ScheduleDAGInstrs.cpp revision f7119393a97c2a10757084b6bc186380f8c19a73
1//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the ScheduleDAGInstrs class, which implements re-scheduling
11// of MachineInstrs.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "sched-instrs"
16#include "llvm/CodeGen/MachineDominators.h"
17#include "llvm/CodeGen/MachineFunctionPass.h"
18#include "llvm/CodeGen/MachineLoopInfo.h"
19#include "llvm/CodeGen/MachineRegisterInfo.h"
20#include "llvm/CodeGen/ScheduleDAGInstrs.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetMachine.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetRegisterInfo.h"
25#include "llvm/Target/TargetSubtarget.h"
26#include "llvm/Support/Compiler.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/ADT/SmallSet.h"
30#include <map>
31using namespace llvm;
32
33namespace {
34  class VISIBILITY_HIDDEN LoopDependencies {
35    const MachineLoopInfo &MLI;
36    const MachineDominatorTree &MDT;
37
38  public:
39    typedef std::map<unsigned, std::pair<const MachineOperand *, unsigned> >
40      LoopDeps;
41    LoopDeps Deps;
42
43    LoopDependencies(const MachineLoopInfo &mli,
44                     const MachineDominatorTree &mdt) :
45      MLI(mli), MDT(mdt) {}
46
47    void VisitLoop(const MachineLoop *Loop) {
48      Deps.clear();
49      MachineBasicBlock *Header = Loop->getHeader();
50      SmallSet<unsigned, 8> LoopLiveIns;
51      for (MachineBasicBlock::livein_iterator LI = Header->livein_begin(),
52           LE = Header->livein_end(); LI != LE; ++LI)
53        LoopLiveIns.insert(*LI);
54
55      const MachineDomTreeNode *Node = MDT.getNode(Header);
56      const MachineBasicBlock *MBB = Node->getBlock();
57      assert(Loop->contains(MBB) &&
58             "Loop does not contain header!");
59      VisitRegion(Node, MBB, Loop, LoopLiveIns);
60    }
61
62  private:
63    void VisitRegion(const MachineDomTreeNode *Node,
64                     const MachineBasicBlock *MBB,
65                     const MachineLoop *Loop,
66                     const SmallSet<unsigned, 8> &LoopLiveIns) {
67      unsigned Count = 0;
68      for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
69           I != E; ++I, ++Count) {
70        const MachineInstr *MI = I;
71        for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
72          const MachineOperand &MO = MI->getOperand(i);
73          if (!MO.isReg() || !MO.isUse())
74            continue;
75          unsigned MOReg = MO.getReg();
76          if (LoopLiveIns.count(MOReg))
77            Deps.insert(std::make_pair(MOReg, std::make_pair(&MO, Count)));
78        }
79      }
80
81      const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
82      for (std::vector<MachineDomTreeNode*>::const_iterator I =
83           Children.begin(), E = Children.end(); I != E; ++I) {
84        const MachineDomTreeNode *ChildNode = *I;
85        MachineBasicBlock *ChildBlock = ChildNode->getBlock();
86        if (Loop->contains(ChildBlock))
87          VisitRegion(ChildNode, ChildBlock, Loop, LoopLiveIns);
88      }
89    }
90  };
91}
92
93ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
94                                     const MachineLoopInfo &mli,
95                                     const MachineDominatorTree &mdt)
96  : ScheduleDAG(mf), MLI(mli), MDT(mdt) {}
97
98void ScheduleDAGInstrs::BuildSchedGraph() {
99  SUnits.reserve(BB->size());
100
101  // We build scheduling units by walking a block's instruction list from bottom
102  // to top.
103
104  // Remember where a generic side-effecting instruction is as we procede. If
105  // ChainMMO is null, this is assumed to have arbitrary side-effects. If
106  // ChainMMO is non-null, then Chain makes only a single memory reference.
107  SUnit *Chain = 0;
108  MachineMemOperand *ChainMMO = 0;
109
110  // Memory references to specific known memory locations are tracked so that
111  // they can be given more precise dependencies.
112  std::map<const Value *, SUnit *> MemDefs;
113  std::map<const Value *, std::vector<SUnit *> > MemUses;
114
115  // If we have an SUnit which is representing a terminator instruction, we
116  // can use it as a place-holder successor for inter-block dependencies.
117  SUnit *Terminator = 0;
118
119  // Terminators can perform control transfers, we we need to make sure that
120  // all the work of the block is done before the terminator. Labels can
121  // mark points of interest for various types of meta-data (eg. EH data),
122  // and we need to make sure nothing is scheduled around them.
123  SUnit *SchedulingBarrier = 0;
124
125  LoopDependencies LoopRegs(MLI, MDT);
126
127  // Track which regs are live into a loop, to help guide back-edge-aware
128  // scheduling.
129  SmallSet<unsigned, 8> LoopLiveInRegs;
130  if (MachineLoop *ML = MLI.getLoopFor(BB))
131    if (BB == ML->getLoopLatch()) {
132      MachineBasicBlock *Header = ML->getHeader();
133      for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
134           E = Header->livein_end(); I != E; ++I)
135        LoopLiveInRegs.insert(*I);
136      LoopRegs.VisitLoop(ML);
137    }
138
139  // Check to see if the scheduler cares about latencies.
140  bool UnitLatencies = ForceUnitLatencies();
141
142  // Ask the target if address-backscheduling is desirable, and if so how much.
143  unsigned SpecialAddressLatency =
144    TM.getSubtarget<TargetSubtarget>().getSpecialAddressLatency();
145
146  for (MachineBasicBlock::iterator MII = End, MIE = Begin;
147       MII != MIE; --MII) {
148    MachineInstr *MI = prior(MII);
149    const TargetInstrDesc &TID = MI->getDesc();
150    SUnit *SU = NewSUnit(MI);
151
152    // Assign the Latency field of SU using target-provided information.
153    if (UnitLatencies)
154      SU->Latency = 1;
155    else
156      ComputeLatency(SU);
157
158    // Add register-based dependencies (data, anti, and output).
159    for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
160      const MachineOperand &MO = MI->getOperand(j);
161      if (!MO.isReg()) continue;
162      unsigned Reg = MO.getReg();
163      if (Reg == 0) continue;
164
165      assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
166      std::vector<SUnit *> &UseList = Uses[Reg];
167      std::vector<SUnit *> &DefList = Defs[Reg];
168      // Optionally add output and anti dependencies.
169      // TODO: Using a latency of 1 here assumes there's no cost for
170      //       reusing registers.
171      SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
172      for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
173        SUnit *DefSU = DefList[i];
174        if (DefSU != SU &&
175            (Kind != SDep::Output || !MO.isDead() ||
176             !DefSU->getInstr()->registerDefIsDead(Reg)))
177          DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/Reg));
178      }
179      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
180        std::vector<SUnit *> &DefList = Defs[*Alias];
181        for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
182          SUnit *DefSU = DefList[i];
183          if (DefSU != SU &&
184              (Kind != SDep::Output || !MO.isDead() ||
185               !DefSU->getInstr()->registerDefIsDead(Reg)))
186            DefSU->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/ *Alias));
187        }
188      }
189
190      if (MO.isDef()) {
191        // Add any data dependencies.
192        unsigned DataLatency = SU->Latency;
193        for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
194          SUnit *UseSU = UseList[i];
195          if (UseSU != SU) {
196            unsigned LDataLatency = DataLatency;
197            // Optionally add in a special extra latency for nodes that
198            // feed addresses.
199            // TODO: Do this for register aliases too.
200            if (SpecialAddressLatency != 0 && !UnitLatencies) {
201              MachineInstr *UseMI = UseSU->getInstr();
202              const TargetInstrDesc &UseTID = UseMI->getDesc();
203              int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
204              assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
205              if ((UseTID.mayLoad() || UseTID.mayStore()) &&
206                  (unsigned)RegUseIndex < UseTID.getNumOperands() &&
207                  UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
208                LDataLatency += SpecialAddressLatency;
209            }
210            UseSU->addPred(SDep(SU, SDep::Data, LDataLatency, Reg));
211          }
212        }
213        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
214          std::vector<SUnit *> &UseList = Uses[*Alias];
215          for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
216            SUnit *UseSU = UseList[i];
217            if (UseSU != SU)
218              UseSU->addPred(SDep(SU, SDep::Data, DataLatency, *Alias));
219          }
220        }
221
222        // If a def is going to wrap back around to the top of the loop,
223        // backschedule it.
224        // TODO: Blocks in loops without terminators can benefit too.
225        if (!UnitLatencies && Terminator && DefList.empty()) {
226          LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
227          if (I != LoopRegs.Deps.end()) {
228            const MachineOperand *UseMO = I->second.first;
229            unsigned Count = I->second.second;
230            const MachineInstr *UseMI = UseMO->getParent();
231            unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
232            const TargetInstrDesc &UseTID = UseMI->getDesc();
233            // TODO: If we knew the total depth of the region here, we could
234            // handle the case where the whole loop is inside the region but
235            // is large enough that the isScheduleHigh trick isn't needed.
236            if (UseMOIdx < UseTID.getNumOperands()) {
237              // Currently, we only support scheduling regions consisting of
238              // single basic blocks. Check to see if the instruction is in
239              // the same region by checking to see if it has the same parent.
240              if (UseMI->getParent() != MI->getParent()) {
241                unsigned Latency = SU->Latency;
242                if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
243                  Latency += SpecialAddressLatency;
244                // This is a wild guess as to the portion of the latency which
245                // will be overlapped by work done outside the current
246                // scheduling region.
247                Latency -= std::min(Latency, Count);
248                // Add the artifical edge.
249                Terminator->addPred(SDep(SU, SDep::Order, Latency,
250                                         /*Reg=*/0, /*isNormalMemory=*/false,
251                                         /*isMustAlias=*/false,
252                                         /*isArtificial=*/true));
253              } else if (SpecialAddressLatency > 0 &&
254                         UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
255                // The entire loop body is within the current scheduling region
256                // and the latency of this operation is assumed to be greater
257                // than the latency of the loop.
258                // TODO: Recursively mark data-edge predecessors as
259                //       isScheduleHigh too.
260                SU->isScheduleHigh = true;
261              }
262            }
263            LoopRegs.Deps.erase(I);
264          }
265        }
266
267        UseList.clear();
268        if (!MO.isDead())
269          DefList.clear();
270        DefList.push_back(SU);
271      } else {
272        UseList.push_back(SU);
273      }
274    }
275
276    // Add chain dependencies.
277    // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
278    // after stack slots are lowered to actual addresses.
279    // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
280    // produce more precise dependence information.
281    if (TID.isCall() || TID.isTerminator() || TID.hasUnmodeledSideEffects()) {
282    new_chain:
283      // This is the conservative case. Add dependencies on all memory
284      // references.
285      if (Chain)
286        Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
287      Chain = SU;
288      for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
289        PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
290      PendingLoads.clear();
291      for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
292           E = MemDefs.end(); I != E; ++I) {
293        I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
294        I->second = SU;
295      }
296      for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
297           MemUses.begin(), E = MemUses.end(); I != E; ++I) {
298        for (unsigned i = 0, e = I->second.size(); i != e; ++i)
299          I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency));
300        I->second.clear();
301      }
302      // See if it is known to just have a single memory reference.
303      MachineInstr *ChainMI = Chain->getInstr();
304      const TargetInstrDesc &ChainTID = ChainMI->getDesc();
305      if (!ChainTID.isCall() && !ChainTID.isTerminator() &&
306          !ChainTID.hasUnmodeledSideEffects() &&
307          ChainMI->hasOneMemOperand() &&
308          !ChainMI->memoperands_begin()->isVolatile() &&
309          ChainMI->memoperands_begin()->getValue())
310        // We know that the Chain accesses one specific memory location.
311        ChainMMO = &*ChainMI->memoperands_begin();
312      else
313        // Unknown memory accesses. Assume the worst.
314        ChainMMO = 0;
315    } else if (TID.mayStore()) {
316      if (MI->hasOneMemOperand() &&
317          MI->memoperands_begin()->getValue() &&
318          !MI->memoperands_begin()->isVolatile() &&
319          isa<PseudoSourceValue>(MI->memoperands_begin()->getValue())) {
320        // A store to a specific PseudoSourceValue. Add precise dependencies.
321        const Value *V = MI->memoperands_begin()->getValue();
322        // Handle the def in MemDefs, if there is one.
323        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
324        if (I != MemDefs.end()) {
325          I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
326                                  /*isNormalMemory=*/true));
327          I->second = SU;
328        } else {
329          MemDefs[V] = SU;
330        }
331        // Handle the uses in MemUses, if there are any.
332        std::map<const Value *, std::vector<SUnit *> >::iterator J =
333          MemUses.find(V);
334        if (J != MemUses.end()) {
335          for (unsigned i = 0, e = J->second.size(); i != e; ++i)
336            J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
337                                       /*isNormalMemory=*/true));
338          J->second.clear();
339        }
340        // Add a general dependence too, if needed.
341        if (Chain)
342          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
343      } else
344        // Treat all other stores conservatively.
345        goto new_chain;
346    } else if (TID.mayLoad()) {
347      if (TII->isInvariantLoad(MI)) {
348        // Invariant load, no chain dependencies needed!
349      } else if (MI->hasOneMemOperand() &&
350                 MI->memoperands_begin()->getValue() &&
351                 !MI->memoperands_begin()->isVolatile() &&
352                 isa<PseudoSourceValue>(MI->memoperands_begin()->getValue())) {
353        // A load from a specific PseudoSourceValue. Add precise dependencies.
354        const Value *V = MI->memoperands_begin()->getValue();
355        std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
356        if (I != MemDefs.end())
357          I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
358                                  /*isNormalMemory=*/true));
359        MemUses[V].push_back(SU);
360
361        // Add a general dependence too, if needed.
362        if (Chain && (!ChainMMO ||
363                      (ChainMMO->isStore() || ChainMMO->isVolatile())))
364          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
365      } else if (MI->hasVolatileMemoryRef()) {
366        // Treat volatile loads conservatively. Note that this includes
367        // cases where memoperand information is unavailable.
368        goto new_chain;
369      } else {
370        // A normal load. Just depend on the general chain.
371        if (Chain)
372          Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
373        PendingLoads.push_back(SU);
374      }
375    }
376
377    // Add chain edges from terminators and labels to ensure that no
378    // instructions are scheduled past them.
379    if (SchedulingBarrier && SU->Succs.empty())
380      SchedulingBarrier->addPred(SDep(SU, SDep::Order, SU->Latency));
381    // If we encounter a mid-block label, we need to go back and add
382    // dependencies on SUnits we've already processed to prevent the
383    // label from moving downward.
384    if (MI->isLabel())
385      for (SUnit *I = SU; I != &SUnits[0]; --I) {
386        SUnit *SuccSU = SU-1;
387        SuccSU->addPred(SDep(SU, SDep::Order, SU->Latency));
388        MachineInstr *SuccMI = SuccSU->getInstr();
389        if (SuccMI->getDesc().isTerminator() || SuccMI->isLabel())
390          break;
391      }
392    // If this instruction obstructs all scheduling, remember it.
393    if (TID.isTerminator() || MI->isLabel())
394      SchedulingBarrier = SU;
395    // If this instruction is a terminator, remember it.
396    if (TID.isTerminator())
397      Terminator = SU;
398  }
399
400  for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
401    Defs[i].clear();
402    Uses[i].clear();
403  }
404  PendingLoads.clear();
405}
406
407void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
408  const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
409
410  // Compute the latency for the node.  We use the sum of the latencies for
411  // all nodes flagged together into this SUnit.
412  SU->Latency =
413    InstrItins.getLatency(SU->getInstr()->getDesc().getSchedClass());
414
415  // Simplistic target-independent heuristic: assume that loads take
416  // extra time.
417  if (InstrItins.isEmpty())
418    if (SU->getInstr()->getDesc().mayLoad())
419      SU->Latency += 2;
420}
421
422void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
423  SU->getInstr()->dump();
424}
425
426std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
427  std::string s;
428  raw_string_ostream oss(s);
429  SU->getInstr()->print(oss);
430  return oss.str();
431}
432
433// EmitSchedule - Emit the machine code in scheduled order.
434MachineBasicBlock *ScheduleDAGInstrs::EmitSchedule() {
435  // For MachineInstr-based scheduling, we're rescheduling the instructions in
436  // the block, so start by removing them from the block.
437  while (Begin != End) {
438    MachineBasicBlock::iterator I = Begin;
439    ++Begin;
440    BB->remove(I);
441  }
442
443  // Then re-insert them according to the given schedule.
444  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
445    SUnit *SU = Sequence[i];
446    if (!SU) {
447      // Null SUnit* is a noop.
448      EmitNoop();
449      continue;
450    }
451
452    BB->insert(End, SU->getInstr());
453  }
454
455  return BB;
456}
457