ScheduleDAGInstrs.cpp revision ec6906ba47d6d32cc817e85eddb87b320d6ae18c
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "ScheduleDAGInstrs.h"
17#include "llvm/Operator.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineMemOperand.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/PseudoSourceValue.h"
23#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetRegisterInfo.h"
26#include "llvm/Target/TargetSubtarget.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/ADT/SmallSet.h"
30using namespace llvm;
31
32ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
33                                     const MachineLoopInfo &mli,
34                                     const MachineDominatorTree &mdt)
35  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
36    InstrItins(mf.getTarget().getInstrItineraryData()),
37    Defs(TRI->getNumRegs()), Uses(TRI->getNumRegs()), LoopRegs(MLI, MDT) {
38  DbgValueVec.clear();
39}
40
41/// Run - perform scheduling.
42///
43void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
44                            MachineBasicBlock::iterator begin,
45                            MachineBasicBlock::iterator end,
46                            unsigned endcount) {
47  BB = bb;
48  Begin = begin;
49  InsertPosIndex = endcount;
50
51  ScheduleDAG::Run(bb, end);
52}
53
54/// getUnderlyingObjectFromInt - This is the function that does the work of
55/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
56static const Value *getUnderlyingObjectFromInt(const Value *V) {
57  do {
58    if (const Operator *U = dyn_cast<Operator>(V)) {
59      // If we find a ptrtoint, we can transfer control back to the
60      // regular getUnderlyingObjectFromInt.
61      if (U->getOpcode() == Instruction::PtrToInt)
62        return U->getOperand(0);
63      // If we find an add of a constant or a multiplied value, it's
64      // likely that the other operand will lead us to the base
65      // object. We don't have to worry about the case where the
66      // object address is somehow being computed by the multiply,
67      // because our callers only care when the result is an
68      // identifibale object.
69      if (U->getOpcode() != Instruction::Add ||
70          (!isa<ConstantInt>(U->getOperand(1)) &&
71           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
72        return V;
73      V = U->getOperand(0);
74    } else {
75      return V;
76    }
77    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
78  } while (1);
79}
80
81/// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
82/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
83static const Value *getUnderlyingObject(const Value *V) {
84  // First just call Value::getUnderlyingObject to let it do what it does.
85  do {
86    V = V->getUnderlyingObject();
87    // If it found an inttoptr, use special code to continue climing.
88    if (Operator::getOpcode(V) != Instruction::IntToPtr)
89      break;
90    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
91    // If that succeeded in finding a pointer, continue the search.
92    if (!O->getType()->isPointerTy())
93      break;
94    V = O;
95  } while (1);
96  return V;
97}
98
99/// getUnderlyingObjectForInstr - If this machine instr has memory reference
100/// information and it can be tracked to a normal reference to a known
101/// object, return the Value for that object. Otherwise return null.
102static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
103                                                const MachineFrameInfo *MFI,
104                                                bool &MayAlias) {
105  MayAlias = true;
106  if (!MI->hasOneMemOperand() ||
107      !(*MI->memoperands_begin())->getValue() ||
108      (*MI->memoperands_begin())->isVolatile())
109    return 0;
110
111  const Value *V = (*MI->memoperands_begin())->getValue();
112  if (!V)
113    return 0;
114
115  V = getUnderlyingObject(V);
116  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
117    // For now, ignore PseudoSourceValues which may alias LLVM IR values
118    // because the code that uses this function has no way to cope with
119    // such aliases.
120    if (PSV->isAliased(MFI))
121      return 0;
122
123    MayAlias = PSV->mayAlias(MFI);
124    return V;
125  }
126
127  if (isIdentifiedObject(V))
128    return V;
129
130  return 0;
131}
132
133void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
134  if (MachineLoop *ML = MLI.getLoopFor(BB))
135    if (BB == ML->getLoopLatch()) {
136      MachineBasicBlock *Header = ML->getHeader();
137      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
138           E = Header->livein_end(); I != E; ++I)
139        LoopLiveInRegs.insert(*I);
140      LoopRegs.VisitLoop(ML);
141    }
142}
143
144/// AddSchedBarrierDeps - Add dependencies from instructions in the current
145/// list of instructions being scheduled to scheduling barrier by adding
146/// the exit SU to the register defs and use list. This is because we want to
147/// make sure instructions which define registers that are either used by
148/// the terminator or are live-out are properly scheduled. This is
149/// especially important when the definition latency of the return value(s)
150/// are too high to be hidden by the branch or when the liveout registers
151/// used by instructions in the fallthrough block.
152void ScheduleDAGInstrs::AddSchedBarrierDeps() {
153  MachineInstr *ExitMI = InsertPos != BB->end() ? &*InsertPos : 0;
154  ExitSU.setInstr(ExitMI);
155  bool AllDepKnown = ExitMI &&
156    (ExitMI->getDesc().isCall() || ExitMI->getDesc().isBarrier());
157  if (ExitMI && AllDepKnown) {
158    // If it's a call or a barrier, add dependencies on the defs and uses of
159    // instruction.
160    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
161      const MachineOperand &MO = ExitMI->getOperand(i);
162      if (!MO.isReg() || MO.isDef()) continue;
163      unsigned Reg = MO.getReg();
164      if (Reg == 0) continue;
165
166      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
167      Uses[Reg].push_back(&ExitSU);
168    }
169  } else {
170    // For others, e.g. fallthrough, conditional branch, assume the exit
171    // uses all the registers.
172    for (int i = 0, e = TRI->getNumRegs(); i != e; ++i)
173      Uses[i].push_back(&ExitSU);
174  }
175}
176
177void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
178  // We'll be allocating one SUnit for each instruction, plus one for
179  // the region exit node.
180  SUnits.reserve(BB->size());
181
182  // We build scheduling units by walking a block's instruction list from bottom
183  // to top.
184
185  // Remember where a generic side-effecting instruction is as we procede.
186  SUnit *BarrierChain = 0, *AliasChain = 0;
187
188  // Memory references to specific known memory locations are tracked
189  // so that they can be given more precise dependencies. We track
190  // separately the known memory locations that may alias and those
191  // that are known not to alias
192  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
193  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
194
195  // Keep track of dangling debug references to registers.
196  std::vector<std::pair<MachineInstr*, unsigned> >
197    DanglingDebugValue(TRI->getNumRegs(),
198    std::make_pair(static_cast<MachineInstr*>(0), 0));
199
200  // Check to see if the scheduler cares about latencies.
201  bool UnitLatencies = ForceUnitLatencies();
202
203  // Ask the target if address-backscheduling is desirable, and if so how much.
204  const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
205  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
206
207  // Remove any stale debug info; sometimes BuildSchedGraph is called again
208  // without emitting the info from the previous call.
209  DbgValueVec.clear();
210
211  // Model data dependencies between instructions being scheduled and the
212  // ExitSU.
213  AddSchedBarrierDeps();
214
215  // Walk the list of instructions, from bottom moving up.
216  for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
217       MII != MIE; --MII) {
218    MachineInstr *MI = prior(MII);
219    // DBG_VALUE does not have SUnit's built, so just remember these for later
220    // reinsertion.
221    if (MI->isDebugValue()) {
222      if (MI->getNumOperands()==3 && MI->getOperand(0).isReg() &&
223          MI->getOperand(0).getReg())
224        DanglingDebugValue[MI->getOperand(0).getReg()] =
225             std::make_pair(MI, DbgValueVec.size());
226      DbgValueVec.push_back(MI);
227      continue;
228    }
229    const TargetInstrDesc &TID = MI->getDesc();
230    assert(!TID.isTerminator() && !MI->isLabel() &&
231           "Cannot schedule terminators or labels!");
232    // Create the SUnit for this MI.
233    SUnit *SU = NewSUnit(MI);
234
235    // Assign the Latency field of SU using target-provided information.
236    if (UnitLatencies)
237      SU->Latency = 1;
238    else
239      ComputeLatency(SU);
240
241    // Add register-based dependencies (data, anti, and output).
242    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
243      const MachineOperand &MO = MI->getOperand(j);
244      if (!MO.isReg()) continue;
245      unsigned Reg = MO.getReg();
246      if (Reg == 0) continue;
247
248      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
249
250      if (MO.isDef() && DanglingDebugValue[Reg].first!=0) {
251        SU->DbgInstrList.push_back(DanglingDebugValue[Reg].first);
252        DbgValueVec[DanglingDebugValue[Reg].second] = 0;
253        DanglingDebugValue[Reg] = std::make_pair((MachineInstr*)0, 0);
254      }
255
256      std::vector<SUnit *> &UseList = Uses[Reg];
257      std::vector<SUnit *> &DefList = Defs[Reg];
258      // Optionally add output and anti dependencies. For anti
259      // dependencies we use a latency of 0 because for a multi-issue
260      // target we want to allow the defining instruction to issue
261      // in the same cycle as the using instruction.
262      // TODO: Using a latency of 1 here for output dependencies assumes
263      //       there's no cost for reusing registers.
264      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
265      unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
266      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
267        SUnit *DefSU = DefList[i];
268        if (DefSU == &ExitSU)
269          continue;
270        if (DefSU != SU &&
271            (Kind != SDep::Output || !MO.isDead() ||
272             !DefSU->getInstr()->registerDefIsDead(Reg)))
273          DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
274      }
275      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
276        std::vector<SUnit *> &DefList = Defs[*Alias];
277        for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
278          SUnit *DefSU = DefList[i];
279          if (DefSU == &ExitSU)
280            continue;
281          if (DefSU != SU &&
282              (Kind != SDep::Output || !MO.isDead() ||
283               !DefSU->getInstr()->registerDefIsDead(*Alias)))
284            DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
285        }
286      }
287
288      if (MO.isDef()) {
289        // Add any data dependencies.
290        unsigned DataLatency = SU->Latency;
291        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
292          SUnit *UseSU = UseList[i];
293          if (UseSU == SU)
294            continue;
295          unsigned LDataLatency = DataLatency;
296          // Optionally add in a special extra latency for nodes that
297          // feed addresses.
298          // TODO: Do this for register aliases too.
299          // TODO: Perhaps we should get rid of
300          // SpecialAddressLatency and just move this into
301          // adjustSchedDependency for the targets that care about it.
302          if (SpecialAddressLatency != 0 && !UnitLatencies &&
303              UseSU != &ExitSU) {
304            MachineInstr *UseMI = UseSU->getInstr();
305            const TargetInstrDesc &UseTID = UseMI->getDesc();
306            int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
307            assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
308            if (RegUseIndex >= 0 &&
309                (UseTID.mayLoad() || UseTID.mayStore()) &&
310                (unsigned)RegUseIndex < UseTID.getNumOperands() &&
311                UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
312              LDataLatency += SpecialAddressLatency;
313          }
314          // Adjust the dependence latency using operand def/use
315          // information (if any), and then allow the target to
316          // perform its own adjustments.
317          const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
318          if (!UnitLatencies) {
319            ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
320            ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
321          }
322          UseSU->addPred(dep);
323        }
324        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
325          std::vector<SUnit *> &UseList = Uses[*Alias];
326          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
327            SUnit *UseSU = UseList[i];
328            if (UseSU == SU)
329              continue;
330            const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
331            if (!UnitLatencies) {
332              ComputeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
333              ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
334            }
335            UseSU->addPred(dep);
336          }
337        }
338
339        // If a def is going to wrap back around to the top of the loop,
340        // backschedule it.
341        if (!UnitLatencies && DefList.empty()) {
342          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
343          if (I != LoopRegs.Deps.end()) {
344            const MachineOperand *UseMO = I->second.first;
345            unsigned Count = I->second.second;
346            const MachineInstr *UseMI = UseMO->getParent();
347            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
348            const TargetInstrDesc &UseTID = UseMI->getDesc();
349            // TODO: If we knew the total depth of the region here, we could
350            // handle the case where the whole loop is inside the region but
351            // is large enough that the isScheduleHigh trick isn't needed.
352            if (UseMOIdx < UseTID.getNumOperands()) {
353              // Currently, we only support scheduling regions consisting of
354              // single basic blocks. Check to see if the instruction is in
355              // the same region by checking to see if it has the same parent.
356              if (UseMI->getParent() != MI->getParent()) {
357                unsigned Latency = SU->Latency;
358                if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
359                  Latency += SpecialAddressLatency;
360                // This is a wild guess as to the portion of the latency which
361                // will be overlapped by work done outside the current
362                // scheduling region.
363                Latency -= std::min(Latency, Count);
364                // Add the artifical edge.
365                ExitSU.addPred(SDep(SU, SDep::Order, Latency,
366                                    /*Reg=*/0, /*isNormalMemory=*/false,
367                                    /*isMustAlias=*/false,
368                                    /*isArtificial=*/true));
369              } else if (SpecialAddressLatency > 0 &&
370                         UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
371                // The entire loop body is within the current scheduling region
372                // and the latency of this operation is assumed to be greater
373                // than the latency of the loop.
374                // TODO: Recursively mark data-edge predecessors as
375                //       isScheduleHigh too.
376                SU->isScheduleHigh = true;
377              }
378            }
379            LoopRegs.Deps.erase(I);
380          }
381        }
382
383        UseList.clear();
384        if (!MO.isDead())
385          DefList.clear();
386        DefList.push_back(SU);
387      } else {
388        UseList.push_back(SU);
389      }
390    }
391
392    // Add chain dependencies.
393    // Chain dependencies used to enforce memory order should have
394    // latency of 0 (except for true dependency of Store followed by
395    // aliased Load... we estimate that with a single cycle of latency
396    // assuming the hardware will bypass)
397    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
398    // after stack slots are lowered to actual addresses.
399    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
400    // produce more precise dependence information.
401#define STORE_LOAD_LATENCY 1
402    unsigned TrueMemOrderLatency = 0;
403    if (TID.isCall() || TID.hasUnmodeledSideEffects() ||
404        (MI->hasVolatileMemoryRef() &&
405         (!TID.mayLoad() || !MI->isInvariantLoad(AA)))) {
406      // Be conservative with these and add dependencies on all memory
407      // references, even those that are known to not alias.
408      for (std::map<const Value *, SUnit *>::iterator I =
409             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
410        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
411      }
412      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
413             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
414        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
415          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
416      }
417      NonAliasMemDefs.clear();
418      NonAliasMemUses.clear();
419      // Add SU to the barrier chain.
420      if (BarrierChain)
421        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
422      BarrierChain = SU;
423
424      // fall-through
425    new_alias_chain:
426      // Chain all possibly aliasing memory references though SU.
427      if (AliasChain)
428        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
429      AliasChain = SU;
430      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
431        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
432      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
433           E = AliasMemDefs.end(); I != E; ++I) {
434        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
435      }
436      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
437           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
438        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
439          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
440      }
441      PendingLoads.clear();
442      AliasMemDefs.clear();
443      AliasMemUses.clear();
444    } else if (TID.mayStore()) {
445      bool MayAlias = true;
446      TrueMemOrderLatency = STORE_LOAD_LATENCY;
447      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
448        // A store to a specific PseudoSourceValue. Add precise dependencies.
449        // Record the def in MemDefs, first adding a dep if there is
450        // an existing def.
451        std::map<const Value *, SUnit *>::iterator I =
452          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
453        std::map<const Value *, SUnit *>::iterator IE =
454          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
455        if (I != IE) {
456          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
457                                  /*isNormalMemory=*/true));
458          I->second = SU;
459        } else {
460          if (MayAlias)
461            AliasMemDefs[V] = SU;
462          else
463            NonAliasMemDefs[V] = SU;
464        }
465        // Handle the uses in MemUses, if there are any.
466        std::map<const Value *, std::vector<SUnit *> >::iterator J =
467          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
468        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
469          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
470        if (J != JE) {
471          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
472            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
473                                       /*Reg=*/0, /*isNormalMemory=*/true));
474          J->second.clear();
475        }
476        if (MayAlias) {
477          // Add dependencies from all the PendingLoads, i.e. loads
478          // with no underlying object.
479          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
480            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
481          // Add dependence on alias chain, if needed.
482          if (AliasChain)
483            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
484        }
485        // Add dependence on barrier chain, if needed.
486        if (BarrierChain)
487          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
488      } else {
489        // Treat all other stores conservatively.
490        goto new_alias_chain;
491      }
492
493      if (!ExitSU.isPred(SU))
494        // Push store's up a bit to avoid them getting in between cmp
495        // and branches.
496        ExitSU.addPred(SDep(SU, SDep::Order, 0,
497                            /*Reg=*/0, /*isNormalMemory=*/false,
498                            /*isMustAlias=*/false,
499                            /*isArtificial=*/true));
500    } else if (TID.mayLoad()) {
501      bool MayAlias = true;
502      TrueMemOrderLatency = 0;
503      if (MI->isInvariantLoad(AA)) {
504        // Invariant load, no chain dependencies needed!
505      } else {
506        if (const Value *V =
507            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
508          // A load from a specific PseudoSourceValue. Add precise dependencies.
509          std::map<const Value *, SUnit *>::iterator I =
510            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
511          std::map<const Value *, SUnit *>::iterator IE =
512            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
513          if (I != IE)
514            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
515                                    /*isNormalMemory=*/true));
516          if (MayAlias)
517            AliasMemUses[V].push_back(SU);
518          else
519            NonAliasMemUses[V].push_back(SU);
520        } else {
521          // A load with no underlying object. Depend on all
522          // potentially aliasing stores.
523          for (std::map<const Value *, SUnit *>::iterator I =
524                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
525            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
526
527          PendingLoads.push_back(SU);
528          MayAlias = true;
529        }
530
531        // Add dependencies on alias and barrier chains, if needed.
532        if (MayAlias && AliasChain)
533          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
534        if (BarrierChain)
535          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
536      }
537    }
538  }
539
540  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
541    Defs[i].clear();
542    Uses[i].clear();
543  }
544  PendingLoads.clear();
545}
546
547void ScheduleDAGInstrs::FinishBlock() {
548  // Nothing to do.
549}
550
551void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
552  // Compute the latency for the node.
553  if (!InstrItins || InstrItins->isEmpty()) {
554    SU->Latency = 1;
555
556    // Simplistic target-independent heuristic: assume that loads take
557    // extra time.
558    if (SU->getInstr()->getDesc().mayLoad())
559      SU->Latency += 2;
560  } else
561    SU->Latency =
562      InstrItins->getStageLatency(SU->getInstr()->getDesc().getSchedClass());
563}
564
565void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
566                                              SDep& dep) const {
567  if (!InstrItins || InstrItins->isEmpty())
568    return;
569
570  // For a data dependency with a known register...
571  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
572    return;
573
574  const unsigned Reg = dep.getReg();
575
576  // ... find the definition of the register in the defining
577  // instruction
578  MachineInstr *DefMI = Def->getInstr();
579  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
580  if (DefIdx != -1) {
581    const MachineOperand &MO = DefMI->getOperand(DefIdx);
582    if (MO.isReg() && MO.isImplicit() &&
583        DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
584      // This is an implicit def, getOperandLatency() won't return the correct
585      // latency. e.g.
586      //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
587      //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
588      // What we want is to compute latency between def of %D6/%D7 and use of
589      // %Q3 instead.
590      DefIdx = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
591    }
592    MachineInstr *UseMI = Use->getInstr();
593    // For all uses of the register, calculate the maxmimum latency
594    int Latency = -1;
595    if (UseMI) {
596      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
597        const MachineOperand &MO = UseMI->getOperand(i);
598        if (!MO.isReg() || !MO.isUse())
599          continue;
600        unsigned MOReg = MO.getReg();
601        if (MOReg != Reg)
602          continue;
603
604        int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
605                                              UseMI, i);
606        Latency = std::max(Latency, UseCycle);
607      }
608    } else {
609      // UseMI is null, then it must be a scheduling barrier.
610      if (!InstrItins || InstrItins->isEmpty())
611        return;
612      unsigned DefClass = DefMI->getDesc().getSchedClass();
613      Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
614    }
615
616    // If we found a latency, then replace the existing dependence latency.
617    if (Latency >= 0)
618      dep.setLatency(Latency);
619  }
620}
621
622void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
623  SU->getInstr()->dump();
624}
625
626std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
627  std::string s;
628  raw_string_ostream oss(s);
629  if (SU == &EntrySU)
630    oss << "<entry>";
631  else if (SU == &ExitSU)
632    oss << "<exit>";
633  else
634    SU->getInstr()->print(oss);
635  return oss.str();
636}
637
638// EmitSchedule - Emit the machine code in scheduled order.
639MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
640  // For MachineInstr-based scheduling, we're rescheduling the instructions in
641  // the block, so start by removing them from the block.
642  while (Begin != InsertPos) {
643    MachineBasicBlock::iterator I = Begin;
644    ++Begin;
645    BB->remove(I);
646  }
647
648  // First reinsert any remaining debug_values; these are either constants,
649  // or refer to live-in registers.  The beginning of the block is the right
650  // place for the latter.  The former might reasonably be placed elsewhere
651  // using some kind of ordering algorithm, but right now it doesn't matter.
652  for (int i = DbgValueVec.size()-1; i>=0; --i)
653    if (DbgValueVec[i])
654      BB->insert(InsertPos, DbgValueVec[i]);
655
656  // Then re-insert them according to the given schedule.
657  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
658    SUnit *SU = Sequence[i];
659    if (!SU) {
660      // Null SUnit* is a noop.
661      EmitNoop();
662      continue;
663    }
664
665    BB->insert(InsertPos, SU->getInstr());
666    for (unsigned i = 0, e = SU->DbgInstrList.size() ; i < e ; ++i)
667      BB->insert(InsertPos, SU->DbgInstrList[i]);
668  }
669
670  // Update the Begin iterator, as the first instruction in the block
671  // may have been scheduled later.
672  if (!DbgValueVec.empty()) {
673    for (int i = DbgValueVec.size()-1; i>=0; --i)
674      if (DbgValueVec[i]!=0) {
675        Begin = DbgValueVec[DbgValueVec.size()-1];
676        break;
677      }
678  } else if (!Sequence.empty())
679    Begin = Sequence[0]->getInstr();
680
681  DbgValueVec.clear();
682  return BB;
683}
684