FastISel.cpp revision 016c5829a5dacc3b28cb264b4b6d166552e3d568
1//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/Operator.h"
47#include "llvm/CodeGen/Analysis.h"
48#include "llvm/CodeGen/FastISel.h"
49#include "llvm/CodeGen/FunctionLoweringInfo.h"
50#include "llvm/CodeGen/MachineInstrBuilder.h"
51#include "llvm/CodeGen/MachineModuleInfo.h"
52#include "llvm/CodeGen/MachineRegisterInfo.h"
53#include "llvm/Analysis/DebugInfo.h"
54#include "llvm/Analysis/Loads.h"
55#include "llvm/Target/TargetData.h"
56#include "llvm/Target/TargetInstrInfo.h"
57#include "llvm/Target/TargetLowering.h"
58#include "llvm/Target/TargetMachine.h"
59#include "llvm/Support/ErrorHandling.h"
60#include "llvm/Support/Debug.h"
61using namespace llvm;
62
63/// startNewBlock - Set the current block to which generated machine
64/// instructions will be appended, and clear the local CSE map.
65///
66void FastISel::startNewBlock() {
67  LocalValueMap.clear();
68
69  // Start out as null, meaining no local-value instructions have
70  // been emitted.
71  LastLocalValue = 0;
72
73  // Advance the last local value past any EH_LABEL instructions.
74  MachineBasicBlock::iterator
75    I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
76  while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
77    LastLocalValue = I;
78    ++I;
79  }
80}
81
82bool FastISel::hasTrivialKill(const Value *V) const {
83  // Don't consider constants or arguments to have trivial kills.
84  const Instruction *I = dyn_cast<Instruction>(V);
85  if (!I)
86    return false;
87
88  // No-op casts are trivially coalesced by fast-isel.
89  if (const CastInst *Cast = dyn_cast<CastInst>(I))
90    if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
91        !hasTrivialKill(Cast->getOperand(0)))
92      return false;
93
94  // Only instructions with a single use in the same basic block are considered
95  // to have trivial kills.
96  return I->hasOneUse() &&
97         !(I->getOpcode() == Instruction::BitCast ||
98           I->getOpcode() == Instruction::PtrToInt ||
99           I->getOpcode() == Instruction::IntToPtr) &&
100         cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
101}
102
103unsigned FastISel::getRegForValue(const Value *V) {
104  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
105  // Don't handle non-simple values in FastISel.
106  if (!RealVT.isSimple())
107    return 0;
108
109  // Ignore illegal types. We must do this before looking up the value
110  // in ValueMap because Arguments are given virtual registers regardless
111  // of whether FastISel can handle them.
112  MVT VT = RealVT.getSimpleVT();
113  if (!TLI.isTypeLegal(VT)) {
114    // Handle integer promotions, though, because they're common and easy.
115    if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
116      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
117    else
118      return 0;
119  }
120
121  // Look up the value to see if we already have a register for it. We
122  // cache values defined by Instructions across blocks, and other values
123  // only locally. This is because Instructions already have the SSA
124  // def-dominates-use requirement enforced.
125  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
126  if (I != FuncInfo.ValueMap.end())
127    return I->second;
128
129  unsigned Reg = LocalValueMap[V];
130  if (Reg != 0)
131    return Reg;
132
133  // In bottom-up mode, just create the virtual register which will be used
134  // to hold the value. It will be materialized later.
135  if (isa<Instruction>(V) &&
136      (!isa<AllocaInst>(V) ||
137       !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
138    return FuncInfo.InitializeRegForValue(V);
139
140  SavePoint SaveInsertPt = enterLocalValueArea();
141
142  // Materialize the value in a register. Emit any instructions in the
143  // local value area.
144  Reg = materializeRegForValue(V, VT);
145
146  leaveLocalValueArea(SaveInsertPt);
147
148  return Reg;
149}
150
151/// materializeRegForValue - Helper for getRegForValue. This function is
152/// called when the value isn't already available in a register and must
153/// be materialized with new instructions.
154unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
155  unsigned Reg = 0;
156
157  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
158    if (CI->getValue().getActiveBits() <= 64)
159      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
160  } else if (isa<AllocaInst>(V)) {
161    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
162  } else if (isa<ConstantPointerNull>(V)) {
163    // Translate this as an integer zero so that it can be
164    // local-CSE'd with actual integer zeros.
165    Reg =
166      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
167  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
168    if (CF->isNullValue()) {
169      Reg = TargetMaterializeFloatZero(CF);
170    } else {
171      // Try to emit the constant directly.
172      Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
173    }
174
175    if (!Reg) {
176      // Try to emit the constant by using an integer constant with a cast.
177      const APFloat &Flt = CF->getValueAPF();
178      EVT IntVT = TLI.getPointerTy();
179
180      uint64_t x[2];
181      uint32_t IntBitWidth = IntVT.getSizeInBits();
182      bool isExact;
183      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
184                                APFloat::rmTowardZero, &isExact);
185      if (isExact) {
186        APInt IntVal(IntBitWidth, 2, x);
187
188        unsigned IntegerReg =
189          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
190        if (IntegerReg != 0)
191          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
192                           IntegerReg, /*Kill=*/false);
193      }
194    }
195  } else if (const Operator *Op = dyn_cast<Operator>(V)) {
196    if (!SelectOperator(Op, Op->getOpcode()))
197      if (!isa<Instruction>(Op) ||
198          !TargetSelectInstruction(cast<Instruction>(Op)))
199        return 0;
200    Reg = lookUpRegForValue(Op);
201  } else if (isa<UndefValue>(V)) {
202    Reg = createResultReg(TLI.getRegClassFor(VT));
203    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
204            TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
205  }
206
207  // If target-independent code couldn't handle the value, give target-specific
208  // code a try.
209  if (!Reg && isa<Constant>(V))
210    Reg = TargetMaterializeConstant(cast<Constant>(V));
211
212  // Don't cache constant materializations in the general ValueMap.
213  // To do so would require tracking what uses they dominate.
214  if (Reg != 0) {
215    LocalValueMap[V] = Reg;
216    LastLocalValue = MRI.getVRegDef(Reg);
217  }
218  return Reg;
219}
220
221unsigned FastISel::lookUpRegForValue(const Value *V) {
222  // Look up the value to see if we already have a register for it. We
223  // cache values defined by Instructions across blocks, and other values
224  // only locally. This is because Instructions already have the SSA
225  // def-dominates-use requirement enforced.
226  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
227  if (I != FuncInfo.ValueMap.end())
228    return I->second;
229  return LocalValueMap[V];
230}
231
232/// UpdateValueMap - Update the value map to include the new mapping for this
233/// instruction, or insert an extra copy to get the result in a previous
234/// determined register.
235/// NOTE: This is only necessary because we might select a block that uses
236/// a value before we select the block that defines the value.  It might be
237/// possible to fix this by selecting blocks in reverse postorder.
238void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
239  if (!isa<Instruction>(I)) {
240    LocalValueMap[I] = Reg;
241    return;
242  }
243
244  unsigned &AssignedReg = FuncInfo.ValueMap[I];
245  if (AssignedReg == 0)
246    // Use the new register.
247    AssignedReg = Reg;
248  else if (Reg != AssignedReg) {
249    // Arrange for uses of AssignedReg to be replaced by uses of Reg.
250    for (unsigned i = 0; i < NumRegs; i++)
251      FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
252
253    AssignedReg = Reg;
254  }
255}
256
257std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
258  unsigned IdxN = getRegForValue(Idx);
259  if (IdxN == 0)
260    // Unhandled operand. Halt "fast" selection and bail.
261    return std::pair<unsigned, bool>(0, false);
262
263  bool IdxNIsKill = hasTrivialKill(Idx);
264
265  // If the index is smaller or larger than intptr_t, truncate or extend it.
266  MVT PtrVT = TLI.getPointerTy();
267  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
268  if (IdxVT.bitsLT(PtrVT)) {
269    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
270                      IdxN, IdxNIsKill);
271    IdxNIsKill = true;
272  }
273  else if (IdxVT.bitsGT(PtrVT)) {
274    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
275                      IdxN, IdxNIsKill);
276    IdxNIsKill = true;
277  }
278  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
279}
280
281void FastISel::recomputeInsertPt() {
282  if (getLastLocalValue()) {
283    FuncInfo.InsertPt = getLastLocalValue();
284    FuncInfo.MBB = FuncInfo.InsertPt->getParent();
285    ++FuncInfo.InsertPt;
286  } else
287    FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
288
289  // Now skip past any EH_LABELs, which must remain at the beginning.
290  while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
291         FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
292    ++FuncInfo.InsertPt;
293}
294
295/// recomputeDebugLocForMaterializedRegs - Recompute debug location for
296/// very first instruction in a basic block. All instructions emitted
297/// to materialize registers do not have location information, see
298/// enterLocalValueArea(), becase they may not be emited at the right
299/// location.
300void FastISel::recomputeDebugLocForMaterializedRegs() {
301  if (!getLastLocalValue())
302    return;
303  MachineInstr *First = FuncInfo.MBB->getFirstNonPHI();
304  if (!First->getDebugLoc().isUnknown())
305    return;
306
307  for (MachineBasicBlock::iterator I = FuncInfo.MBB->begin(),
308         E = FuncInfo.MBB->end(); I != E; ++I) {
309    DebugLoc DL = I->getDebugLoc();
310    if (!DL.isUnknown()) {
311      First->setDebugLoc(DL);
312      return;
313    }
314  }
315}
316
317FastISel::SavePoint FastISel::enterLocalValueArea() {
318  MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
319  DebugLoc OldDL = DL;
320  recomputeInsertPt();
321  DL = DebugLoc();
322  SavePoint SP = { OldInsertPt, OldDL };
323  return SP;
324}
325
326void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
327  if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
328    LastLocalValue = llvm::prior(FuncInfo.InsertPt);
329
330  // Restore the previous insert position.
331  FuncInfo.InsertPt = OldInsertPt.InsertPt;
332  DL = OldInsertPt.DL;
333}
334
335/// SelectBinaryOp - Select and emit code for a binary operator instruction,
336/// which has an opcode which directly corresponds to the given ISD opcode.
337///
338bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
339  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
340  if (VT == MVT::Other || !VT.isSimple())
341    // Unhandled type. Halt "fast" selection and bail.
342    return false;
343
344  // We only handle legal types. For example, on x86-32 the instruction
345  // selector contains all of the 64-bit instructions from x86-64,
346  // under the assumption that i64 won't be used if the target doesn't
347  // support it.
348  if (!TLI.isTypeLegal(VT)) {
349    // MVT::i1 is special. Allow AND, OR, or XOR because they
350    // don't require additional zeroing, which makes them easy.
351    if (VT == MVT::i1 &&
352        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
353         ISDOpcode == ISD::XOR))
354      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
355    else
356      return false;
357  }
358
359  // Check if the first operand is a constant, and handle it as "ri".  At -O0,
360  // we don't have anything that canonicalizes operand order.
361  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
362    if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
363      unsigned Op1 = getRegForValue(I->getOperand(1));
364      if (Op1 == 0) return false;
365
366      bool Op1IsKill = hasTrivialKill(I->getOperand(1));
367
368      unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
369                                        Op1IsKill, CI->getZExtValue(),
370                                        VT.getSimpleVT());
371      if (ResultReg == 0) return false;
372
373      // We successfully emitted code for the given LLVM Instruction.
374      UpdateValueMap(I, ResultReg);
375      return true;
376    }
377
378
379  unsigned Op0 = getRegForValue(I->getOperand(0));
380  if (Op0 == 0)   // Unhandled operand. Halt "fast" selection and bail.
381    return false;
382
383  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
384
385  // Check if the second operand is a constant and handle it appropriately.
386  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
387    uint64_t Imm = CI->getZExtValue();
388
389    // Transform "sdiv exact X, 8" -> "sra X, 3".
390    if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
391        cast<BinaryOperator>(I)->isExact() &&
392        isPowerOf2_64(Imm)) {
393      Imm = Log2_64(Imm);
394      ISDOpcode = ISD::SRA;
395    }
396
397    unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
398                                      Op0IsKill, Imm, VT.getSimpleVT());
399    if (ResultReg == 0) return false;
400
401    // We successfully emitted code for the given LLVM Instruction.
402    UpdateValueMap(I, ResultReg);
403    return true;
404  }
405
406  // Check if the second operand is a constant float.
407  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
408    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
409                                     ISDOpcode, Op0, Op0IsKill, CF);
410    if (ResultReg != 0) {
411      // We successfully emitted code for the given LLVM Instruction.
412      UpdateValueMap(I, ResultReg);
413      return true;
414    }
415  }
416
417  unsigned Op1 = getRegForValue(I->getOperand(1));
418  if (Op1 == 0)
419    // Unhandled operand. Halt "fast" selection and bail.
420    return false;
421
422  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
423
424  // Now we have both operands in registers. Emit the instruction.
425  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
426                                   ISDOpcode,
427                                   Op0, Op0IsKill,
428                                   Op1, Op1IsKill);
429  if (ResultReg == 0)
430    // Target-specific code wasn't able to find a machine opcode for
431    // the given ISD opcode and type. Halt "fast" selection and bail.
432    return false;
433
434  // We successfully emitted code for the given LLVM Instruction.
435  UpdateValueMap(I, ResultReg);
436  return true;
437}
438
439bool FastISel::SelectGetElementPtr(const User *I) {
440  unsigned N = getRegForValue(I->getOperand(0));
441  if (N == 0)
442    // Unhandled operand. Halt "fast" selection and bail.
443    return false;
444
445  bool NIsKill = hasTrivialKill(I->getOperand(0));
446
447  const Type *Ty = I->getOperand(0)->getType();
448  MVT VT = TLI.getPointerTy();
449  for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
450       E = I->op_end(); OI != E; ++OI) {
451    const Value *Idx = *OI;
452    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
453      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
454      if (Field) {
455        // N = N + Offset
456        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
457        // FIXME: This can be optimized by combining the add with a
458        // subsequent one.
459        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
460        if (N == 0)
461          // Unhandled operand. Halt "fast" selection and bail.
462          return false;
463        NIsKill = true;
464      }
465      Ty = StTy->getElementType(Field);
466    } else {
467      Ty = cast<SequentialType>(Ty)->getElementType();
468
469      // If this is a constant subscript, handle it quickly.
470      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
471        if (CI->isZero()) continue;
472        uint64_t Offs =
473          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
474        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
475        if (N == 0)
476          // Unhandled operand. Halt "fast" selection and bail.
477          return false;
478        NIsKill = true;
479        continue;
480      }
481
482      // N = N + Idx * ElementSize;
483      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
484      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
485      unsigned IdxN = Pair.first;
486      bool IdxNIsKill = Pair.second;
487      if (IdxN == 0)
488        // Unhandled operand. Halt "fast" selection and bail.
489        return false;
490
491      if (ElementSize != 1) {
492        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
493        if (IdxN == 0)
494          // Unhandled operand. Halt "fast" selection and bail.
495          return false;
496        IdxNIsKill = true;
497      }
498      N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
499      if (N == 0)
500        // Unhandled operand. Halt "fast" selection and bail.
501        return false;
502    }
503  }
504
505  // We successfully emitted code for the given LLVM Instruction.
506  UpdateValueMap(I, N);
507  return true;
508}
509
510bool FastISel::SelectCall(const User *I) {
511  const CallInst *Call = cast<CallInst>(I);
512
513  // Handle simple inline asms.
514  if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getArgOperand(0))) {
515    // Don't attempt to handle constraints.
516    if (!IA->getConstraintString().empty())
517      return false;
518
519    unsigned ExtraInfo = 0;
520    if (IA->hasSideEffects())
521      ExtraInfo |= InlineAsm::Extra_HasSideEffects;
522    if (IA->isAlignStack())
523      ExtraInfo |= InlineAsm::Extra_IsAlignStack;
524
525    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
526            TII.get(TargetOpcode::INLINEASM))
527      .addExternalSymbol(IA->getAsmString().c_str())
528      .addImm(ExtraInfo);
529    return true;
530  }
531
532  const Function *F = Call->getCalledFunction();
533  if (!F) return false;
534
535  // Handle selected intrinsic function calls.
536  switch (F->getIntrinsicID()) {
537  default: break;
538  case Intrinsic::dbg_declare: {
539    const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
540    if (!DIVariable(DI->getVariable()).Verify() ||
541        !FuncInfo.MF->getMMI().hasDebugInfo())
542      return true;
543
544    const Value *Address = DI->getAddress();
545    if (!Address || isa<UndefValue>(Address) || isa<AllocaInst>(Address))
546      return true;
547
548    unsigned Reg = 0;
549    unsigned Offset = 0;
550    if (const Argument *Arg = dyn_cast<Argument>(Address)) {
551      if (Arg->hasByValAttr()) {
552        // Byval arguments' frame index is recorded during argument lowering.
553        // Use this info directly.
554        Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
555        if (Offset)
556          Reg = TRI.getFrameRegister(*FuncInfo.MF);
557      }
558    }
559    if (!Reg)
560      Reg = getRegForValue(Address);
561
562    if (Reg)
563      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
564              TII.get(TargetOpcode::DBG_VALUE))
565        .addReg(Reg, RegState::Debug).addImm(Offset)
566        .addMetadata(DI->getVariable());
567    return true;
568  }
569  case Intrinsic::dbg_value: {
570    // This form of DBG_VALUE is target-independent.
571    const DbgValueInst *DI = cast<DbgValueInst>(Call);
572    const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
573    const Value *V = DI->getValue();
574    if (!V) {
575      // Currently the optimizer can produce this; insert an undef to
576      // help debugging.  Probably the optimizer should not do this.
577      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
578        .addReg(0U).addImm(DI->getOffset())
579        .addMetadata(DI->getVariable());
580    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
581      if (CI->getBitWidth() > 64)
582        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
583          .addCImm(CI).addImm(DI->getOffset())
584          .addMetadata(DI->getVariable());
585      else
586        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
587          .addImm(CI->getZExtValue()).addImm(DI->getOffset())
588          .addMetadata(DI->getVariable());
589    } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
590      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
591        .addFPImm(CF).addImm(DI->getOffset())
592        .addMetadata(DI->getVariable());
593    } else if (unsigned Reg = lookUpRegForValue(V)) {
594      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
595        .addReg(Reg, RegState::Debug).addImm(DI->getOffset())
596        .addMetadata(DI->getVariable());
597    } else {
598      // We can't yet handle anything else here because it would require
599      // generating code, thus altering codegen because of debug info.
600      DEBUG(dbgs() << "Dropping debug info for " << DI);
601    }
602    return true;
603  }
604  case Intrinsic::eh_exception: {
605    EVT VT = TLI.getValueType(Call->getType());
606    if (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)!=TargetLowering::Expand)
607      break;
608
609    assert(FuncInfo.MBB->isLandingPad() &&
610           "Call to eh.exception not in landing pad!");
611    unsigned Reg = TLI.getExceptionAddressRegister();
612    const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
613    unsigned ResultReg = createResultReg(RC);
614    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
615            ResultReg).addReg(Reg);
616    UpdateValueMap(Call, ResultReg);
617    return true;
618  }
619  case Intrinsic::eh_selector: {
620    EVT VT = TLI.getValueType(Call->getType());
621    if (TLI.getOperationAction(ISD::EHSELECTION, VT) != TargetLowering::Expand)
622      break;
623    if (FuncInfo.MBB->isLandingPad())
624      AddCatchInfo(*Call, &FuncInfo.MF->getMMI(), FuncInfo.MBB);
625    else {
626#ifndef NDEBUG
627      FuncInfo.CatchInfoLost.insert(Call);
628#endif
629      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
630      unsigned Reg = TLI.getExceptionSelectorRegister();
631      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
632    }
633
634    unsigned Reg = TLI.getExceptionSelectorRegister();
635    EVT SrcVT = TLI.getPointerTy();
636    const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
637    unsigned ResultReg = createResultReg(RC);
638    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
639            ResultReg).addReg(Reg);
640
641    bool ResultRegIsKill = hasTrivialKill(Call);
642
643    // Cast the register to the type of the selector.
644    if (SrcVT.bitsGT(MVT::i32))
645      ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
646                             ResultReg, ResultRegIsKill);
647    else if (SrcVT.bitsLT(MVT::i32))
648      ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
649                             ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill);
650    if (ResultReg == 0)
651      // Unhandled operand. Halt "fast" selection and bail.
652      return false;
653
654    UpdateValueMap(Call, ResultReg);
655
656    return true;
657  }
658  case Intrinsic::objectsize: {
659    ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
660    unsigned long long Res = CI->isZero() ? -1ULL : 0;
661    Constant *ResCI = ConstantInt::get(Call->getType(), Res);
662    unsigned ResultReg = getRegForValue(ResCI);
663    if (ResultReg == 0)
664      return false;
665    UpdateValueMap(Call, ResultReg);
666    return true;
667  }
668  }
669
670  // An arbitrary call. Bail.
671  return false;
672}
673
674bool FastISel::SelectCast(const User *I, unsigned Opcode) {
675  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
676  EVT DstVT = TLI.getValueType(I->getType());
677
678  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
679      DstVT == MVT::Other || !DstVT.isSimple())
680    // Unhandled type. Halt "fast" selection and bail.
681    return false;
682
683  // Check if the destination type is legal.
684  if (!TLI.isTypeLegal(DstVT))
685    return false;
686
687  // Check if the source operand is legal.
688  if (!TLI.isTypeLegal(SrcVT))
689    return false;
690
691  unsigned InputReg = getRegForValue(I->getOperand(0));
692  if (!InputReg)
693    // Unhandled operand.  Halt "fast" selection and bail.
694    return false;
695
696  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
697
698  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
699                                  DstVT.getSimpleVT(),
700                                  Opcode,
701                                  InputReg, InputRegIsKill);
702  if (!ResultReg)
703    return false;
704
705  UpdateValueMap(I, ResultReg);
706  return true;
707}
708
709bool FastISel::SelectBitCast(const User *I) {
710  // If the bitcast doesn't change the type, just use the operand value.
711  if (I->getType() == I->getOperand(0)->getType()) {
712    unsigned Reg = getRegForValue(I->getOperand(0));
713    if (Reg == 0)
714      return false;
715    UpdateValueMap(I, Reg);
716    return true;
717  }
718
719  // Bitcasts of other values become reg-reg copies or BITCAST operators.
720  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
721  EVT DstVT = TLI.getValueType(I->getType());
722
723  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
724      DstVT == MVT::Other || !DstVT.isSimple() ||
725      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
726    // Unhandled type. Halt "fast" selection and bail.
727    return false;
728
729  unsigned Op0 = getRegForValue(I->getOperand(0));
730  if (Op0 == 0)
731    // Unhandled operand. Halt "fast" selection and bail.
732    return false;
733
734  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
735
736  // First, try to perform the bitcast by inserting a reg-reg copy.
737  unsigned ResultReg = 0;
738  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
739    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
740    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
741    // Don't attempt a cross-class copy. It will likely fail.
742    if (SrcClass == DstClass) {
743      ResultReg = createResultReg(DstClass);
744      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
745              ResultReg).addReg(Op0);
746    }
747  }
748
749  // If the reg-reg copy failed, select a BITCAST opcode.
750  if (!ResultReg)
751    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
752                           ISD::BITCAST, Op0, Op0IsKill);
753
754  if (!ResultReg)
755    return false;
756
757  UpdateValueMap(I, ResultReg);
758  return true;
759}
760
761bool
762FastISel::SelectInstruction(const Instruction *I) {
763  // Just before the terminator instruction, insert instructions to
764  // feed PHI nodes in successor blocks.
765  if (isa<TerminatorInst>(I))
766    if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
767      return false;
768
769  DL = I->getDebugLoc();
770
771  // First, try doing target-independent selection.
772  if (SelectOperator(I, I->getOpcode())) {
773    DL = DebugLoc();
774    return true;
775  }
776
777  // Next, try calling the target to attempt to handle the instruction.
778  if (TargetSelectInstruction(I)) {
779    DL = DebugLoc();
780    return true;
781  }
782
783  DL = DebugLoc();
784  return false;
785}
786
787/// FastEmitBranch - Emit an unconditional branch to the given block,
788/// unless it is the immediate (fall-through) successor, and update
789/// the CFG.
790void
791FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
792  if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
793    // The unconditional fall-through case, which needs no instructions.
794  } else {
795    // The unconditional branch case.
796    TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
797                     SmallVector<MachineOperand, 0>(), DL);
798  }
799  FuncInfo.MBB->addSuccessor(MSucc);
800}
801
802/// SelectFNeg - Emit an FNeg operation.
803///
804bool
805FastISel::SelectFNeg(const User *I) {
806  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
807  if (OpReg == 0) return false;
808
809  bool OpRegIsKill = hasTrivialKill(I);
810
811  // If the target has ISD::FNEG, use it.
812  EVT VT = TLI.getValueType(I->getType());
813  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
814                                  ISD::FNEG, OpReg, OpRegIsKill);
815  if (ResultReg != 0) {
816    UpdateValueMap(I, ResultReg);
817    return true;
818  }
819
820  // Bitcast the value to integer, twiddle the sign bit with xor,
821  // and then bitcast it back to floating-point.
822  if (VT.getSizeInBits() > 64) return false;
823  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
824  if (!TLI.isTypeLegal(IntVT))
825    return false;
826
827  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
828                               ISD::BITCAST, OpReg, OpRegIsKill);
829  if (IntReg == 0)
830    return false;
831
832  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
833                                       IntReg, /*Kill=*/true,
834                                       UINT64_C(1) << (VT.getSizeInBits()-1),
835                                       IntVT.getSimpleVT());
836  if (IntResultReg == 0)
837    return false;
838
839  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
840                         ISD::BITCAST, IntResultReg, /*Kill=*/true);
841  if (ResultReg == 0)
842    return false;
843
844  UpdateValueMap(I, ResultReg);
845  return true;
846}
847
848bool
849FastISel::SelectExtractValue(const User *U) {
850  const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
851  if (!EVI)
852    return false;
853
854  // Make sure we only try to handle extracts with a legal result.  But also
855  // allow i1 because it's easy.
856  EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
857  if (!RealVT.isSimple())
858    return false;
859  MVT VT = RealVT.getSimpleVT();
860  if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
861    return false;
862
863  const Value *Op0 = EVI->getOperand(0);
864  const Type *AggTy = Op0->getType();
865
866  // Get the base result register.
867  unsigned ResultReg;
868  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
869  if (I != FuncInfo.ValueMap.end())
870    ResultReg = I->second;
871  else if (isa<Instruction>(Op0))
872    ResultReg = FuncInfo.InitializeRegForValue(Op0);
873  else
874    return false; // fast-isel can't handle aggregate constants at the moment
875
876  // Get the actual result register, which is an offset from the base register.
877  unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->idx_begin(), EVI->idx_end());
878
879  SmallVector<EVT, 4> AggValueVTs;
880  ComputeValueVTs(TLI, AggTy, AggValueVTs);
881
882  for (unsigned i = 0; i < VTIndex; i++)
883    ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
884
885  UpdateValueMap(EVI, ResultReg);
886  return true;
887}
888
889bool
890FastISel::SelectOperator(const User *I, unsigned Opcode) {
891  switch (Opcode) {
892  case Instruction::Add:
893    return SelectBinaryOp(I, ISD::ADD);
894  case Instruction::FAdd:
895    return SelectBinaryOp(I, ISD::FADD);
896  case Instruction::Sub:
897    return SelectBinaryOp(I, ISD::SUB);
898  case Instruction::FSub:
899    // FNeg is currently represented in LLVM IR as a special case of FSub.
900    if (BinaryOperator::isFNeg(I))
901      return SelectFNeg(I);
902    return SelectBinaryOp(I, ISD::FSUB);
903  case Instruction::Mul:
904    return SelectBinaryOp(I, ISD::MUL);
905  case Instruction::FMul:
906    return SelectBinaryOp(I, ISD::FMUL);
907  case Instruction::SDiv:
908    return SelectBinaryOp(I, ISD::SDIV);
909  case Instruction::UDiv:
910    return SelectBinaryOp(I, ISD::UDIV);
911  case Instruction::FDiv:
912    return SelectBinaryOp(I, ISD::FDIV);
913  case Instruction::SRem:
914    return SelectBinaryOp(I, ISD::SREM);
915  case Instruction::URem:
916    return SelectBinaryOp(I, ISD::UREM);
917  case Instruction::FRem:
918    return SelectBinaryOp(I, ISD::FREM);
919  case Instruction::Shl:
920    return SelectBinaryOp(I, ISD::SHL);
921  case Instruction::LShr:
922    return SelectBinaryOp(I, ISD::SRL);
923  case Instruction::AShr:
924    return SelectBinaryOp(I, ISD::SRA);
925  case Instruction::And:
926    return SelectBinaryOp(I, ISD::AND);
927  case Instruction::Or:
928    return SelectBinaryOp(I, ISD::OR);
929  case Instruction::Xor:
930    return SelectBinaryOp(I, ISD::XOR);
931
932  case Instruction::GetElementPtr:
933    return SelectGetElementPtr(I);
934
935  case Instruction::Br: {
936    const BranchInst *BI = cast<BranchInst>(I);
937
938    if (BI->isUnconditional()) {
939      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
940      MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
941      FastEmitBranch(MSucc, BI->getDebugLoc());
942      return true;
943    }
944
945    // Conditional branches are not handed yet.
946    // Halt "fast" selection and bail.
947    return false;
948  }
949
950  case Instruction::Unreachable:
951    // Nothing to emit.
952    return true;
953
954  case Instruction::Alloca:
955    // FunctionLowering has the static-sized case covered.
956    if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
957      return true;
958
959    // Dynamic-sized alloca is not handled yet.
960    return false;
961
962  case Instruction::Call:
963    return SelectCall(I);
964
965  case Instruction::BitCast:
966    return SelectBitCast(I);
967
968  case Instruction::FPToSI:
969    return SelectCast(I, ISD::FP_TO_SINT);
970  case Instruction::ZExt:
971    return SelectCast(I, ISD::ZERO_EXTEND);
972  case Instruction::SExt:
973    return SelectCast(I, ISD::SIGN_EXTEND);
974  case Instruction::Trunc:
975    return SelectCast(I, ISD::TRUNCATE);
976  case Instruction::SIToFP:
977    return SelectCast(I, ISD::SINT_TO_FP);
978
979  case Instruction::IntToPtr: // Deliberate fall-through.
980  case Instruction::PtrToInt: {
981    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
982    EVT DstVT = TLI.getValueType(I->getType());
983    if (DstVT.bitsGT(SrcVT))
984      return SelectCast(I, ISD::ZERO_EXTEND);
985    if (DstVT.bitsLT(SrcVT))
986      return SelectCast(I, ISD::TRUNCATE);
987    unsigned Reg = getRegForValue(I->getOperand(0));
988    if (Reg == 0) return false;
989    UpdateValueMap(I, Reg);
990    return true;
991  }
992
993  case Instruction::ExtractValue:
994    return SelectExtractValue(I);
995
996  case Instruction::PHI:
997    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
998
999  default:
1000    // Unhandled instruction. Halt "fast" selection and bail.
1001    return false;
1002  }
1003}
1004
1005FastISel::FastISel(FunctionLoweringInfo &funcInfo)
1006  : FuncInfo(funcInfo),
1007    MRI(FuncInfo.MF->getRegInfo()),
1008    MFI(*FuncInfo.MF->getFrameInfo()),
1009    MCP(*FuncInfo.MF->getConstantPool()),
1010    TM(FuncInfo.MF->getTarget()),
1011    TD(*TM.getTargetData()),
1012    TII(*TM.getInstrInfo()),
1013    TLI(*TM.getTargetLowering()),
1014    TRI(*TM.getRegisterInfo()) {
1015}
1016
1017FastISel::~FastISel() {}
1018
1019unsigned FastISel::FastEmit_(MVT, MVT,
1020                             unsigned) {
1021  return 0;
1022}
1023
1024unsigned FastISel::FastEmit_r(MVT, MVT,
1025                              unsigned,
1026                              unsigned /*Op0*/, bool /*Op0IsKill*/) {
1027  return 0;
1028}
1029
1030unsigned FastISel::FastEmit_rr(MVT, MVT,
1031                               unsigned,
1032                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1033                               unsigned /*Op1*/, bool /*Op1IsKill*/) {
1034  return 0;
1035}
1036
1037unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1038  return 0;
1039}
1040
1041unsigned FastISel::FastEmit_f(MVT, MVT,
1042                              unsigned, const ConstantFP * /*FPImm*/) {
1043  return 0;
1044}
1045
1046unsigned FastISel::FastEmit_ri(MVT, MVT,
1047                               unsigned,
1048                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1049                               uint64_t /*Imm*/) {
1050  return 0;
1051}
1052
1053unsigned FastISel::FastEmit_rf(MVT, MVT,
1054                               unsigned,
1055                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1056                               const ConstantFP * /*FPImm*/) {
1057  return 0;
1058}
1059
1060unsigned FastISel::FastEmit_rri(MVT, MVT,
1061                                unsigned,
1062                                unsigned /*Op0*/, bool /*Op0IsKill*/,
1063                                unsigned /*Op1*/, bool /*Op1IsKill*/,
1064                                uint64_t /*Imm*/) {
1065  return 0;
1066}
1067
1068/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
1069/// to emit an instruction with an immediate operand using FastEmit_ri.
1070/// If that fails, it materializes the immediate into a register and try
1071/// FastEmit_rr instead.
1072unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
1073                                unsigned Op0, bool Op0IsKill,
1074                                uint64_t Imm, MVT ImmType) {
1075  // If this is a multiply by a power of two, emit this as a shift left.
1076  if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1077    Opcode = ISD::SHL;
1078    Imm = Log2_64(Imm);
1079  } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1080    // div x, 8 -> srl x, 3
1081    Opcode = ISD::SRL;
1082    Imm = Log2_64(Imm);
1083  }
1084
1085  // Horrible hack (to be removed), check to make sure shift amounts are
1086  // in-range.
1087  if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1088      Imm >= VT.getSizeInBits())
1089    return 0;
1090
1091  // First check if immediate type is legal. If not, we can't use the ri form.
1092  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1093  if (ResultReg != 0)
1094    return ResultReg;
1095  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1096  if (MaterialReg == 0) {
1097    // This is a bit ugly/slow, but failing here means falling out of
1098    // fast-isel, which would be very slow.
1099    const IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
1100                                              VT.getSizeInBits());
1101    MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1102  }
1103  return FastEmit_rr(VT, VT, Opcode,
1104                     Op0, Op0IsKill,
1105                     MaterialReg, /*Kill=*/true);
1106}
1107
1108unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
1109  return MRI.createVirtualRegister(RC);
1110}
1111
1112unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1113                                 const TargetRegisterClass* RC) {
1114  unsigned ResultReg = createResultReg(RC);
1115  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1116
1117  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
1118  return ResultReg;
1119}
1120
1121unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1122                                  const TargetRegisterClass *RC,
1123                                  unsigned Op0, bool Op0IsKill) {
1124  unsigned ResultReg = createResultReg(RC);
1125  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1126
1127  if (II.getNumDefs() >= 1)
1128    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1129      .addReg(Op0, Op0IsKill * RegState::Kill);
1130  else {
1131    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1132      .addReg(Op0, Op0IsKill * RegState::Kill);
1133    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1134            ResultReg).addReg(II.ImplicitDefs[0]);
1135  }
1136
1137  return ResultReg;
1138}
1139
1140unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1141                                   const TargetRegisterClass *RC,
1142                                   unsigned Op0, bool Op0IsKill,
1143                                   unsigned Op1, bool Op1IsKill) {
1144  unsigned ResultReg = createResultReg(RC);
1145  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1146
1147  if (II.getNumDefs() >= 1)
1148    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1149      .addReg(Op0, Op0IsKill * RegState::Kill)
1150      .addReg(Op1, Op1IsKill * RegState::Kill);
1151  else {
1152    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1153      .addReg(Op0, Op0IsKill * RegState::Kill)
1154      .addReg(Op1, Op1IsKill * RegState::Kill);
1155    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1156            ResultReg).addReg(II.ImplicitDefs[0]);
1157  }
1158  return ResultReg;
1159}
1160
1161unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
1162                                   const TargetRegisterClass *RC,
1163                                   unsigned Op0, bool Op0IsKill,
1164                                   unsigned Op1, bool Op1IsKill,
1165                                   unsigned Op2, bool Op2IsKill) {
1166  unsigned ResultReg = createResultReg(RC);
1167  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1168
1169  if (II.getNumDefs() >= 1)
1170    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1171      .addReg(Op0, Op0IsKill * RegState::Kill)
1172      .addReg(Op1, Op1IsKill * RegState::Kill)
1173      .addReg(Op2, Op2IsKill * RegState::Kill);
1174  else {
1175    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1176      .addReg(Op0, Op0IsKill * RegState::Kill)
1177      .addReg(Op1, Op1IsKill * RegState::Kill)
1178      .addReg(Op2, Op2IsKill * RegState::Kill);
1179    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1180            ResultReg).addReg(II.ImplicitDefs[0]);
1181  }
1182  return ResultReg;
1183}
1184
1185unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1186                                   const TargetRegisterClass *RC,
1187                                   unsigned Op0, bool Op0IsKill,
1188                                   uint64_t Imm) {
1189  unsigned ResultReg = createResultReg(RC);
1190  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1191
1192  if (II.getNumDefs() >= 1)
1193    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1194      .addReg(Op0, Op0IsKill * RegState::Kill)
1195      .addImm(Imm);
1196  else {
1197    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1198      .addReg(Op0, Op0IsKill * RegState::Kill)
1199      .addImm(Imm);
1200    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1201            ResultReg).addReg(II.ImplicitDefs[0]);
1202  }
1203  return ResultReg;
1204}
1205
1206unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
1207                                   const TargetRegisterClass *RC,
1208                                   unsigned Op0, bool Op0IsKill,
1209                                   uint64_t Imm1, uint64_t Imm2) {
1210  unsigned ResultReg = createResultReg(RC);
1211  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1212
1213  if (II.getNumDefs() >= 1)
1214    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1215      .addReg(Op0, Op0IsKill * RegState::Kill)
1216      .addImm(Imm1)
1217      .addImm(Imm2);
1218  else {
1219    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1220      .addReg(Op0, Op0IsKill * RegState::Kill)
1221      .addImm(Imm1)
1222      .addImm(Imm2);
1223    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1224            ResultReg).addReg(II.ImplicitDefs[0]);
1225  }
1226  return ResultReg;
1227}
1228
1229unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1230                                   const TargetRegisterClass *RC,
1231                                   unsigned Op0, bool Op0IsKill,
1232                                   const ConstantFP *FPImm) {
1233  unsigned ResultReg = createResultReg(RC);
1234  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1235
1236  if (II.getNumDefs() >= 1)
1237    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1238      .addReg(Op0, Op0IsKill * RegState::Kill)
1239      .addFPImm(FPImm);
1240  else {
1241    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1242      .addReg(Op0, Op0IsKill * RegState::Kill)
1243      .addFPImm(FPImm);
1244    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1245            ResultReg).addReg(II.ImplicitDefs[0]);
1246  }
1247  return ResultReg;
1248}
1249
1250unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1251                                    const TargetRegisterClass *RC,
1252                                    unsigned Op0, bool Op0IsKill,
1253                                    unsigned Op1, bool Op1IsKill,
1254                                    uint64_t Imm) {
1255  unsigned ResultReg = createResultReg(RC);
1256  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1257
1258  if (II.getNumDefs() >= 1)
1259    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1260      .addReg(Op0, Op0IsKill * RegState::Kill)
1261      .addReg(Op1, Op1IsKill * RegState::Kill)
1262      .addImm(Imm);
1263  else {
1264    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1265      .addReg(Op0, Op0IsKill * RegState::Kill)
1266      .addReg(Op1, Op1IsKill * RegState::Kill)
1267      .addImm(Imm);
1268    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1269            ResultReg).addReg(II.ImplicitDefs[0]);
1270  }
1271  return ResultReg;
1272}
1273
1274unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1275                                  const TargetRegisterClass *RC,
1276                                  uint64_t Imm) {
1277  unsigned ResultReg = createResultReg(RC);
1278  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1279
1280  if (II.getNumDefs() >= 1)
1281    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
1282  else {
1283    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
1284    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1285            ResultReg).addReg(II.ImplicitDefs[0]);
1286  }
1287  return ResultReg;
1288}
1289
1290unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
1291                                  const TargetRegisterClass *RC,
1292                                  uint64_t Imm1, uint64_t Imm2) {
1293  unsigned ResultReg = createResultReg(RC);
1294  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1295
1296  if (II.getNumDefs() >= 1)
1297    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1298      .addImm(Imm1).addImm(Imm2);
1299  else {
1300    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
1301    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1302            ResultReg).addReg(II.ImplicitDefs[0]);
1303  }
1304  return ResultReg;
1305}
1306
1307unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1308                                              unsigned Op0, bool Op0IsKill,
1309                                              uint32_t Idx) {
1310  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1311  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1312         "Cannot yet extract from physregs");
1313  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1314          DL, TII.get(TargetOpcode::COPY), ResultReg)
1315    .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1316  return ResultReg;
1317}
1318
1319/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1320/// with all but the least significant bit set to zero.
1321unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1322  return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1323}
1324
1325/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1326/// Emit code to ensure constants are copied into registers when needed.
1327/// Remember the virtual registers that need to be added to the Machine PHI
1328/// nodes as input.  We cannot just directly add them, because expansion
1329/// might result in multiple MBB's for one BB.  As such, the start of the
1330/// BB might correspond to a different MBB than the end.
1331bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1332  const TerminatorInst *TI = LLVMBB->getTerminator();
1333
1334  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1335  unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1336
1337  // Check successor nodes' PHI nodes that expect a constant to be available
1338  // from this block.
1339  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1340    const BasicBlock *SuccBB = TI->getSuccessor(succ);
1341    if (!isa<PHINode>(SuccBB->begin())) continue;
1342    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1343
1344    // If this terminator has multiple identical successors (common for
1345    // switches), only handle each succ once.
1346    if (!SuccsHandled.insert(SuccMBB)) continue;
1347
1348    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1349
1350    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1351    // nodes and Machine PHI nodes, but the incoming operands have not been
1352    // emitted yet.
1353    for (BasicBlock::const_iterator I = SuccBB->begin();
1354         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1355
1356      // Ignore dead phi's.
1357      if (PN->use_empty()) continue;
1358
1359      // Only handle legal types. Two interesting things to note here. First,
1360      // by bailing out early, we may leave behind some dead instructions,
1361      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1362      // own moves. Second, this check is necessary because FastISel doesn't
1363      // use CreateRegs to create registers, so it always creates
1364      // exactly one register for each non-void instruction.
1365      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1366      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1367        // Promote MVT::i1.
1368        if (VT == MVT::i1)
1369          VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1370        else {
1371          FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1372          return false;
1373        }
1374      }
1375
1376      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1377
1378      // Set the DebugLoc for the copy. Prefer the location of the operand
1379      // if there is one; use the location of the PHI otherwise.
1380      DL = PN->getDebugLoc();
1381      if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1382        DL = Inst->getDebugLoc();
1383
1384      unsigned Reg = getRegForValue(PHIOp);
1385      if (Reg == 0) {
1386        FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1387        return false;
1388      }
1389      FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1390      DL = DebugLoc();
1391    }
1392  }
1393
1394  return true;
1395}
1396