ScheduleDAGInstrs.cpp revision e264f62ca09a8f65c87a46d562a4d0f9ec5d457e
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineMemOperand.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/PseudoSourceValue.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26#include "llvm/Target/TargetSubtarget.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/ADT/SmallSet.h"
30using namespace llvm;
31
32ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
33                                     const MachineLoopInfo &mli,
34                                     const MachineDominatorTree &mdt)
35  : ScheduleDAG(mf), MLI(mli), MDT(mdt), LoopRegs(MLI, MDT) {
36  MFI = mf.getFrameInfo();
37}
38
39/// Run - perform scheduling.
40///
41void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
42                            MachineBasicBlock::iterator begin,
43                            MachineBasicBlock::iterator end,
44                            unsigned endcount) {
45  BB = bb;
46  Begin = begin;
47  InsertPosIndex = endcount;
48
49  ScheduleDAG::Run(bb, end);
50}
51
52/// getUnderlyingObjectFromInt - This is the function that does the work of
53/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
54static const Value *getUnderlyingObjectFromInt(const Value *V) {
55  do {
56    if (const Operator *U = dyn_cast<Operator>(V)) {
57      // If we find a ptrtoint, we can transfer control back to the
58      // regular getUnderlyingObjectFromInt.
59      if (U->getOpcode() == Instruction::PtrToInt)
60        return U->getOperand(0);
61      // If we find an add of a constant or a multiplied value, it's
62      // likely that the other operand will lead us to the base
63      // object. We don't have to worry about the case where the
64      // object address is somehow being computed by the multiply,
65      // because our callers only care when the result is an
66      // identifibale object.
67      if (U->getOpcode() != Instruction::Add ||
68          (!isa<ConstantInt>(U->getOperand(1)) &&
69           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
70        return V;
71      V = U->getOperand(0);
72    } else {
73      return V;
74    }
75    assert(isa<IntegerType>(V->getType()) && "Unexpected operand type!");
76  } while (1);
77}
78
79/// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
80/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
81static const Value *getUnderlyingObject(const Value *V) {
82  // First just call Value::getUnderlyingObject to let it do what it does.
83  do {
84    V = V->getUnderlyingObject();
85    // If it found an inttoptr, use special code to continue climing.
86    if (Operator::getOpcode(V) != Instruction::IntToPtr)
87      break;
88    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
89    // If that succeeded in finding a pointer, continue the search.
90    if (!isa<PointerType>(O->getType()))
91      break;
92    V = O;
93  } while (1);
94  return V;
95}
96
97/// getUnderlyingObjectForInstr - If this machine instr has memory reference
98/// information and it can be tracked to a normal reference to a known
99/// object, return the Value for that object. Otherwise return null.
100static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
101                                                const MachineFrameInfo *MFI,
102                                                bool &MayAlias) {
103  MayAlias = true;
104  if (!MI->hasOneMemOperand() ||
105      !(*MI->memoperands_begin())->getValue() ||
106      (*MI->memoperands_begin())->isVolatile())
107    return 0;
108
109  const Value *V = (*MI->memoperands_begin())->getValue();
110  if (!V)
111    return 0;
112
113  V = getUnderlyingObject(V);
114  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
115    // For now, ignore PseudoSourceValues which may alias LLVM IR values
116    // because the code that uses this function has no way to cope with
117    // such aliases.
118    if (PSV->isAliased(MFI))
119      return 0;
120
121    MayAlias = PSV->mayAlias(MFI);
122    return V;
123  }
124
125  if (isIdentifiedObject(V))
126    return V;
127
128  return 0;
129}
130
131void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
132  if (MachineLoop *ML = MLI.getLoopFor(BB))
133    if (BB == ML->getLoopLatch()) {
134      MachineBasicBlock *Header = ML->getHeader();
135      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
136           E = Header->livein_end(); I != E; ++I)
137        LoopLiveInRegs.insert(*I);
138      LoopRegs.VisitLoop(ML);
139    }
140}
141
142void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
143  // We'll be allocating one SUnit for each instruction, plus one for
144  // the region exit node.
145  SUnits.reserve(BB->size());
146
147  // We build scheduling units by walking a block's instruction list from bottom
148  // to top.
149
150  // Remember where a generic side-effecting instruction is as we procede.
151  SUnit *BarrierChain = 0, *AliasChain = 0;
152
153  // Memory references to specific known memory locations are tracked
154  // so that they can be given more precise dependencies. We track
155  // separately the known memory locations that may alias and those
156  // that are known not to alias
157  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
158  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
159
160  // Check to see if the scheduler cares about latencies.
161  bool UnitLatencies = ForceUnitLatencies();
162
163  // Ask the target if address-backscheduling is desirable, and if so how much.
164  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
165  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
166
167  // Walk the list of instructions, from bottom moving up.
168  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
169       MII != MIE; --MII) {
170    MachineInstr *MI = prior(MII);
171    const TargetInstrDesc &TID = MI->getDesc();
172    assert(!TID.isTerminator() && !MI->isLabel() &&
173           "Cannot schedule terminators or labels!");
174    // Create the SUnit for this MI.
175    SUnit *SU = NewSUnit(MI);
176
177    // Assign the Latency field of SU using target-provided information.
178    if (UnitLatencies)
179      SU->Latency = 1;
180    else
181      ComputeLatency(SU);
182
183    // Add register-based dependencies (data, anti, and output).
184    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
185      const MachineOperand &MO = MI->getOperand(j);
186      if (!MO.isReg()) continue;
187      unsigned Reg = MO.getReg();
188      if (Reg == 0) continue;
189
190      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
191      std::vector<SUnit *> &UseList = Uses[Reg];
192      std::vector<SUnit *> &DefList = Defs[Reg];
193      // Optionally add output and anti dependencies. For anti
194      // dependencies we use a latency of 0 because for a multi-issue
195      // target we want to allow the defining instruction to issue
196      // in the same cycle as the using instruction.
197      // TODO: Using a latency of 1 here for output dependencies assumes
198      //       there's no cost for reusing registers.
199      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
200      unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
201      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
202        SUnit *DefSU = DefList[i];
203        if (DefSU != SU &&
204            (Kind != SDep::Output || !MO.isDead() ||
205             !DefSU->getInstr()->registerDefIsDead(Reg)))
206          DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
207      }
208      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
209        std::vector<SUnit *> &DefList = Defs[*Alias];
210        for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
211          SUnit *DefSU = DefList[i];
212          if (DefSU != SU &&
213              (Kind != SDep::Output || !MO.isDead() ||
214               !DefSU->getInstr()->registerDefIsDead(*Alias)))
215            DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
216        }
217      }
218
219      if (MO.isDef()) {
220        // Add any data dependencies.
221        unsigned DataLatency = SU->Latency;
222        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
223          SUnit *UseSU = UseList[i];
224          if (UseSU != SU) {
225            unsigned LDataLatency = DataLatency;
226            // Optionally add in a special extra latency for nodes that
227            // feed addresses.
228            // TODO: Do this for register aliases too.
229            // TODO: Perhaps we should get rid of
230            // SpecialAddressLatency and just move this into
231            // adjustSchedDependency for the targets that care about
232            // it.
233            if (SpecialAddressLatency != 0 && !UnitLatencies) {
234              MachineInstr *UseMI = UseSU->getInstr();
235              const TargetInstrDesc &UseTID = UseMI->getDesc();
236              int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
237              assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
238              if ((UseTID.mayLoad() || UseTID.mayStore()) &&
239                  (unsigned)RegUseIndex < UseTID.getNumOperands() &&
240                  UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
241                LDataLatency += SpecialAddressLatency;
242            }
243            // Adjust the dependence latency using operand def/use
244            // information (if any), and then allow the target to
245            // perform its own adjustments.
246            const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
247            if (!UnitLatencies) {
248              ComputeOperandLatency(SU, UseSU, (SDep &)dep);
249              ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
250            }
251            UseSU->addPred(dep);
252          }
253        }
254        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
255          std::vector<SUnit *> &UseList = Uses[*Alias];
256          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
257            SUnit *UseSU = UseList[i];
258            if (UseSU != SU) {
259              const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
260              if (!UnitLatencies) {
261                ComputeOperandLatency(SU, UseSU, (SDep &)dep);
262                ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
263              }
264              UseSU->addPred(dep);
265            }
266          }
267        }
268
269        // If a def is going to wrap back around to the top of the loop,
270        // backschedule it.
271        if (!UnitLatencies && DefList.empty()) {
272          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
273          if (I != LoopRegs.Deps.end()) {
274            const MachineOperand *UseMO = I->second.first;
275            unsigned Count = I->second.second;
276            const MachineInstr *UseMI = UseMO->getParent();
277            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
278            const TargetInstrDesc &UseTID = UseMI->getDesc();
279            // TODO: If we knew the total depth of the region here, we could
280            // handle the case where the whole loop is inside the region but
281            // is large enough that the isScheduleHigh trick isn't needed.
282            if (UseMOIdx < UseTID.getNumOperands()) {
283              // Currently, we only support scheduling regions consisting of
284              // single basic blocks. Check to see if the instruction is in
285              // the same region by checking to see if it has the same parent.
286              if (UseMI->getParent() != MI->getParent()) {
287                unsigned Latency = SU->Latency;
288                if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
289                  Latency += SpecialAddressLatency;
290                // This is a wild guess as to the portion of the latency which
291                // will be overlapped by work done outside the current
292                // scheduling region.
293                Latency -= std::min(Latency, Count);
294                // Add the artifical edge.
295                ExitSU.addPred(SDep(SU, SDep::Order, Latency,
296                                    /*Reg=*/0, /*isNormalMemory=*/false,
297                                    /*isMustAlias=*/false,
298                                    /*isArtificial=*/true));
299              } else if (SpecialAddressLatency > 0 &&
300                         UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
301                // The entire loop body is within the current scheduling region
302                // and the latency of this operation is assumed to be greater
303                // than the latency of the loop.
304                // TODO: Recursively mark data-edge predecessors as
305                //       isScheduleHigh too.
306                SU->isScheduleHigh = true;
307              }
308            }
309            LoopRegs.Deps.erase(I);
310          }
311        }
312
313        UseList.clear();
314        if (!MO.isDead())
315          DefList.clear();
316        DefList.push_back(SU);
317      } else {
318        UseList.push_back(SU);
319      }
320    }
321
322    // Add chain dependencies.
323    // Chain dependencies used to enforce memory order should have
324    // latency of 0 (except for true dependency of Store followed by
325    // aliased Load... we estimate that with a single cycle of latency
326    // assuming the hardware will bypass)
327    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
328    // after stack slots are lowered to actual addresses.
329    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
330    // produce more precise dependence information.
331#define STORE_LOAD_LATENCY 1
332    unsigned TrueMemOrderLatency = 0;
333    if (TID.isCall() || TID.hasUnmodeledSideEffects() ||
334        (MI->hasVolatileMemoryRef() &&
335         (!TID.mayLoad() || !MI->isInvariantLoad(AA)))) {
336      // Be conservative with these and add dependencies on all memory
337      // references, even those that are known to not alias.
338      for (std::map<const Value *, SUnit *>::iterator I =
339             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
340        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
341      }
342      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
343             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
344        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
345          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
346      }
347      NonAliasMemDefs.clear();
348      NonAliasMemUses.clear();
349      // Add SU to the barrier chain.
350      if (BarrierChain)
351        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
352      BarrierChain = SU;
353
354      // fall-through
355    new_alias_chain:
356      // Chain all possibly aliasing memory references though SU.
357      if (AliasChain)
358        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
359      AliasChain = SU;
360      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
361        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
362      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
363           E = AliasMemDefs.end(); I != E; ++I) {
364        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
365      }
366      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
367           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
368        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
369          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
370      }
371      PendingLoads.clear();
372      AliasMemDefs.clear();
373      AliasMemUses.clear();
374    } else if (TID.mayStore()) {
375      bool MayAlias = true;
376      TrueMemOrderLatency = STORE_LOAD_LATENCY;
377      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
378        // A store to a specific PseudoSourceValue. Add precise dependencies.
379        // Record the def in MemDefs, first adding a dep if there is
380        // an existing def.
381        std::map<const Value *, SUnit *>::iterator I =
382          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
383        std::map<const Value *, SUnit *>::iterator IE =
384          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
385        if (I != IE) {
386          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
387                                  /*isNormalMemory=*/true));
388          I->second = SU;
389        } else {
390          if (MayAlias)
391            AliasMemDefs[V] = SU;
392          else
393            NonAliasMemDefs[V] = SU;
394        }
395        // Handle the uses in MemUses, if there are any.
396        std::map<const Value *, std::vector<SUnit *> >::iterator J =
397          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
398        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
399          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
400        if (J != JE) {
401          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
402            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
403                                       /*Reg=*/0, /*isNormalMemory=*/true));
404          J->second.clear();
405        }
406        if (MayAlias) {
407          // Add dependencies from all the PendingLoads, i.e. loads
408          // with no underlying object.
409          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
410            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
411          // Add dependence on alias chain, if needed.
412          if (AliasChain)
413            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
414        }
415        // Add dependence on barrier chain, if needed.
416        if (BarrierChain)
417          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
418      } else {
419        // Treat all other stores conservatively.
420        goto new_alias_chain;
421      }
422    } else if (TID.mayLoad()) {
423      bool MayAlias = true;
424      TrueMemOrderLatency = 0;
425      if (MI->isInvariantLoad(AA)) {
426        // Invariant load, no chain dependencies needed!
427      } else {
428        if (const Value *V =
429            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
430          // A load from a specific PseudoSourceValue. Add precise dependencies.
431          std::map<const Value *, SUnit *>::iterator I =
432            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
433          std::map<const Value *, SUnit *>::iterator IE =
434            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
435          if (I != IE)
436            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
437                                    /*isNormalMemory=*/true));
438          if (MayAlias)
439            AliasMemUses[V].push_back(SU);
440          else
441            NonAliasMemUses[V].push_back(SU);
442        } else {
443          // A load with no underlying object. Depend on all
444          // potentially aliasing stores.
445          for (std::map<const Value *, SUnit *>::iterator I =
446                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
447            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
448
449          PendingLoads.push_back(SU);
450          MayAlias = true;
451        }
452
453        // Add dependencies on alias and barrier chains, if needed.
454        if (MayAlias && AliasChain)
455          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
456        if (BarrierChain)
457          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
458      }
459    }
460  }
461
462  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
463    Defs[i].clear();
464    Uses[i].clear();
465  }
466  PendingLoads.clear();
467}
468
469void ScheduleDAGInstrs::FinishBlock() {
470  // Nothing to do.
471}
472
473void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
474  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
475
476  // Compute the latency for the node.
477  SU->Latency =
478    InstrItins.getStageLatency(SU->getInstr()->getDesc().getSchedClass());
479
480  // Simplistic target-independent heuristic: assume that loads take
481  // extra time.
482  if (InstrItins.isEmpty())
483    if (SU->getInstr()->getDesc().mayLoad())
484      SU->Latency += 2;
485}
486
487void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
488                                              SDep& dep) const {
489  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
490  if (InstrItins.isEmpty())
491    return;
492
493  // For a data dependency with a known register...
494  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
495    return;
496
497  const unsigned Reg = dep.getReg();
498
499  // ... find the definition of the register in the defining
500  // instruction
501  MachineInstr *DefMI = Def->getInstr();
502  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
503  if (DefIdx != -1) {
504    int DefCycle = InstrItins.getOperandCycle(DefMI->getDesc().getSchedClass(), DefIdx);
505    if (DefCycle >= 0) {
506      MachineInstr *UseMI = Use->getInstr();
507      const unsigned UseClass = UseMI->getDesc().getSchedClass();
508
509      // For all uses of the register, calculate the maxmimum latency
510      int Latency = -1;
511      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
512        const MachineOperand &MO = UseMI->getOperand(i);
513        if (!MO.isReg() || !MO.isUse())
514          continue;
515        unsigned MOReg = MO.getReg();
516        if (MOReg != Reg)
517          continue;
518
519        int UseCycle = InstrItins.getOperandCycle(UseClass, i);
520        if (UseCycle >= 0)
521          Latency = std::max(Latency, DefCycle - UseCycle + 1);
522      }
523
524      // If we found a latency, then replace the existing dependence latency.
525      if (Latency >= 0)
526        dep.setLatency(Latency);
527    }
528  }
529}
530
531void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
532  SU->getInstr()->dump();
533}
534
535std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
536  std::string s;
537  raw_string_ostream oss(s);
538  if (SU == &EntrySU)
539    oss << "<entry>";
540  else if (SU == &ExitSU)
541    oss << "<exit>";
542  else
543    SU->getInstr()->print(oss);
544  return oss.str();
545}
546
547// EmitSchedule - Emit the machine code in scheduled order.
548MachineBasicBlock *ScheduleDAGInstrs::
549EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) {
550  // For MachineInstr-based scheduling, we're rescheduling the instructions in
551  // the block, so start by removing them from the block.
552  while (Begin != InsertPos) {
553    MachineBasicBlock::iterator I = Begin;
554    ++Begin;
555    BB->remove(I);
556  }
557
558  // Then re-insert them according to the given schedule.
559  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
560    SUnit *SU = Sequence[i];
561    if (!SU) {
562      // Null SUnit* is a noop.
563      EmitNoop();
564      continue;
565    }
566
567    BB->insert(InsertPos, SU->getInstr());
568  }
569
570  // Update the Begin iterator, as the first instruction in the block
571  // may have been scheduled later.
572  if (!Sequence.empty())
573    Begin = Sequence[0]->getInstr();
574
575  return BB;
576}
577