ScheduleDAGInstrs.cpp revision ed395c8c475692f5a43eb4b5c5562503d67616d0
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "llvm/Operator.h"
17#include "llvm/Analysis/AliasAnalysis.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineMemOperand.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/PseudoSourceValue.h"
24#include "llvm/CodeGen/ScheduleDAGInstrs.h"
25#include "llvm/MC/MCInstrItineraries.h"
26#include "llvm/Target/TargetMachine.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetSubtargetInfo.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/ADT/SmallSet.h"
33using namespace llvm;
34
35ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
36                                     const MachineLoopInfo &mli,
37                                     const MachineDominatorTree &mdt,
38                                     bool IsPostRAFlag,
39                                     LiveIntervals *lis)
40  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()),
41    InstrItins(mf.getTarget().getInstrItineraryData()), LIS(lis),
42    IsPostRA(IsPostRAFlag), UnitLatencies(false), LoopRegs(MLI, MDT),
43    FirstDbgValue(0) {
44  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
45  DbgValues.clear();
46  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
47         "Virtual registers must be removed prior to PostRA scheduling");
48}
49
50/// getUnderlyingObjectFromInt - This is the function that does the work of
51/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
52static const Value *getUnderlyingObjectFromInt(const Value *V) {
53  do {
54    if (const Operator *U = dyn_cast<Operator>(V)) {
55      // If we find a ptrtoint, we can transfer control back to the
56      // regular getUnderlyingObjectFromInt.
57      if (U->getOpcode() == Instruction::PtrToInt)
58        return U->getOperand(0);
59      // If we find an add of a constant or a multiplied value, it's
60      // likely that the other operand will lead us to the base
61      // object. We don't have to worry about the case where the
62      // object address is somehow being computed by the multiply,
63      // because our callers only care when the result is an
64      // identifibale object.
65      if (U->getOpcode() != Instruction::Add ||
66          (!isa<ConstantInt>(U->getOperand(1)) &&
67           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
68        return V;
69      V = U->getOperand(0);
70    } else {
71      return V;
72    }
73    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
74  } while (1);
75}
76
77/// getUnderlyingObject - This is a wrapper around GetUnderlyingObject
78/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
79static const Value *getUnderlyingObject(const Value *V) {
80  // First just call Value::getUnderlyingObject to let it do what it does.
81  do {
82    V = GetUnderlyingObject(V);
83    // If it found an inttoptr, use special code to continue climing.
84    if (Operator::getOpcode(V) != Instruction::IntToPtr)
85      break;
86    const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
87    // If that succeeded in finding a pointer, continue the search.
88    if (!O->getType()->isPointerTy())
89      break;
90    V = O;
91  } while (1);
92  return V;
93}
94
95/// getUnderlyingObjectForInstr - If this machine instr has memory reference
96/// information and it can be tracked to a normal reference to a known
97/// object, return the Value for that object. Otherwise return null.
98static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
99                                                const MachineFrameInfo *MFI,
100                                                bool &MayAlias) {
101  MayAlias = true;
102  if (!MI->hasOneMemOperand() ||
103      !(*MI->memoperands_begin())->getValue() ||
104      (*MI->memoperands_begin())->isVolatile())
105    return 0;
106
107  const Value *V = (*MI->memoperands_begin())->getValue();
108  if (!V)
109    return 0;
110
111  V = getUnderlyingObject(V);
112  if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
113    // For now, ignore PseudoSourceValues which may alias LLVM IR values
114    // because the code that uses this function has no way to cope with
115    // such aliases.
116    if (PSV->isAliased(MFI))
117      return 0;
118
119    MayAlias = PSV->mayAlias(MFI);
120    return V;
121  }
122
123  if (isIdentifiedObject(V))
124    return V;
125
126  return 0;
127}
128
129void ScheduleDAGInstrs::startBlock(MachineBasicBlock *BB) {
130  LoopRegs.Deps.clear();
131  if (MachineLoop *ML = MLI.getLoopFor(BB))
132    if (BB == ML->getLoopLatch())
133      LoopRegs.VisitLoop(ML);
134}
135
136void ScheduleDAGInstrs::finishBlock() {
137  // Nothing to do.
138}
139
140/// Initialize the map with the number of registers.
141void Reg2SUnitsMap::setRegLimit(unsigned Limit) {
142  PhysRegSet.setUniverse(Limit);
143  SUnits.resize(Limit);
144}
145
146/// Clear the map without deallocating storage.
147void Reg2SUnitsMap::clear() {
148  for (const_iterator I = reg_begin(), E = reg_end(); I != E; ++I) {
149    SUnits[*I].clear();
150  }
151  PhysRegSet.clear();
152}
153
154/// Initialize the DAG and common scheduler state for the current scheduling
155/// region. This does not actually create the DAG, only clears it. The
156/// scheduling driver may call BuildSchedGraph multiple times per scheduling
157/// region.
158void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
159                                    MachineBasicBlock::iterator begin,
160                                    MachineBasicBlock::iterator end,
161                                    unsigned endcount) {
162  BB = bb;
163  Begin = begin;
164  End = end;
165  EndIndex = endcount;
166
167  // Check to see if the scheduler cares about latencies.
168  UnitLatencies = forceUnitLatencies();
169
170  ScheduleDAG::clearDAG();
171}
172
173/// Close the current scheduling region. Don't clear any state in case the
174/// driver wants to refer to the previous scheduling region.
175void ScheduleDAGInstrs::exitRegion() {
176  // Nothing to do.
177}
178
179/// addSchedBarrierDeps - Add dependencies from instructions in the current
180/// list of instructions being scheduled to scheduling barrier by adding
181/// the exit SU to the register defs and use list. This is because we want to
182/// make sure instructions which define registers that are either used by
183/// the terminator or are live-out are properly scheduled. This is
184/// especially important when the definition latency of the return value(s)
185/// are too high to be hidden by the branch or when the liveout registers
186/// used by instructions in the fallthrough block.
187void ScheduleDAGInstrs::addSchedBarrierDeps() {
188  MachineInstr *ExitMI = End != BB->end() ? &*End : 0;
189  ExitSU.setInstr(ExitMI);
190  bool AllDepKnown = ExitMI &&
191    (ExitMI->isCall() || ExitMI->isBarrier());
192  if (ExitMI && AllDepKnown) {
193    // If it's a call or a barrier, add dependencies on the defs and uses of
194    // instruction.
195    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
196      const MachineOperand &MO = ExitMI->getOperand(i);
197      if (!MO.isReg() || MO.isDef()) continue;
198      unsigned Reg = MO.getReg();
199      if (Reg == 0) continue;
200
201      if (TRI->isPhysicalRegister(Reg))
202        Uses[Reg].push_back(&ExitSU);
203      else
204        assert(!IsPostRA && "Virtual register encountered after regalloc.");
205    }
206  } else {
207    // For others, e.g. fallthrough, conditional branch, assume the exit
208    // uses all the registers that are livein to the successor blocks.
209    SmallSet<unsigned, 8> Seen;
210    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
211           SE = BB->succ_end(); SI != SE; ++SI)
212      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
213             E = (*SI)->livein_end(); I != E; ++I) {
214        unsigned Reg = *I;
215        if (Seen.insert(Reg))
216          Uses[Reg].push_back(&ExitSU);
217      }
218  }
219}
220
221/// MO is an operand of SU's instruction that defines a physical register. Add
222/// data dependencies from SU to any uses of the physical register.
223void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU,
224                                           const MachineOperand &MO) {
225  assert(MO.isDef() && "expect physreg def");
226
227  // Ask the target if address-backscheduling is desirable, and if so how much.
228  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
229  unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
230  unsigned DataLatency = SU->Latency;
231
232  for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
233    if (!Uses.contains(*Alias))
234      continue;
235    std::vector<SUnit*> &UseList = Uses[*Alias];
236    for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
237      SUnit *UseSU = UseList[i];
238      if (UseSU == SU)
239        continue;
240      unsigned LDataLatency = DataLatency;
241      // Optionally add in a special extra latency for nodes that
242      // feed addresses.
243      // TODO: Perhaps we should get rid of
244      // SpecialAddressLatency and just move this into
245      // adjustSchedDependency for the targets that care about it.
246      if (SpecialAddressLatency != 0 && !UnitLatencies &&
247          UseSU != &ExitSU) {
248        MachineInstr *UseMI = UseSU->getInstr();
249        const MCInstrDesc &UseMCID = UseMI->getDesc();
250        int RegUseIndex = UseMI->findRegisterUseOperandIdx(*Alias);
251        assert(RegUseIndex >= 0 && "UseMI doesn't use register!");
252        if (RegUseIndex >= 0 &&
253            (UseMI->mayLoad() || UseMI->mayStore()) &&
254            (unsigned)RegUseIndex < UseMCID.getNumOperands() &&
255            UseMCID.OpInfo[RegUseIndex].isLookupPtrRegClass())
256          LDataLatency += SpecialAddressLatency;
257      }
258      // Adjust the dependence latency using operand def/use
259      // information (if any), and then allow the target to
260      // perform its own adjustments.
261      const SDep& dep = SDep(SU, SDep::Data, LDataLatency, *Alias);
262      if (!UnitLatencies) {
263        computeOperandLatency(SU, UseSU, const_cast<SDep &>(dep));
264        ST.adjustSchedDependency(SU, UseSU, const_cast<SDep &>(dep));
265      }
266      UseSU->addPred(dep);
267    }
268  }
269}
270
271/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
272/// this SUnit to following instructions in the same scheduling region that
273/// depend the physical register referenced at OperIdx.
274void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
275  const MachineInstr *MI = SU->getInstr();
276  const MachineOperand &MO = MI->getOperand(OperIdx);
277
278  // Optionally add output and anti dependencies. For anti
279  // dependencies we use a latency of 0 because for a multi-issue
280  // target we want to allow the defining instruction to issue
281  // in the same cycle as the using instruction.
282  // TODO: Using a latency of 1 here for output dependencies assumes
283  //       there's no cost for reusing registers.
284  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
285  for (const uint16_t *Alias = TRI->getOverlaps(MO.getReg()); *Alias; ++Alias) {
286    if (!Defs.contains(*Alias))
287      continue;
288    std::vector<SUnit *> &DefList = Defs[*Alias];
289    for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
290      SUnit *DefSU = DefList[i];
291      if (DefSU == &ExitSU)
292        continue;
293      if (DefSU != SU &&
294          (Kind != SDep::Output || !MO.isDead() ||
295           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
296        if (Kind == SDep::Anti)
297          DefSU->addPred(SDep(SU, Kind, 0, /*Reg=*/*Alias));
298        else {
299          unsigned AOLat = TII->getOutputLatency(InstrItins, MI, OperIdx,
300                                                 DefSU->getInstr());
301          DefSU->addPred(SDep(SU, Kind, AOLat, /*Reg=*/*Alias));
302        }
303      }
304    }
305  }
306
307  if (!MO.isDef()) {
308    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
309    // retrieve the existing SUnits list for this register's uses.
310    // Push this SUnit on the use list.
311    Uses[MO.getReg()].push_back(SU);
312  }
313  else {
314    addPhysRegDataDeps(SU, MO);
315
316    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
317    // retrieve the existing SUnits list for this register's defs.
318    std::vector<SUnit *> &DefList = Defs[MO.getReg()];
319
320    // If a def is going to wrap back around to the top of the loop,
321    // backschedule it.
322    if (!UnitLatencies && DefList.empty()) {
323      LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(MO.getReg());
324      if (I != LoopRegs.Deps.end()) {
325        const MachineOperand *UseMO = I->second.first;
326        unsigned Count = I->second.second;
327        const MachineInstr *UseMI = UseMO->getParent();
328        unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
329        const MCInstrDesc &UseMCID = UseMI->getDesc();
330        const TargetSubtargetInfo &ST =
331          TM.getSubtarget<TargetSubtargetInfo>();
332        unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
333        // TODO: If we knew the total depth of the region here, we could
334        // handle the case where the whole loop is inside the region but
335        // is large enough that the isScheduleHigh trick isn't needed.
336        if (UseMOIdx < UseMCID.getNumOperands()) {
337          // Currently, we only support scheduling regions consisting of
338          // single basic blocks. Check to see if the instruction is in
339          // the same region by checking to see if it has the same parent.
340          if (UseMI->getParent() != MI->getParent()) {
341            unsigned Latency = SU->Latency;
342            if (UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass())
343              Latency += SpecialAddressLatency;
344            // This is a wild guess as to the portion of the latency which
345            // will be overlapped by work done outside the current
346            // scheduling region.
347            Latency -= std::min(Latency, Count);
348            // Add the artificial edge.
349            ExitSU.addPred(SDep(SU, SDep::Order, Latency,
350                                /*Reg=*/0, /*isNormalMemory=*/false,
351                                /*isMustAlias=*/false,
352                                /*isArtificial=*/true));
353          } else if (SpecialAddressLatency > 0 &&
354                     UseMCID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
355            // The entire loop body is within the current scheduling region
356            // and the latency of this operation is assumed to be greater
357            // than the latency of the loop.
358            // TODO: Recursively mark data-edge predecessors as
359            //       isScheduleHigh too.
360            SU->isScheduleHigh = true;
361          }
362        }
363        LoopRegs.Deps.erase(I);
364      }
365    }
366
367    // clear this register's use list
368    if (Uses.contains(MO.getReg()))
369      Uses[MO.getReg()].clear();
370
371    if (!MO.isDead())
372      DefList.clear();
373
374    // Calls will not be reordered because of chain dependencies (see
375    // below). Since call operands are dead, calls may continue to be added
376    // to the DefList making dependence checking quadratic in the size of
377    // the block. Instead, we leave only one call at the back of the
378    // DefList.
379    if (SU->isCall) {
380      while (!DefList.empty() && DefList.back()->isCall)
381        DefList.pop_back();
382    }
383    // Defs are pushed in the order they are visited and never reordered.
384    DefList.push_back(SU);
385  }
386}
387
388/// addVRegDefDeps - Add register output and data dependencies from this SUnit
389/// to instructions that occur later in the same scheduling region if they read
390/// from or write to the virtual register defined at OperIdx.
391///
392/// TODO: Hoist loop induction variable increments. This has to be
393/// reevaluated. Generally, IV scheduling should be done before coalescing.
394void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
395  const MachineInstr *MI = SU->getInstr();
396  unsigned Reg = MI->getOperand(OperIdx).getReg();
397
398  // SSA defs do not have output/anti dependencies.
399  // The current operand is a def, so we have at least one.
400  if (llvm::next(MRI.def_begin(Reg)) == MRI.def_end())
401    return;
402
403  // Add output dependence to the next nearest def of this vreg.
404  //
405  // Unless this definition is dead, the output dependence should be
406  // transitively redundant with antidependencies from this definition's
407  // uses. We're conservative for now until we have a way to guarantee the uses
408  // are not eliminated sometime during scheduling. The output dependence edge
409  // is also useful if output latency exceeds def-use latency.
410  VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
411  if (DefI == VRegDefs.end())
412    VRegDefs.insert(VReg2SUnit(Reg, SU));
413  else {
414    SUnit *DefSU = DefI->SU;
415    if (DefSU != SU && DefSU != &ExitSU) {
416      unsigned OutLatency = TII->getOutputLatency(InstrItins, MI, OperIdx,
417                                                  DefSU->getInstr());
418      DefSU->addPred(SDep(SU, SDep::Output, OutLatency, Reg));
419    }
420    DefI->SU = SU;
421  }
422}
423
424/// addVRegUseDeps - Add a register data dependency if the instruction that
425/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
426/// register antidependency from this SUnit to instructions that occur later in
427/// the same scheduling region if they write the virtual register.
428///
429/// TODO: Handle ExitSU "uses" properly.
430void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
431  MachineInstr *MI = SU->getInstr();
432  unsigned Reg = MI->getOperand(OperIdx).getReg();
433
434  // Lookup this operand's reaching definition.
435  assert(LIS && "vreg dependencies requires LiveIntervals");
436  SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot();
437  LiveInterval *LI = &LIS->getInterval(Reg);
438  VNInfo *VNI = LI->getVNInfoBefore(UseIdx);
439  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
440  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
441  // Phis and other noninstructions (after coalescing) have a NULL Def.
442  if (Def) {
443    SUnit *DefSU = getSUnit(Def);
444    if (DefSU) {
445      // The reaching Def lives within this scheduling region.
446      // Create a data dependence.
447      //
448      // TODO: Handle "special" address latencies cleanly.
449      const SDep &dep = SDep(DefSU, SDep::Data, DefSU->Latency, Reg);
450      if (!UnitLatencies) {
451        // Adjust the dependence latency using operand def/use information, then
452        // allow the target to perform its own adjustments.
453        computeOperandLatency(DefSU, SU, const_cast<SDep &>(dep));
454        const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
455        ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
456      }
457      SU->addPred(dep);
458    }
459  }
460
461  // Add antidependence to the following def of the vreg it uses.
462  VReg2SUnitMap::iterator DefI = findVRegDef(Reg);
463  if (DefI != VRegDefs.end() && DefI->SU != SU)
464    DefI->SU->addPred(SDep(SU, SDep::Anti, 0, Reg));
465}
466
467/// Create an SUnit for each real instruction, numbered in top-down toplological
468/// order. The instruction order A < B, implies that no edge exists from B to A.
469///
470/// Map each real instruction to its SUnit.
471///
472/// After initSUnits, the SUnits vector is cannot be resized and the scheduler
473/// may hang onto SUnit pointers. We may relax this in the future by using SUnit
474/// IDs instead of pointers.
475void ScheduleDAGInstrs::initSUnits() {
476  // We'll be allocating one SUnit for each real instruction in the region,
477  // which is contained within a basic block.
478  SUnits.reserve(BB->size());
479
480  for (MachineBasicBlock::iterator I = Begin; I != End; ++I) {
481    MachineInstr *MI = I;
482    if (MI->isDebugValue())
483      continue;
484
485    SUnit *SU = newSUnit(MI);
486    MISUnitMap[MI] = SU;
487
488    SU->isCall = MI->isCall();
489    SU->isCommutable = MI->isCommutable();
490
491    // Assign the Latency field of SU using target-provided information.
492    if (UnitLatencies)
493      SU->Latency = 1;
494    else
495      computeLatency(SU);
496  }
497}
498
499void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA) {
500  // Create an SUnit for each real instruction.
501  initSUnits();
502
503  // We build scheduling units by walking a block's instruction list from bottom
504  // to top.
505
506  // Remember where a generic side-effecting instruction is as we procede.
507  SUnit *BarrierChain = 0, *AliasChain = 0;
508
509  // Memory references to specific known memory locations are tracked
510  // so that they can be given more precise dependencies. We track
511  // separately the known memory locations that may alias and those
512  // that are known not to alias
513  std::map<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
514  std::map<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
515
516  // Remove any stale debug info; sometimes BuildSchedGraph is called again
517  // without emitting the info from the previous call.
518  DbgValues.clear();
519  FirstDbgValue = NULL;
520
521  assert(Defs.empty() && Uses.empty() &&
522         "Only BuildGraph should update Defs/Uses");
523  Defs.setRegLimit(TRI->getNumRegs());
524  Uses.setRegLimit(TRI->getNumRegs());
525
526  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
527  // FIXME: Allow SparseSet to reserve space for the creation of virtual
528  // registers during scheduling. Don't artificially inflate the Universe
529  // because we want to assert that vregs are not created during DAG building.
530  VRegDefs.setUniverse(MRI.getNumVirtRegs());
531
532  // Model data dependencies between instructions being scheduled and the
533  // ExitSU.
534  addSchedBarrierDeps();
535
536  // Walk the list of instructions, from bottom moving up.
537  MachineInstr *PrevMI = NULL;
538  for (MachineBasicBlock::iterator MII = End, MIE = Begin;
539       MII != MIE; --MII) {
540    MachineInstr *MI = prior(MII);
541    if (MI && PrevMI) {
542      DbgValues.push_back(std::make_pair(PrevMI, MI));
543      PrevMI = NULL;
544    }
545
546    if (MI->isDebugValue()) {
547      PrevMI = MI;
548      continue;
549    }
550
551    assert(!MI->isTerminator() && !MI->isLabel() &&
552           "Cannot schedule terminators or labels!");
553
554    SUnit *SU = MISUnitMap[MI];
555    assert(SU && "No SUnit mapped to this MI");
556
557    // Add register-based dependencies (data, anti, and output).
558    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
559      const MachineOperand &MO = MI->getOperand(j);
560      if (!MO.isReg()) continue;
561      unsigned Reg = MO.getReg();
562      if (Reg == 0) continue;
563
564      if (TRI->isPhysicalRegister(Reg))
565        addPhysRegDeps(SU, j);
566      else {
567        assert(!IsPostRA && "Virtual register encountered!");
568        if (MO.isDef())
569          addVRegDefDeps(SU, j);
570        else if (MO.readsReg()) // ignore undef operands
571          addVRegUseDeps(SU, j);
572      }
573    }
574
575    // Add chain dependencies.
576    // Chain dependencies used to enforce memory order should have
577    // latency of 0 (except for true dependency of Store followed by
578    // aliased Load... we estimate that with a single cycle of latency
579    // assuming the hardware will bypass)
580    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
581    // after stack slots are lowered to actual addresses.
582    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
583    // produce more precise dependence information.
584#define STORE_LOAD_LATENCY 1
585    unsigned TrueMemOrderLatency = 0;
586    if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
587        (MI->hasVolatileMemoryRef() &&
588         (!MI->mayLoad() || !MI->isInvariantLoad(AA)))) {
589      // Be conservative with these and add dependencies on all memory
590      // references, even those that are known to not alias.
591      for (std::map<const Value *, SUnit *>::iterator I =
592             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
593        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
594      }
595      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
596             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
597        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
598          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
599      }
600      NonAliasMemDefs.clear();
601      NonAliasMemUses.clear();
602      // Add SU to the barrier chain.
603      if (BarrierChain)
604        BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
605      BarrierChain = SU;
606
607      // fall-through
608    new_alias_chain:
609      // Chain all possibly aliasing memory references though SU.
610      if (AliasChain)
611        AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
612      AliasChain = SU;
613      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
614        PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
615      for (std::map<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
616           E = AliasMemDefs.end(); I != E; ++I) {
617        I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
618      }
619      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
620           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
621        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
622          I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
623      }
624      PendingLoads.clear();
625      AliasMemDefs.clear();
626      AliasMemUses.clear();
627    } else if (MI->mayStore()) {
628      bool MayAlias = true;
629      TrueMemOrderLatency = STORE_LOAD_LATENCY;
630      if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
631        // A store to a specific PseudoSourceValue. Add precise dependencies.
632        // Record the def in MemDefs, first adding a dep if there is
633        // an existing def.
634        std::map<const Value *, SUnit *>::iterator I =
635          ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
636        std::map<const Value *, SUnit *>::iterator IE =
637          ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
638        if (I != IE) {
639          I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
640                                  /*isNormalMemory=*/true));
641          I->second = SU;
642        } else {
643          if (MayAlias)
644            AliasMemDefs[V] = SU;
645          else
646            NonAliasMemDefs[V] = SU;
647        }
648        // Handle the uses in MemUses, if there are any.
649        std::map<const Value *, std::vector<SUnit *> >::iterator J =
650          ((MayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
651        std::map<const Value *, std::vector<SUnit *> >::iterator JE =
652          ((MayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
653        if (J != JE) {
654          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
655            J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
656                                       /*Reg=*/0, /*isNormalMemory=*/true));
657          J->second.clear();
658        }
659        if (MayAlias) {
660          // Add dependencies from all the PendingLoads, i.e. loads
661          // with no underlying object.
662          for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
663            PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
664          // Add dependence on alias chain, if needed.
665          if (AliasChain)
666            AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
667        }
668        // Add dependence on barrier chain, if needed.
669        if (BarrierChain)
670          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
671      } else {
672        // Treat all other stores conservatively.
673        goto new_alias_chain;
674      }
675
676      if (!ExitSU.isPred(SU))
677        // Push store's up a bit to avoid them getting in between cmp
678        // and branches.
679        ExitSU.addPred(SDep(SU, SDep::Order, 0,
680                            /*Reg=*/0, /*isNormalMemory=*/false,
681                            /*isMustAlias=*/false,
682                            /*isArtificial=*/true));
683    } else if (MI->mayLoad()) {
684      bool MayAlias = true;
685      TrueMemOrderLatency = 0;
686      if (MI->isInvariantLoad(AA)) {
687        // Invariant load, no chain dependencies needed!
688      } else {
689        if (const Value *V =
690            getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
691          // A load from a specific PseudoSourceValue. Add precise dependencies.
692          std::map<const Value *, SUnit *>::iterator I =
693            ((MayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
694          std::map<const Value *, SUnit *>::iterator IE =
695            ((MayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
696          if (I != IE)
697            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
698                                    /*isNormalMemory=*/true));
699          if (MayAlias)
700            AliasMemUses[V].push_back(SU);
701          else
702            NonAliasMemUses[V].push_back(SU);
703        } else {
704          // A load with no underlying object. Depend on all
705          // potentially aliasing stores.
706          for (std::map<const Value *, SUnit *>::iterator I =
707                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
708            I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
709
710          PendingLoads.push_back(SU);
711          MayAlias = true;
712        }
713
714        // Add dependencies on alias and barrier chains, if needed.
715        if (MayAlias && AliasChain)
716          AliasChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
717        if (BarrierChain)
718          BarrierChain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
719      }
720    }
721  }
722  if (PrevMI)
723    FirstDbgValue = PrevMI;
724
725  Defs.clear();
726  Uses.clear();
727  VRegDefs.clear();
728  PendingLoads.clear();
729  MISUnitMap.clear();
730}
731
732void ScheduleDAGInstrs::computeLatency(SUnit *SU) {
733  // Compute the latency for the node.
734  if (!InstrItins || InstrItins->isEmpty()) {
735    SU->Latency = 1;
736
737    // Simplistic target-independent heuristic: assume that loads take
738    // extra time.
739    if (SU->getInstr()->mayLoad())
740      SU->Latency += 2;
741  } else {
742    SU->Latency = TII->getInstrLatency(InstrItins, SU->getInstr());
743  }
744}
745
746void ScheduleDAGInstrs::computeOperandLatency(SUnit *Def, SUnit *Use,
747                                              SDep& dep) const {
748  if (!InstrItins || InstrItins->isEmpty())
749    return;
750
751  // For a data dependency with a known register...
752  if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
753    return;
754
755  const unsigned Reg = dep.getReg();
756
757  // ... find the definition of the register in the defining
758  // instruction
759  MachineInstr *DefMI = Def->getInstr();
760  int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
761  if (DefIdx != -1) {
762    const MachineOperand &MO = DefMI->getOperand(DefIdx);
763    if (MO.isReg() && MO.isImplicit() &&
764        DefIdx >= (int)DefMI->getDesc().getNumOperands()) {
765      // This is an implicit def, getOperandLatency() won't return the correct
766      // latency. e.g.
767      //   %D6<def>, %D7<def> = VLD1q16 %R2<kill>, 0, ..., %Q3<imp-def>
768      //   %Q1<def> = VMULv8i16 %Q1<kill>, %Q3<kill>, ...
769      // What we want is to compute latency between def of %D6/%D7 and use of
770      // %Q3 instead.
771      unsigned Op2 = DefMI->findRegisterDefOperandIdx(Reg, false, true, TRI);
772      if (DefMI->getOperand(Op2).isReg())
773        DefIdx = Op2;
774    }
775    MachineInstr *UseMI = Use->getInstr();
776    // For all uses of the register, calculate the maxmimum latency
777    int Latency = -1;
778    if (UseMI) {
779      for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
780        const MachineOperand &MO = UseMI->getOperand(i);
781        if (!MO.isReg() || !MO.isUse())
782          continue;
783        unsigned MOReg = MO.getReg();
784        if (MOReg != Reg)
785          continue;
786
787        int UseCycle = TII->getOperandLatency(InstrItins, DefMI, DefIdx,
788                                              UseMI, i);
789        Latency = std::max(Latency, UseCycle);
790      }
791    } else {
792      // UseMI is null, then it must be a scheduling barrier.
793      if (!InstrItins || InstrItins->isEmpty())
794        return;
795      unsigned DefClass = DefMI->getDesc().getSchedClass();
796      Latency = InstrItins->getOperandCycle(DefClass, DefIdx);
797    }
798
799    // If we found a latency, then replace the existing dependence latency.
800    if (Latency >= 0)
801      dep.setLatency(Latency);
802  }
803}
804
805void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
806  SU->getInstr()->dump();
807}
808
809std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
810  std::string s;
811  raw_string_ostream oss(s);
812  if (SU == &EntrySU)
813    oss << "<entry>";
814  else if (SU == &ExitSU)
815    oss << "<exit>";
816  else
817    SU->getInstr()->print(oss);
818  return oss.str();
819}
820
821/// Return the basic block label. It is not necessarilly unique because a block
822/// contains multiple scheduling regions. But it is fine for visualization.
823std::string ScheduleDAGInstrs::getDAGName() const {
824  return "dag." + BB->getFullName();
825}
826