }
674        // Add dependence on barrier chain, if needed.
675        if (BarrierChain)
676          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
677      } else {
678        // Treat all other stores conservatively.
679        goto new_alias_chain;
680      }
681
682      if (!ExitSU.isPred(SU))
683        // Push store's up a bit to avoid them getting in between cmp
684        // and branches.
685        ExitSU.addPred(SDep(SU, SDep::Order, 0,
686                            /*Reg=*/0, /*isNormalMemory=*/false,
687                            /*isMustAlias=*/false,
688                            /*isArtificial=*/true));
689    } else if (MI->mayLoad()) {
690      bool MayAlias = true;
691      TrueMemOrderLatency = 0;
692      if (MI->isInvariantLoad(AA)) {
693        // Invariant load, no chain dependencies needed!
694      } else {
695        if (const Value *V =
696            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
697          // A load from a specific PseudoSourceValue. Add precise dependencies.
698          std::map<const Value *, SUnit *>::iterator I =
699            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
700          std::map<const Value *, SUnit *>::iterator IE =
701            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
702          if (I != IE)
703            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
704                                    /*isNormalMemory=*/true));
705          if (MayAlias)
706            AliasMemUses[V].push_back(SU);
707          else
708            NonAliasMemUses[V].push_back(SU);
709        } else {
710          // A load with no underlying object. Depend on all
711          // potentially aliasing stores.
712          for (std::map<const Value *, SUnit *>::iterator I =
713                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
714            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
715
716          PendingLoads.push_back(SU);
717          MayAlias = true;
718        }
719
720        // Add dependencies on alias and barrier chains, if needed.
721        if (MayAlias && AliasChain)
722          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
723        if (BarrierChain)
724          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
725      }
726    }
727  }
728  if (PrevMI)
729    FirstDbgValue = PrevMI;
730
731  Defs.clear();
732  Uses.clear();
733  VRegDefs.clear();
734  PendingLoads.clear();
735}
736
737void ScheduleDAGInstrs::computeLatency(SUnit *SU) {
738  // Compute the latency for the node.
739  if (!InstrItins || InstrItins->isEmpty()) {
740    SU->Latency = 1;
741
742    // Simplistic target-independent heuristic: assume that loads take
743    // extra time.
744    if (SU->getInstr()->mayLoad())
745      SU->Latency += 2;
746  } else {
747    SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
748  }
749}
750
751void ScheduleDAGInstrs::computeOperandLatency(SUnit *Def, SUnit *Use,
752                                              SDep& dep) const {
753  if (!InstrItins || InstrItins->isEmpty())
754    return;
755
756  // For a data dependency with a known register...
757  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
758    return;
759
760  const unsigned Reg = dep.getReg();
761
762  // ... find the definition of the register in the defining
763  // instruction
764  MachineInstr *DefMI = Def->getInstr();
765  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
766  if (DefIdx != -1) {
767    const MachineOperand &MO = DefMI->getOperand(DefIdx);
768    if (MO.isReg() && MO.isImplicit() &&
769        DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
770      // This is an implicit def, getOperandLatency() won't return the correct
771      // latency. e.g.
772      //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
773      //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
774      // What we want is to compute latency between def of %D6/%D7 and use of
775      // %Q3 instead.
776      unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
777      if (DefMI->getOperand(Op2).isReg())
778        DefIdx = Op2;
779    }
780    MachineInstr *UseMI = Use->getInstr();
781    // For all uses of the register, calculate the maxmimum latency
782    int Latency = -1;
783    if (UseMI) {
784      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
785        const MachineOperand &MO = UseMI->getOperand(i);
786        if (!MO.isReg() || !MO.isUse())
787          continue;
788        unsigned MOReg = MO.getReg();
789        if (MOReg != Reg)
790          continue;
791
792        int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
793                                              UseMI, i);
794        Latency = std::max(Latency, UseCycle);
795      }
796    } else {
797      // UseMI is null, then it must be a scheduling barrier.
798      if (!InstrItins || InstrItins->isEmpty())
799        return;
800      unsigned DefClass = DefMI->getDesc().getSchedClass();
801      Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
802    }
803
804    // If we found a latency, then replace the existing dependence latency.
805    if (Latency >= 0)
806      dep.setLatency(Latency);
807  }
808}
809
810void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
811  SU->getInstr()->dump();
812}
813
814std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
815  std::string s;
816  raw_string_ostream oss(s);
817  if (SU == &EntrySU)
818    oss << "<entry>";
819  else if (SU == &ExitSU)
820    oss << "<exit>";
821  else
822    SU->getInstr()->print(oss);
823  return oss.str();
824}
825
826/// Return the basic block label. It is not necessarilly unique because a block
827/// contains multiple scheduling regions. But it is fine for visualization.
828std::string ScheduleDAGInstrs::getDAGName() const {
829  return "dag." + BB->getFullName();
830}
831