ScheduleDAGInstrs.cpp revision f22fd3f7b557a967b1edc1fa9ae770006a39e97c
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "misched"
16#include "llvm/CodeGen/ScheduleDAGInstrs.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/CodeGen/LiveIntervalAnalysis.h"
23#include "llvm/CodeGen/MachineFunctionPass.h"
24#include "llvm/CodeGen/MachineMemOperand.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/RegisterPressure.h"
28#include "llvm/CodeGen/ScheduleDFS.h"
29#include "llvm/IR/Operator.h"
30#include "llvm/MC/MCInstrItineraries.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/Format.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include "llvm/Target/TargetSubtargetInfo.h"
39using namespace llvm;
40
41static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
42    cl::ZeroOrMore, cl::init(false),
43    cl::desc("Enable use of AA during MI GAD construction"));
44
45ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
46                                     const MachineLoopInfo &mli,
47                                     const MachineDominatorTree &mdt,
48                                     bool IsPostRAFlag,
49                                     LiveIntervals *lis)
50  : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
51    IsPostRA(IsPostRAFlag), CanHandleTerminators(false), FirstDbgValue(0) {
52  assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
53  DbgValues.clear();
54  assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
55         "Virtual registers must be removed prior to PostRA scheduling");
56
57  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
58  SchedModel.init(*ST.getSchedModel(), &ST, TII);
59}
60
61/// getUnderlyingObjectFromInt - This is the function that does the work of
62/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
63static const Value *getUnderlyingObjectFromInt(const Value *V) {
64  do {
65    if (const Operator *U = dyn_cast<Operator>(V)) {
66      // If we find a ptrtoint, we can transfer control back to the
67      // regular getUnderlyingObjectFromInt.
68      if (U->getOpcode() == Instruction::PtrToInt)
69        return U->getOperand(0);
70      // If we find an add of a constant, a multiplied value, or a phi, it's
71      // likely that the other operand will lead us to the base
72      // object. We don't have to worry about the case where the
73      // object address is somehow being computed by the multiply,
74      // because our callers only care when the result is an
75      // identifiable object.
76      if (U->getOpcode() != Instruction::Add ||
77          (!isa<ConstantInt>(U->getOperand(1)) &&
78           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
79           !isa<PHINode>(U->getOperand(1))))
80        return V;
81      V = U->getOperand(0);
82    } else {
83      return V;
84    }
85    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
86  } while (1);
87}
88
89/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
90/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
91static void getUnderlyingObjects(const Value *V,
92                                 SmallVectorImpl<Value *> &Objects) {
93  SmallPtrSet<const Value*, 16> Visited;
94  SmallVector<const Value *, 4> Working(1, V);
95  do {
96    V = Working.pop_back_val();
97
98    SmallVector<Value *, 4> Objs;
99    GetUnderlyingObjects(const_cast<Value *>(V), Objs);
100
101    for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
102         I != IE; ++I) {
103      V = *I;
104      if (!Visited.insert(V))
105        continue;
106      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
107        const Value *O =
108          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
109        if (O->getType()->isPointerTy()) {
110          Working.push_back(O);
111          continue;
112        }
113      }
114      Objects.push_back(const_cast<Value *>(V));
115    }
116  } while (!Working.empty());
117}
118
119typedef SmallVector<PointerIntPair<const Value *, 1, bool>, 4>
120UnderlyingObjectsVector;
121
122/// getUnderlyingObjectsForInstr - If this machine instr has memory reference
123/// information and it can be tracked to a normal reference to a known
124/// object, return the Value for that object.
125static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
126                                         const MachineFrameInfo *MFI,
127                                         UnderlyingObjectsVector &Objects) {
128  if (!MI->hasOneMemOperand() ||
129      !(*MI->memoperands_begin())->getValue() ||
130      (*MI->memoperands_begin())->isVolatile())
131    return;
132
133  const Value *V = (*MI->memoperands_begin())->getValue();
134  if (!V)
135    return;
136
137  SmallVector<Value *, 4> Objs;
138  getUnderlyingObjects(V, Objs);
139
140  for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
141         I != IE; ++I) {
142    bool MayAlias = true;
143    V = *I;
144
145    if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
146      // For now, ignore PseudoSourceValues which may alias LLVM IR values
147      // because the code that uses this function has no way to cope with
148      // such aliases.
149
150      if (PSV->isAliased(MFI)) {
151        Objects.clear();
152        return;
153      }
154
155      MayAlias = PSV->mayAlias(MFI);
156    } else if (!isIdentifiedObject(V)) {
157      Objects.clear();
158      return;
159    }
160
161    Objects.push_back(UnderlyingObjectsVector::value_type(V, MayAlias));
162  }
163}
164
165void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
166  BB = bb;
167}
168
169void ScheduleDAGInstrs::finishBlock() {
170  // Subclasses should no longer refer to the old block.
171  BB = 0;
172}
173
174/// Initialize the DAG and common scheduler state for the current scheduling
175/// region. This does not actually create the DAG, only clears it. The
176/// scheduling driver may call BuildSchedGraph multiple times per scheduling
177/// region.
178void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
179                                    MachineBasicBlock::iterator begin,
180                                    MachineBasicBlock::iterator end,
181                                    unsigned endcount) {
182  assert(bb == BB && "startBlock should set BB");
183  RegionBegin = begin;
184  RegionEnd = end;
185  EndIndex = endcount;
186  MISUnitMap.clear();
187
188  ScheduleDAG::clearDAG();
189}
190
191/// Close the current scheduling region. Don't clear any state in case the
192/// driver wants to refer to the previous scheduling region.
193void ScheduleDAGInstrs::exitRegion() {
194  // Nothing to do.
195}
196
197/// addSchedBarrierDeps - Add dependencies from instructions in the current
198/// list of instructions being scheduled to scheduling barrier by adding
199/// the exit SU to the register defs and use list. This is because we want to
200/// make sure instructions which define registers that are either used by
201/// the terminator or are live-out are properly scheduled. This is
202/// especially important when the definition latency of the return value(s)
203/// are too high to be hidden by the branch or when the liveout registers
204/// used by instructions in the fallthrough block.
205void ScheduleDAGInstrs::addSchedBarrierDeps() {
206  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
207  ExitSU.setInstr(ExitMI);
208  bool AllDepKnown = ExitMI &&
209    (ExitMI->isCall() || ExitMI->isBarrier());
210  if (ExitMI && AllDepKnown) {
211    // If it's a call or a barrier, add dependencies on the defs and uses of
212    // instruction.
213    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
214      const MachineOperand &MO = ExitMI->getOperand(i);
215      if (!MO.isReg() || MO.isDef()) continue;
216      unsigned Reg = MO.getReg();
217      if (Reg == 0) continue;
218
219      if (TRI->isPhysicalRegister(Reg))
220        Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
221      else {
222        assert(!IsPostRA && "Virtual register encountered after regalloc.");
223        if (MO.readsReg()) // ignore undef operands
224          addVRegUseDeps(&ExitSU, i);
225      }
226    }
227  } else {
228    // For others, e.g. fallthrough, conditional branch, assume the exit
229    // uses all the registers that are livein to the successor blocks.
230    assert(Uses.empty() && "Uses in set before adding deps?");
231    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
232           SE = BB->succ_end(); SI != SE; ++SI)
233      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
234             E = (*SI)->livein_end(); I != E; ++I) {
235        unsigned Reg = *I;
236        if (!Uses.contains(Reg))
237          Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
238      }
239  }
240}
241
242/// MO is an operand of SU's instruction that defines a physical register. Add
243/// data dependencies from SU to any uses of the physical register.
244void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
245  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
246  assert(MO.isDef() && "expect physreg def");
247
248  // Ask the target if address-backscheduling is desirable, and if so how much.
249  const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
250
251  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
252       Alias.isValid(); ++Alias) {
253    if (!Uses.contains(*Alias))
254      continue;
255    for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
256      SUnit *UseSU = I->SU;
257      if (UseSU == SU)
258        continue;
259
260      // Adjust the dependence latency using operand def/use information,
261      // then allow the target to perform its own adjustments.
262      int UseOp = I->OpIdx;
263      MachineInstr *RegUse = 0;
264      SDep Dep;
265      if (UseOp < 0)
266        Dep = SDep(SU, SDep::Artificial);
267      else {
268        // Set the hasPhysRegDefs only for physreg defs that have a use within
269        // the scheduling region.
270        SU->hasPhysRegDefs = true;
271        Dep = SDep(SU, SDep::Data, *Alias);
272        RegUse = UseSU->getInstr();
273      }
274      Dep.setLatency(
275        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
276                                         UseOp));
277
278      ST.adjustSchedDependency(SU, UseSU, Dep);
279      UseSU->addPred(Dep);
280    }
281  }
282}
283
284/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
285/// this SUnit to following instructions in the same scheduling region that
286/// depend the physical register referenced at OperIdx.
287void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
288  const MachineInstr *MI = SU->getInstr();
289  const MachineOperand &MO = MI->getOperand(OperIdx);
290
291  // Optionally add output and anti dependencies. For anti
292  // dependencies we use a latency of 0 because for a multi-issue
293  // target we want to allow the defining instruction to issue
294  // in the same cycle as the using instruction.
295  // TODO: Using a latency of 1 here for output dependencies assumes
296  //       there's no cost for reusing registers.
297  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
298  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
299       Alias.isValid(); ++Alias) {
300    if (!Defs.contains(*Alias))
301      continue;
302    for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
303      SUnit *DefSU = I->SU;
304      if (DefSU == &ExitSU)
305        continue;
306      if (DefSU != SU &&
307          (Kind != SDep::Output || !MO.isDead() ||
308           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
309        if (Kind == SDep::Anti)
310          DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
311        else {
312          SDep Dep(SU, Kind, /*Reg=*/*Alias);
313          Dep.setLatency(
314            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
315          DefSU->addPred(Dep);
316        }
317      }
318    }
319  }
320
321  if (!MO.isDef()) {
322    SU->hasPhysRegUses = true;
323    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
324    // retrieve the existing SUnits list for this register's uses.
325    // Push this SUnit on the use list.
326    Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
327  }
328  else {
329    addPhysRegDataDeps(SU, OperIdx);
330    unsigned Reg = MO.getReg();
331
332    // clear this register's use list
333    if (Uses.contains(Reg))
334      Uses.eraseAll(Reg);
335
336    if (!MO.isDead()) {
337      Defs.eraseAll(Reg);
338    } else if (SU->isCall) {
339      // Calls will not be reordered because of chain dependencies (see
340      // below). Since call operands are dead, calls may continue to be added
341      // to the DefList making dependence checking quadratic in the size of
342      // the block. Instead, we leave only one call at the back of the
343      // DefList.
344      Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
345      Reg2SUnitsMap::iterator B = P.first;
346      Reg2SUnitsMap::iterator I = P.second;
347      for (bool isBegin = I == B; !isBegin; /* empty */) {
348        isBegin = (--I) == B;
349        if (!I->SU->isCall)
350          break;
351        I = Defs.erase(I);
352      }
353    }
354
355    // Defs are pushed in the order they are visited and never reordered.
356    Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
357  }
358}
359
360/// addVRegDefDeps - Add register output and data dependencies from this SUnit
361/// to instructions that occur later in the same scheduling region if they read
362/// from or write to the virtual register defined at OperIdx.
363///
364/// TODO: Hoist loop induction variable increments. This has to be
365/// reevaluated. Generally, IV scheduling should be done before coalescing.
366void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
367  const MachineInstr *MI = SU->getInstr();
368  unsigned Reg = MI->getOperand(OperIdx).getReg();
369
370  // Singly defined vregs do not have output/anti dependencies.
371  // The current operand is a def, so we have at least one.
372  // Check here if there are any others...
373  if (MRI.hasOneDef(Reg))
374    return;
375
376  // Add output dependence to the next nearest def of this vreg.
377  //
378  // Unless this definition is dead, the output dependence should be
379  // transitively redundant with antidependencies from this definition's
380  // uses. We're conservative for now until we have a way to guarantee the uses
381  // are not eliminated sometime during scheduling. The output dependence edge
382  // is also useful if output latency exceeds def-use latency.
383  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
384  if (DefI == VRegDefs.end())
385    VRegDefs.insert(VReg2SUnit(Reg, SU));
386  else {
387    SUnit *DefSU = DefI->SU;
388    if (DefSU != SU && DefSU != &ExitSU) {
389      SDep Dep(SU, SDep::Output, Reg);
390      Dep.setLatency(
391        SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
392      DefSU->addPred(Dep);
393    }
394    DefI->SU = SU;
395  }
396}
397
398/// addVRegUseDeps - Add a register data dependency if the instruction that
399/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
400/// register antidependency from this SUnit to instructions that occur later in
401/// the same scheduling region if they write the virtual register.
402///
403/// TODO: Handle ExitSU "uses" properly.
404void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
405  MachineInstr *MI = SU->getInstr();
406  unsigned Reg = MI->getOperand(OperIdx).getReg();
407
408  // Lookup this operand's reaching definition.
409  assert(LIS && "vreg dependencies requires LiveIntervals");
410  LiveRangeQuery LRQ(LIS->getInterval(Reg), LIS->getInstructionIndex(MI));
411  VNInfo *VNI = LRQ.valueIn();
412
413  // VNI will be valid because MachineOperand::readsReg() is checked by caller.
414  assert(VNI && "No value to read by operand");
415  MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
416  // Phis and other noninstructions (after coalescing) have a NULL Def.
417  if (Def) {
418    SUnit *DefSU = getSUnit(Def);
419    if (DefSU) {
420      // The reaching Def lives within this scheduling region.
421      // Create a data dependence.
422      SDep dep(DefSU, SDep::Data, Reg);
423      // Adjust the dependence latency using operand def/use information, then
424      // allow the target to perform its own adjustments.
425      int DefOp = Def->findRegisterDefOperandIdx(Reg);
426      dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
427
428      const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
429      ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
430      SU->addPred(dep);
431    }
432  }
433
434  // Add antidependence to the following def of the vreg it uses.
435  VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
436  if (DefI != VRegDefs.end() && DefI->SU != SU)
437    DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
438}
439
440/// Return true if MI is an instruction we are unable to reason about
441/// (like a call or something with unmodeled side effects).
442static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
443  if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
444      (MI->hasOrderedMemoryRef() &&
445       (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
446    return true;
447  return false;
448}
449
450// This MI might have either incomplete info, or known to be unsafe
451// to deal with (i.e. volatile object).
452static inline bool isUnsafeMemoryObject(MachineInstr *MI,
453                                        const MachineFrameInfo *MFI) {
454  if (!MI || MI->memoperands_empty())
455    return true;
456  // We purposefully do no check for hasOneMemOperand() here
457  // in hope to trigger an assert downstream in order to
458  // finish implementation.
459  if ((*MI->memoperands_begin())->isVolatile() ||
460       MI->hasUnmodeledSideEffects())
461    return true;
462  const Value *V = (*MI->memoperands_begin())->getValue();
463  if (!V)
464    return true;
465
466  SmallVector<Value *, 4> Objs;
467  getUnderlyingObjects(V, Objs);
468  for (SmallVectorImpl<Value *>::iterator I = Objs.begin(),
469         IE = Objs.end(); I != IE; ++I) {
470    V = *I;
471
472    if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
473      // Similarly to getUnderlyingObjectForInstr:
474      // For now, ignore PseudoSourceValues which may alias LLVM IR values
475      // because the code that uses this function has no way to cope with
476      // such aliases.
477      if (PSV->isAliased(MFI))
478        return true;
479    }
480
481    // Does this pointer refer to a distinct and identifiable object?
482    if (!isIdentifiedObject(V))
483      return true;
484  }
485
486  return false;
487}
488
489/// This returns true if the two MIs need a chain edge betwee them.
490/// If these are not even memory operations, we still may need
491/// chain deps between them. The question really is - could
492/// these two MIs be reordered during scheduling from memory dependency
493/// point of view.
494static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
495                             MachineInstr *MIa,
496                             MachineInstr *MIb) {
497  // Cover a trivial case - no edge is need to itself.
498  if (MIa == MIb)
499    return false;
500
501  if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
502    return true;
503
504  // If we are dealing with two "normal" loads, we do not need an edge
505  // between them - they could be reordered.
506  if (!MIa->mayStore() && !MIb->mayStore())
507    return false;
508
509  // To this point analysis is generic. From here on we do need AA.
510  if (!AA)
511    return true;
512
513  MachineMemOperand *MMOa = *MIa->memoperands_begin();
514  MachineMemOperand *MMOb = *MIb->memoperands_begin();
515
516  // FIXME: Need to handle multiple memory operands to support all targets.
517  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
518    llvm_unreachable("Multiple memory operands.");
519
520  // The following interface to AA is fashioned after DAGCombiner::isAlias
521  // and operates with MachineMemOperand offset with some important
522  // assumptions:
523  //   - LLVM fundamentally assumes flat address spaces.
524  //   - MachineOperand offset can *only* result from legalization and
525  //     cannot affect queries other than the trivial case of overlap
526  //     checking.
527  //   - These offsets never wrap and never step outside
528  //     of allocated objects.
529  //   - There should never be any negative offsets here.
530  //
531  // FIXME: Modify API to hide this math from "user"
532  // FIXME: Even before we go to AA we can reason locally about some
533  // memory objects. It can save compile time, and possibly catch some
534  // corner cases not currently covered.
535
536  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
537  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
538
539  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
540  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
541  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
542
543  AliasAnalysis::AliasResult AAResult = AA->alias(
544  AliasAnalysis::Location(MMOa->getValue(), Overlapa,
545                          MMOa->getTBAAInfo()),
546  AliasAnalysis::Location(MMOb->getValue(), Overlapb,
547                          MMOb->getTBAAInfo()));
548
549  return (AAResult != AliasAnalysis::NoAlias);
550}
551
552/// This recursive function iterates over chain deps of SUb looking for
553/// "latest" node that needs a chain edge to SUa.
554static unsigned
555iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
556                 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
557                 SmallPtrSet<const SUnit*, 16> &Visited) {
558  if (!SUa || !SUb || SUb == ExitSU)
559    return *Depth;
560
561  // Remember visited nodes.
562  if (!Visited.insert(SUb))
563      return *Depth;
564  // If there is _some_ dependency already in place, do not
565  // descend any further.
566  // TODO: Need to make sure that if that dependency got eliminated or ignored
567  // for any reason in the future, we would not violate DAG topology.
568  // Currently it does not happen, but makes an implicit assumption about
569  // future implementation.
570  //
571  // Independently, if we encounter node that is some sort of global
572  // object (like a call) we already have full set of dependencies to it
573  // and we can stop descending.
574  if (SUa->isSucc(SUb) ||
575      isGlobalMemoryObject(AA, SUb->getInstr()))
576    return *Depth;
577
578  // If we do need an edge, or we have exceeded depth budget,
579  // add that edge to the predecessors chain of SUb,
580  // and stop descending.
581  if (*Depth > 200 ||
582      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
583    SUb->addPred(SDep(SUa, SDep::MayAliasMem));
584    return *Depth;
585  }
586  // Track current depth.
587  (*Depth)++;
588  // Iterate over chain dependencies only.
589  for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
590       I != E; ++I)
591    if (I->isCtrl())
592      iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
593  return *Depth;
594}
595
596/// This function assumes that "downward" from SU there exist
597/// tail/leaf of already constructed DAG. It iterates downward and
598/// checks whether SU can be aliasing any node dominated
599/// by it.
600static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
601                            SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
602                            unsigned LatencyToLoad) {
603  if (!SU)
604    return;
605
606  SmallPtrSet<const SUnit*, 16> Visited;
607  unsigned Depth = 0;
608
609  for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
610       I != IE; ++I) {
611    if (SU == *I)
612      continue;
613    if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
614      SDep Dep(SU, SDep::MayAliasMem);
615      Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
616      (*I)->addPred(Dep);
617    }
618    // Now go through all the chain successors and iterate from them.
619    // Keep track of visited nodes.
620    for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
621         JE = (*I)->Succs.end(); J != JE; ++J)
622      if (J->isCtrl())
623        iterateChainSucc (AA, MFI, SU, J->getSUnit(),
624                          ExitSU, &Depth, Visited);
625  }
626}
627
628/// Check whether two objects need a chain edge, if so, add it
629/// otherwise remember the rejected SU.
630static inline
631void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
632                         SUnit *SUa, SUnit *SUb,
633                         std::set<SUnit *> &RejectList,
634                         unsigned TrueMemOrderLatency = 0,
635                         bool isNormalMemory = false) {
636  // If this is a false dependency,
637  // do not add the edge, but rememeber the rejected node.
638  if (!EnableAASchedMI ||
639      MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
640    SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
641    Dep.setLatency(TrueMemOrderLatency);
642    SUb->addPred(Dep);
643  }
644  else {
645    // Duplicate entries should be ignored.
646    RejectList.insert(SUb);
647    DEBUG(dbgs() << "\tReject chain dep between SU("
648          << SUa->NodeNum << ") and SU("
649          << SUb->NodeNum << ")\n");
650  }
651}
652
653/// Create an SUnit for each real instruction, numbered in top-down toplological
654/// order. The instruction order A < B, implies that no edge exists from B to A.
655///
656/// Map each real instruction to its SUnit.
657///
658/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
659/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
660/// instead of pointers.
661///
662/// MachineScheduler relies on initSUnits numbering the nodes by their order in
663/// the original instruction list.
664void ScheduleDAGInstrs::initSUnits() {
665  // We'll be allocating one SUnit for each real instruction in the region,
666  // which is contained within a basic block.
667  SUnits.reserve(BB->size());
668
669  for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
670    MachineInstr *MI = I;
671    if (MI->isDebugValue())
672      continue;
673
674    SUnit *SU = newSUnit(MI);
675    MISUnitMap[MI] = SU;
676
677    SU->isCall = MI->isCall();
678    SU->isCommutable = MI->isCommutable();
679
680    // Assign the Latency field of SU using target-provided information.
681    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
682  }
683}
684
685/// If RegPressure is non null, compute register pressure as a side effect. The
686/// DAG builder is an efficient place to do it because it already visits
687/// operands.
688void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
689                                        RegPressureTracker *RPTracker) {
690  // Create an SUnit for each real instruction.
691  initSUnits();
692
693  // We build scheduling units by walking a block's instruction list from bottom
694  // to top.
695
696  // Remember where a generic side-effecting instruction is as we procede.
697  SUnit *BarrierChain = 0, *AliasChain = 0;
698
699  // Memory references to specific known memory locations are tracked
700  // so that they can be given more precise dependencies. We track
701  // separately the known memory locations that may alias and those
702  // that are known not to alias
703  MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
704  MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
705  std::set<SUnit*> RejectMemNodes;
706
707  // Remove any stale debug info; sometimes BuildSchedGraph is called again
708  // without emitting the info from the previous call.
709  DbgValues.clear();
710  FirstDbgValue = NULL;
711
712  assert(Defs.empty() && Uses.empty() &&
713         "Only BuildGraph should update Defs/Uses");
714  Defs.setUniverse(TRI->getNumRegs());
715  Uses.setUniverse(TRI->getNumRegs());
716
717  assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
718  // FIXME: Allow SparseSet to reserve space for the creation of virtual
719  // registers during scheduling. Don't artificially inflate the Universe
720  // because we want to assert that vregs are not created during DAG building.
721  VRegDefs.setUniverse(MRI.getNumVirtRegs());
722
723  // Model data dependencies between instructions being scheduled and the
724  // ExitSU.
725  addSchedBarrierDeps();
726
727  // Walk the list of instructions, from bottom moving up.
728  MachineInstr *DbgMI = NULL;
729  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
730       MII != MIE; --MII) {
731    MachineInstr *MI = prior(MII);
732    if (MI && DbgMI) {
733      DbgValues.push_back(std::make_pair(DbgMI, MI));
734      DbgMI = NULL;
735    }
736
737    if (MI->isDebugValue()) {
738      DbgMI = MI;
739      continue;
740    }
741    if (RPTracker) {
742      RPTracker->recede();
743      assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
744    }
745
746    assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) &&
747           "Cannot schedule terminators or labels!");
748
749    SUnit *SU = MISUnitMap[MI];
750    assert(SU && "No SUnit mapped to this MI");
751
752    // Add register-based dependencies (data, anti, and output).
753    bool HasVRegDef = false;
754    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
755      const MachineOperand &MO = MI->getOperand(j);
756      if (!MO.isReg()) continue;
757      unsigned Reg = MO.getReg();
758      if (Reg == 0) continue;
759
760      if (TRI->isPhysicalRegister(Reg))
761        addPhysRegDeps(SU, j);
762      else {
763        assert(!IsPostRA && "Virtual register encountered!");
764        if (MO.isDef()) {
765          HasVRegDef = true;
766          addVRegDefDeps(SU, j);
767        }
768        else if (MO.readsReg()) // ignore undef operands
769          addVRegUseDeps(SU, j);
770      }
771    }
772    // If we haven't seen any uses in this scheduling region, create a
773    // dependence edge to ExitSU to model the live-out latency. This is required
774    // for vreg defs with no in-region use, and prefetches with no vreg def.
775    //
776    // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
777    // check currently relies on being called before adding chain deps.
778    if (SU->NumSuccs == 0 && SU->Latency > 1
779        && (HasVRegDef || MI->mayLoad())) {
780      SDep Dep(SU, SDep::Artificial);
781      Dep.setLatency(SU->Latency - 1);
782      ExitSU.addPred(Dep);
783    }
784
785    // Add chain dependencies.
786    // Chain dependencies used to enforce memory order should have
787    // latency of 0 (except for true dependency of Store followed by
788    // aliased Load... we estimate that with a single cycle of latency
789    // assuming the hardware will bypass)
790    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
791    // after stack slots are lowered to actual addresses.
792    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
793    // produce more precise dependence information.
794    unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
795    if (isGlobalMemoryObject(AA, MI)) {
796      // Be conservative with these and add dependencies on all memory
797      // references, even those that are known to not alias.
798      for (MapVector<const Value *, SUnit *>::iterator I =
799             NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
800        I->second->addPred(SDep(SU, SDep::Barrier));
801      }
802      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
803             NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
804        for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
805          SDep Dep(SU, SDep::Barrier);
806          Dep.setLatency(TrueMemOrderLatency);
807          I->second[i]->addPred(Dep);
808        }
809      }
810      // Add SU to the barrier chain.
811      if (BarrierChain)
812        BarrierChain->addPred(SDep(SU, SDep::Barrier));
813      BarrierChain = SU;
814      // This is a barrier event that acts as a pivotal node in the DAG,
815      // so it is safe to clear list of exposed nodes.
816      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
817                      TrueMemOrderLatency);
818      RejectMemNodes.clear();
819      NonAliasMemDefs.clear();
820      NonAliasMemUses.clear();
821
822      // fall-through
823    new_alias_chain:
824      // Chain all possibly aliasing memory references though SU.
825      if (AliasChain) {
826        unsigned ChainLatency = 0;
827        if (AliasChain->getInstr()->mayLoad())
828          ChainLatency = TrueMemOrderLatency;
829        addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes,
830                           ChainLatency);
831      }
832      AliasChain = SU;
833      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
834        addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
835                           TrueMemOrderLatency);
836      for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
837           E = AliasMemDefs.end(); I != E; ++I)
838        addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
839      for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
840           AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
841        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
842          addChainDependency(AA, MFI, SU, I->second[i], RejectMemNodes,
843                             TrueMemOrderLatency);
844      }
845      adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
846                      TrueMemOrderLatency);
847      PendingLoads.clear();
848      AliasMemDefs.clear();
849      AliasMemUses.clear();
850    } else if (MI->mayStore()) {
851      UnderlyingObjectsVector Objs;
852      getUnderlyingObjectsForInstr(MI, MFI, Objs);
853
854      if (Objs.empty()) {
855        // Treat all other stores conservatively.
856        goto new_alias_chain;
857      }
858
859      bool MayAlias = false;
860      for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
861           K != KE; ++K) {
862        const Value *V = K->getPointer();
863        bool ThisMayAlias = K->getInt();
864        if (ThisMayAlias)
865          MayAlias = true;
866
867        // A store to a specific PseudoSourceValue. Add precise dependencies.
868        // Record the def in MemDefs, first adding a dep if there is
869        // an existing def.
870        MapVector<const Value *, SUnit *>::iterator I =
871          ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
872        MapVector<const Value *, SUnit *>::iterator IE =
873          ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
874        if (I != IE) {
875          addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
876          I->second = SU;
877        } else {
878          if (ThisMayAlias)
879            AliasMemDefs[V] = SU;
880          else
881            NonAliasMemDefs[V] = SU;
882        }
883        // Handle the uses in MemUses, if there are any.
884        MapVector<const Value *, std::vector<SUnit *> >::iterator J =
885          ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
886        MapVector<const Value *, std::vector<SUnit *> >::iterator JE =
887          ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
888        if (J != JE) {
889          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
890            addChainDependency(AA, MFI, SU, J->second[i], RejectMemNodes,
891                               TrueMemOrderLatency, true);
892          J->second.clear();
893        }
894      }
895      if (MayAlias) {
896        // Add dependencies from all the PendingLoads, i.e. loads
897        // with no underlying object.
898        for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
899          addChainDependency(AA, MFI, SU, PendingLoads[k], RejectMemNodes,
900                             TrueMemOrderLatency);
901        // Add dependence on alias chain, if needed.
902        if (AliasChain)
903          addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
904        // But we also should check dependent instructions for the
905        // SU in question.
906        adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
907                        TrueMemOrderLatency);
908      }
909      // Add dependence on barrier chain, if needed.
910      // There is no point to check aliasing on barrier event. Even if
911      // SU and barrier _could_ be reordered, they should not. In addition,
912      // we have lost all RejectMemNodes below barrier.
913      if (BarrierChain)
914        BarrierChain->addPred(SDep(SU, SDep::Barrier));
915
916      if (!ExitSU.isPred(SU))
917        // Push store's up a bit to avoid them getting in between cmp
918        // and branches.
919        ExitSU.addPred(SDep(SU, SDep::Artificial));
920    } else if (MI->mayLoad()) {
921      bool MayAlias = true;
922      if (MI->isInvariantLoad(AA)) {
923        // Invariant load, no chain dependencies needed!
924      } else {
925        UnderlyingObjectsVector Objs;
926        getUnderlyingObjectsForInstr(MI, MFI, Objs);
927
928        if (Objs.empty()) {
929          // A load with no underlying object. Depend on all
930          // potentially aliasing stores.
931          for (MapVector<const Value *, SUnit *>::iterator I =
932                 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
933            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes);
934
935          PendingLoads.push_back(SU);
936          MayAlias = true;
937        } else {
938          MayAlias = false;
939        }
940
941        for (UnderlyingObjectsVector::iterator
942             J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
943          const Value *V = J->getPointer();
944          bool ThisMayAlias = J->getInt();
945
946          if (ThisMayAlias)
947            MayAlias = true;
948
949          // A load from a specific PseudoSourceValue. Add precise dependencies.
950          MapVector<const Value *, SUnit *>::iterator I =
951            ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
952          MapVector<const Value *, SUnit *>::iterator IE =
953            ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
954          if (I != IE)
955            addChainDependency(AA, MFI, SU, I->second, RejectMemNodes, 0, true);
956          if (ThisMayAlias)
957            AliasMemUses[V].push_back(SU);
958          else
959            NonAliasMemUses[V].push_back(SU);
960        }
961        if (MayAlias)
962          adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
963        // Add dependencies on alias and barrier chains, if needed.
964        if (MayAlias && AliasChain)
965          addChainDependency(AA, MFI, SU, AliasChain, RejectMemNodes);
966        if (BarrierChain)
967          BarrierChain->addPred(SDep(SU, SDep::Barrier));
968      }
969    }
970  }
971  if (DbgMI)
972    FirstDbgValue = DbgMI;
973
974  Defs.clear();
975  Uses.clear();
976  VRegDefs.clear();
977  PendingLoads.clear();
978}
979
980void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
981#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
982  SU->getInstr()->dump();
983#endif
984}
985
986std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
987  std::string s;
988  raw_string_ostream oss(s);
989  if (SU == &EntrySU)
990    oss << "<entry>";
991  else if (SU == &ExitSU)
992    oss << "<exit>";
993  else
994    SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true);
995  return oss.str();
996}
997
998/// Return the basic block label. It is not necessarilly unique because a block
999/// contains multiple scheduling regions. But it is fine for visualization.
1000std::string ScheduleDAGInstrs::getDAGName() const {
1001  return "dag." + BB->getFullName();
1002}
1003
1004//===----------------------------------------------------------------------===//
1005// SchedDFSResult Implementation
1006//===----------------------------------------------------------------------===//
1007
1008namespace llvm {
1009/// \brief Internal state used to compute SchedDFSResult.
1010class SchedDFSImpl {
1011  SchedDFSResult &R;
1012
1013  /// Join DAG nodes into equivalence classes by their subtree.
1014  IntEqClasses SubtreeClasses;
1015  /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1016  std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1017
1018  struct RootData {
1019    unsigned NodeID;
1020    unsigned ParentNodeID;  // Parent node (member of the parent subtree).
1021    unsigned SubInstrCount; // Instr count in this tree only, not children.
1022
1023    RootData(unsigned id): NodeID(id),
1024                           ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1025                           SubInstrCount(0) {}
1026
1027    unsigned getSparseSetIndex() const { return NodeID; }
1028  };
1029
1030  SparseSet<RootData> RootSet;
1031
1032public:
1033  SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1034    RootSet.setUniverse(R.DFSNodeData.size());
1035  }
1036
1037  /// Return true if this node been visited by the DFS traversal.
1038  ///
1039  /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1040  /// ID. Later, SubtreeID is updated but remains valid.
1041  bool isVisited(const SUnit *SU) const {
1042    return R.DFSNodeData[SU->NodeNum].SubtreeID
1043      != SchedDFSResult::InvalidSubtreeID;
1044  }
1045
1046  /// Initialize this node's instruction count. We don't need to flag the node
1047  /// visited until visitPostorder because the DAG cannot have cycles.
1048  void visitPreorder(const SUnit *SU) {
1049    R.DFSNodeData[SU->NodeNum].InstrCount =
1050      SU->getInstr()->isTransient() ? 0 : 1;
1051  }
1052
1053  /// Called once for each node after all predecessors are visited. Revisit this
1054  /// node's predecessors and potentially join them now that we know the ILP of
1055  /// the other predecessors.
1056  void visitPostorderNode(const SUnit *SU) {
1057    // Mark this node as the root of a subtree. It may be joined with its
1058    // successors later.
1059    R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1060    RootData RData(SU->NodeNum);
1061    RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1062
1063    // If any predecessors are still in their own subtree, they either cannot be
1064    // joined or are large enough to remain separate. If this parent node's
1065    // total instruction count is not greater than a child subtree by at least
1066    // the subtree limit, then try to join it now since splitting subtrees is
1067    // only useful if multiple high-pressure paths are possible.
1068    unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1069    for (SUnit::const_pred_iterator
1070           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1071      if (PI->getKind() != SDep::Data)
1072        continue;
1073      unsigned PredNum = PI->getSUnit()->NodeNum;
1074      if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1075        joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1076
1077      // Either link or merge the TreeData entry from the child to the parent.
1078      if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1079        // If the predecessor's parent is invalid, this is a tree edge and the
1080        // current node is the parent.
1081        if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1082          RootSet[PredNum].ParentNodeID = SU->NodeNum;
1083      }
1084      else if (RootSet.count(PredNum)) {
1085        // The predecessor is not a root, but is still in the root set. This
1086        // must be the new parent that it was just joined to. Note that
1087        // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1088        // set to the original parent.
1089        RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1090        RootSet.erase(PredNum);
1091      }
1092    }
1093    RootSet[SU->NodeNum] = RData;
1094  }
1095
1096  /// Called once for each tree edge after calling visitPostOrderNode on the
1097  /// predecessor. Increment the parent node's instruction count and
1098  /// preemptively join this subtree to its parent's if it is small enough.
1099  void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1100    R.DFSNodeData[Succ->NodeNum].InstrCount
1101      += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1102    joinPredSubtree(PredDep, Succ);
1103  }
1104
1105  /// Add a connection for cross edges.
1106  void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1107    ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1108  }
1109
1110  /// Set each node's subtree ID to the representative ID and record connections
1111  /// between trees.
1112  void finalize() {
1113    SubtreeClasses.compress();
1114    R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1115    assert(SubtreeClasses.getNumClasses() == RootSet.size()
1116           && "number of roots should match trees");
1117    for (SparseSet<RootData>::const_iterator
1118           RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1119      unsigned TreeID = SubtreeClasses[RI->NodeID];
1120      if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1121        R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1122      R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1123      // Note that SubInstrCount may be greater than InstrCount if we joined
1124      // subtrees across a cross edge. InstrCount will be attributed to the
1125      // original parent, while SubInstrCount will be attributed to the joined
1126      // parent.
1127    }
1128    R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1129    R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1130    DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1131    for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1132      R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1133      DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
1134            << R.DFSNodeData[Idx].SubtreeID << '\n');
1135    }
1136    for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1137           I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1138         I != E; ++I) {
1139      unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1140      unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1141      if (PredTree == SuccTree)
1142        continue;
1143      unsigned Depth = I->first->getDepth();
1144      addConnection(PredTree, SuccTree, Depth);
1145      addConnection(SuccTree, PredTree, Depth);
1146    }
1147  }
1148
1149protected:
1150  /// Join the predecessor subtree with the successor that is its DFS
1151  /// parent. Apply some heuristics before joining.
1152  bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1153                       bool CheckLimit = true) {
1154    assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1155
1156    // Check if the predecessor is already joined.
1157    const SUnit *PredSU = PredDep.getSUnit();
1158    unsigned PredNum = PredSU->NodeNum;
1159    if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1160      return false;
1161
1162    // Four is the magic number of successors before a node is considered a
1163    // pinch point.
1164    unsigned NumDataSucs = 0;
1165    for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1166           SE = PredSU->Succs.end(); SI != SE; ++SI) {
1167      if (SI->getKind() == SDep::Data) {
1168        if (++NumDataSucs >= 4)
1169          return false;
1170      }
1171    }
1172    if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1173      return false;
1174    R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1175    SubtreeClasses.join(Succ->NodeNum, PredNum);
1176    return true;
1177  }
1178
1179  /// Called by finalize() to record a connection between trees.
1180  void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1181    if (!Depth)
1182      return;
1183
1184    do {
1185      SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1186        R.SubtreeConnections[FromTree];
1187      for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1188             I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1189        if (I->TreeID == ToTree) {
1190          I->Level = std::max(I->Level, Depth);
1191          return;
1192        }
1193      }
1194      Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1195      FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1196    } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1197  }
1198};
1199} // namespace llvm
1200
1201namespace {
1202/// \brief Manage the stack used by a reverse depth-first search over the DAG.
1203class SchedDAGReverseDFS {
1204  std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1205public:
1206  bool isComplete() const { return DFSStack.empty(); }
1207
1208  void follow(const SUnit *SU) {
1209    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1210  }
1211  void advance() { ++DFSStack.back().second; }
1212
1213  const SDep *backtrack() {
1214    DFSStack.pop_back();
1215    return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second);
1216  }
1217
1218  const SUnit *getCurr() const { return DFSStack.back().first; }
1219
1220  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1221
1222  SUnit::const_pred_iterator getPredEnd() const {
1223    return getCurr()->Preds.end();
1224  }
1225};
1226} // anonymous
1227
1228static bool hasDataSucc(const SUnit *SU) {
1229  for (SUnit::const_succ_iterator
1230         SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1231    if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1232      return true;
1233  }
1234  return false;
1235}
1236
1237/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1238/// search from this root.
1239void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1240  if (!IsBottomUp)
1241    llvm_unreachable("Top-down ILP metric is unimplemnted");
1242
1243  SchedDFSImpl Impl(*this);
1244  for (ArrayRef<SUnit>::const_iterator
1245         SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1246    const SUnit *SU = &*SI;
1247    if (Impl.isVisited(SU) || hasDataSucc(SU))
1248      continue;
1249
1250    SchedDAGReverseDFS DFS;
1251    Impl.visitPreorder(SU);
1252    DFS.follow(SU);
1253    for (;;) {
1254      // Traverse the leftmost path as far as possible.
1255      while (DFS.getPred() != DFS.getPredEnd()) {
1256        const SDep &PredDep = *DFS.getPred();
1257        DFS.advance();
1258        // Ignore non-data edges.
1259        if (PredDep.getKind() != SDep::Data
1260            || PredDep.getSUnit()->isBoundaryNode()) {
1261          continue;
1262        }
1263        // An already visited edge is a cross edge, assuming an acyclic DAG.
1264        if (Impl.isVisited(PredDep.getSUnit())) {
1265          Impl.visitCrossEdge(PredDep, DFS.getCurr());
1266          continue;
1267        }
1268        Impl.visitPreorder(PredDep.getSUnit());
1269        DFS.follow(PredDep.getSUnit());
1270      }
1271      // Visit the top of the stack in postorder and backtrack.
1272      const SUnit *Child = DFS.getCurr();
1273      const SDep *PredDep = DFS.backtrack();
1274      Impl.visitPostorderNode(Child);
1275      if (PredDep)
1276        Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1277      if (DFS.isComplete())
1278        break;
1279    }
1280  }
1281  Impl.finalize();
1282}
1283
1284/// The root of the given SubtreeID was just scheduled. For all subtrees
1285/// connected to this tree, record the depth of the connection so that the
1286/// nearest connected subtrees can be prioritized.
1287void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1288  for (SmallVectorImpl<Connection>::const_iterator
1289         I = SubtreeConnections[SubtreeID].begin(),
1290         E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1291    SubtreeConnectLevels[I->TreeID] =
1292      std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1293    DEBUG(dbgs() << "  Tree: " << I->TreeID
1294          << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1295  }
1296}
1297
1298#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1299void ILPValue::print(raw_ostream &OS) const {
1300  OS << InstrCount << " / " << Length << " = ";
1301  if (!Length)
1302    OS << "BADILP";
1303  else
1304    OS << format("%g", ((double)InstrCount / Length));
1305}
1306
1307void ILPValue::dump() const {
1308  dbgs() << *this << '\n';
1309}
1310
1311namespace llvm {
1312
1313raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1314  Val.print(OS);
1315  return OS;
1316}
1317
1318} // namespace llvm
1319#endif // !NDEBUG || LLVM_ENABLE_DUMP
1320