FastISel.cpp revision 02f0dbd97a9bc01528aa12c2f260d928683ab411
1//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/Analysis/DebugInfo.h"
51#include "llvm/Target/TargetData.h"
52#include "llvm/Target/TargetInstrInfo.h"
53#include "llvm/Target/TargetLowering.h"
54#include "llvm/Target/TargetMachine.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "FunctionLoweringInfo.h"
57using namespace llvm;
58
59unsigned FastISel::getRegForValue(const Value *V) {
60  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
61  // Don't handle non-simple values in FastISel.
62  if (!RealVT.isSimple())
63    return 0;
64
65  // Ignore illegal types. We must do this before looking up the value
66  // in ValueMap because Arguments are given virtual registers regardless
67  // of whether FastISel can handle them.
68  MVT VT = RealVT.getSimpleVT();
69  if (!TLI.isTypeLegal(VT)) {
70    // Promote MVT::i1 to a legal type though, because it's common and easy.
71    if (VT == MVT::i1)
72      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
73    else
74      return 0;
75  }
76
77  // Look up the value to see if we already have a register for it. We
78  // cache values defined by Instructions across blocks, and other values
79  // only locally. This is because Instructions already have the SSA
80  // def-dominates-use requirement enforced.
81  if (ValueMap.count(V))
82    return ValueMap[V];
83  unsigned Reg = LocalValueMap[V];
84  if (Reg != 0)
85    return Reg;
86
87  // In bottom-up mode, just create the virtual register which will be used
88  // to hold the value. It will be materialized later.
89  if (IsBottomUp) {
90    Reg = createResultReg(TLI.getRegClassFor(VT));
91    if (isa<Instruction>(V))
92      ValueMap[V] = Reg;
93    else
94      LocalValueMap[V] = Reg;
95    return Reg;
96  }
97
98  return materializeRegForValue(V, VT);
99}
100
101/// materializeRegForValue - Helper for getRegForVale. This function is
102/// called when the value isn't already available in a register and must
103/// be materialized with new instructions.
104unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
105  unsigned Reg = 0;
106
107  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
108    if (CI->getValue().getActiveBits() <= 64)
109      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
110  } else if (isa<AllocaInst>(V)) {
111    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
112  } else if (isa<ConstantPointerNull>(V)) {
113    // Translate this as an integer zero so that it can be
114    // local-CSE'd with actual integer zeros.
115    Reg =
116      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
117  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
118    // Try to emit the constant directly.
119    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
120
121    if (!Reg) {
122      // Try to emit the constant by using an integer constant with a cast.
123      const APFloat &Flt = CF->getValueAPF();
124      EVT IntVT = TLI.getPointerTy();
125
126      uint64_t x[2];
127      uint32_t IntBitWidth = IntVT.getSizeInBits();
128      bool isExact;
129      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
130                                APFloat::rmTowardZero, &isExact);
131      if (isExact) {
132        APInt IntVal(IntBitWidth, 2, x);
133
134        unsigned IntegerReg =
135          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
136        if (IntegerReg != 0)
137          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
138      }
139    }
140  } else if (const Operator *Op = dyn_cast<Operator>(V)) {
141    if (!SelectOperator(Op, Op->getOpcode())) return 0;
142    Reg = LocalValueMap[Op];
143  } else if (isa<UndefValue>(V)) {
144    Reg = createResultReg(TLI.getRegClassFor(VT));
145    BuildMI(MBB, DL, TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
146  }
147
148  // If target-independent code couldn't handle the value, give target-specific
149  // code a try.
150  if (!Reg && isa<Constant>(V))
151    Reg = TargetMaterializeConstant(cast<Constant>(V));
152
153  // Don't cache constant materializations in the general ValueMap.
154  // To do so would require tracking what uses they dominate.
155  if (Reg != 0)
156    LocalValueMap[V] = Reg;
157  return Reg;
158}
159
160unsigned FastISel::lookUpRegForValue(const Value *V) {
161  // Look up the value to see if we already have a register for it. We
162  // cache values defined by Instructions across blocks, and other values
163  // only locally. This is because Instructions already have the SSA
164  // def-dominates-use requirement enforced.
165  if (ValueMap.count(V))
166    return ValueMap[V];
167  return LocalValueMap[V];
168}
169
170/// UpdateValueMap - Update the value map to include the new mapping for this
171/// instruction, or insert an extra copy to get the result in a previous
172/// determined register.
173/// NOTE: This is only necessary because we might select a block that uses
174/// a value before we select the block that defines the value.  It might be
175/// possible to fix this by selecting blocks in reverse postorder.
176unsigned FastISel::UpdateValueMap(const Value *I, unsigned Reg) {
177  if (!isa<Instruction>(I)) {
178    LocalValueMap[I] = Reg;
179    return Reg;
180  }
181
182  unsigned &AssignedReg = ValueMap[I];
183  if (AssignedReg == 0)
184    AssignedReg = Reg;
185  else if (Reg != AssignedReg) {
186    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
187    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
188                     Reg, RegClass, RegClass, DL);
189  }
190  return AssignedReg;
191}
192
193unsigned FastISel::getRegForGEPIndex(const Value *Idx) {
194  unsigned IdxN = getRegForValue(Idx);
195  if (IdxN == 0)
196    // Unhandled operand. Halt "fast" selection and bail.
197    return 0;
198
199  // If the index is smaller or larger than intptr_t, truncate or extend it.
200  MVT PtrVT = TLI.getPointerTy();
201  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
202  if (IdxVT.bitsLT(PtrVT))
203    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
204  else if (IdxVT.bitsGT(PtrVT))
205    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
206  return IdxN;
207}
208
209/// SelectBinaryOp - Select and emit code for a binary operator instruction,
210/// which has an opcode which directly corresponds to the given ISD opcode.
211///
212bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
213  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
214  if (VT == MVT::Other || !VT.isSimple())
215    // Unhandled type. Halt "fast" selection and bail.
216    return false;
217
218  // We only handle legal types. For example, on x86-32 the instruction
219  // selector contains all of the 64-bit instructions from x86-64,
220  // under the assumption that i64 won't be used if the target doesn't
221  // support it.
222  if (!TLI.isTypeLegal(VT)) {
223    // MVT::i1 is special. Allow AND, OR, or XOR because they
224    // don't require additional zeroing, which makes them easy.
225    if (VT == MVT::i1 &&
226        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
227         ISDOpcode == ISD::XOR))
228      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
229    else
230      return false;
231  }
232
233  unsigned Op0 = getRegForValue(I->getOperand(0));
234  if (Op0 == 0)
235    // Unhandled operand. Halt "fast" selection and bail.
236    return false;
237
238  // Check if the second operand is a constant and handle it appropriately.
239  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
240    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
241                                     ISDOpcode, Op0, CI->getZExtValue());
242    if (ResultReg != 0) {
243      // We successfully emitted code for the given LLVM Instruction.
244      UpdateValueMap(I, ResultReg);
245      return true;
246    }
247  }
248
249  // Check if the second operand is a constant float.
250  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
251    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
252                                     ISDOpcode, Op0, CF);
253    if (ResultReg != 0) {
254      // We successfully emitted code for the given LLVM Instruction.
255      UpdateValueMap(I, ResultReg);
256      return true;
257    }
258  }
259
260  unsigned Op1 = getRegForValue(I->getOperand(1));
261  if (Op1 == 0)
262    // Unhandled operand. Halt "fast" selection and bail.
263    return false;
264
265  // Now we have both operands in registers. Emit the instruction.
266  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
267                                   ISDOpcode, Op0, Op1);
268  if (ResultReg == 0)
269    // Target-specific code wasn't able to find a machine opcode for
270    // the given ISD opcode and type. Halt "fast" selection and bail.
271    return false;
272
273  // We successfully emitted code for the given LLVM Instruction.
274  UpdateValueMap(I, ResultReg);
275  return true;
276}
277
278bool FastISel::SelectGetElementPtr(const User *I) {
279  unsigned N = getRegForValue(I->getOperand(0));
280  if (N == 0)
281    // Unhandled operand. Halt "fast" selection and bail.
282    return false;
283
284  const Type *Ty = I->getOperand(0)->getType();
285  MVT VT = TLI.getPointerTy();
286  for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
287       E = I->op_end(); OI != E; ++OI) {
288    const Value *Idx = *OI;
289    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
290      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
291      if (Field) {
292        // N = N + Offset
293        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
294        // FIXME: This can be optimized by combining the add with a
295        // subsequent one.
296        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
297        if (N == 0)
298          // Unhandled operand. Halt "fast" selection and bail.
299          return false;
300      }
301      Ty = StTy->getElementType(Field);
302    } else {
303      Ty = cast<SequentialType>(Ty)->getElementType();
304
305      // If this is a constant subscript, handle it quickly.
306      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
307        if (CI->getZExtValue() == 0) continue;
308        uint64_t Offs =
309          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
310        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
311        if (N == 0)
312          // Unhandled operand. Halt "fast" selection and bail.
313          return false;
314        continue;
315      }
316
317      // N = N + Idx * ElementSize;
318      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
319      unsigned IdxN = getRegForGEPIndex(Idx);
320      if (IdxN == 0)
321        // Unhandled operand. Halt "fast" selection and bail.
322        return false;
323
324      if (ElementSize != 1) {
325        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
326        if (IdxN == 0)
327          // Unhandled operand. Halt "fast" selection and bail.
328          return false;
329      }
330      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
331      if (N == 0)
332        // Unhandled operand. Halt "fast" selection and bail.
333        return false;
334    }
335  }
336
337  // We successfully emitted code for the given LLVM Instruction.
338  UpdateValueMap(I, N);
339  return true;
340}
341
342bool FastISel::SelectCall(const User *I) {
343  const Function *F = cast<CallInst>(I)->getCalledFunction();
344  if (!F) return false;
345
346  // Handle selected intrinsic function calls.
347  unsigned IID = F->getIntrinsicID();
348  switch (IID) {
349  default: break;
350  case Intrinsic::dbg_declare: {
351    const DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
352    if (!DIVariable(DI->getVariable()).Verify() ||
353        !MF.getMMI().hasDebugInfo())
354      return true;
355
356    const Value *Address = DI->getAddress();
357    if (!Address)
358      return true;
359    if (isa<UndefValue>(Address))
360      return true;
361    const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
362    // Don't handle byval struct arguments or VLAs, for example.
363    // Note that if we have a byval struct argument, fast ISel is turned off;
364    // those are handled in SelectionDAGBuilder.
365    if (AI) {
366      DenseMap<const AllocaInst*, int>::iterator SI =
367        StaticAllocaMap.find(AI);
368      if (SI == StaticAllocaMap.end()) break; // VLAs.
369      int FI = SI->second;
370      if (!DI->getDebugLoc().isUnknown())
371        MF.getMMI().setVariableDbgInfo(DI->getVariable(), FI, DI->getDebugLoc());
372    } else
373      // Building the map above is target independent.  Generating DBG_VALUE
374      // inline is target dependent; do this now.
375      (void)TargetSelectInstruction(cast<Instruction>(I));
376    return true;
377  }
378  case Intrinsic::dbg_value: {
379    // This form of DBG_VALUE is target-independent.
380    const DbgValueInst *DI = cast<DbgValueInst>(I);
381    const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
382    const Value *V = DI->getValue();
383    if (!V) {
384      // Currently the optimizer can produce this; insert an undef to
385      // help debugging.  Probably the optimizer should not do this.
386      BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()).
387                                     addMetadata(DI->getVariable());
388    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
389      BuildMI(MBB, DL, II).addImm(CI->getZExtValue()).addImm(DI->getOffset()).
390                                     addMetadata(DI->getVariable());
391    } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
392      BuildMI(MBB, DL, II).addFPImm(CF).addImm(DI->getOffset()).
393                                     addMetadata(DI->getVariable());
394    } else if (unsigned Reg = lookUpRegForValue(V)) {
395      BuildMI(MBB, DL, II).addReg(Reg, RegState::Debug).addImm(DI->getOffset()).
396                                     addMetadata(DI->getVariable());
397    } else {
398      // We can't yet handle anything else here because it would require
399      // generating code, thus altering codegen because of debug info.
400      // Insert an undef so we can see what we dropped.
401      BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()).
402                                     addMetadata(DI->getVariable());
403    }
404    return true;
405  }
406  case Intrinsic::eh_exception: {
407    EVT VT = TLI.getValueType(I->getType());
408    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
409    default: break;
410    case TargetLowering::Expand: {
411      assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
412      unsigned Reg = TLI.getExceptionAddressRegister();
413      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
414      unsigned ResultReg = createResultReg(RC);
415      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
416                                           Reg, RC, RC, DL);
417      assert(InsertedCopy && "Can't copy address registers!");
418      InsertedCopy = InsertedCopy;
419      UpdateValueMap(I, ResultReg);
420      return true;
421    }
422    }
423    break;
424  }
425  case Intrinsic::eh_selector: {
426    EVT VT = TLI.getValueType(I->getType());
427    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
428    default: break;
429    case TargetLowering::Expand: {
430      if (MBB->isLandingPad())
431        AddCatchInfo(*cast<CallInst>(I), &MF.getMMI(), MBB);
432      else {
433#ifndef NDEBUG
434        CatchInfoLost.insert(cast<CallInst>(I));
435#endif
436        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
437        unsigned Reg = TLI.getExceptionSelectorRegister();
438        if (Reg) MBB->addLiveIn(Reg);
439      }
440
441      unsigned Reg = TLI.getExceptionSelectorRegister();
442      EVT SrcVT = TLI.getPointerTy();
443      const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
444      unsigned ResultReg = createResultReg(RC);
445      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Reg,
446                                           RC, RC, DL);
447      assert(InsertedCopy && "Can't copy address registers!");
448      InsertedCopy = InsertedCopy;
449
450      // Cast the register to the type of the selector.
451      if (SrcVT.bitsGT(MVT::i32))
452        ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
453                               ResultReg);
454      else if (SrcVT.bitsLT(MVT::i32))
455        ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
456                               ISD::SIGN_EXTEND, ResultReg);
457      if (ResultReg == 0)
458        // Unhandled operand. Halt "fast" selection and bail.
459        return false;
460
461      UpdateValueMap(I, ResultReg);
462
463      return true;
464    }
465    }
466    break;
467  }
468  }
469
470  // An arbitrary call. Bail.
471  return false;
472}
473
474bool FastISel::SelectCast(const User *I, unsigned Opcode) {
475  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
476  EVT DstVT = TLI.getValueType(I->getType());
477
478  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
479      DstVT == MVT::Other || !DstVT.isSimple())
480    // Unhandled type. Halt "fast" selection and bail.
481    return false;
482
483  // Check if the destination type is legal. Or as a special case,
484  // it may be i1 if we're doing a truncate because that's
485  // easy and somewhat common.
486  if (!TLI.isTypeLegal(DstVT))
487    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
488      // Unhandled type. Halt "fast" selection and bail.
489      return false;
490
491  // Check if the source operand is legal. Or as a special case,
492  // it may be i1 if we're doing zero-extension because that's
493  // easy and somewhat common.
494  if (!TLI.isTypeLegal(SrcVT))
495    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
496      // Unhandled type. Halt "fast" selection and bail.
497      return false;
498
499  unsigned InputReg = getRegForValue(I->getOperand(0));
500  if (!InputReg)
501    // Unhandled operand.  Halt "fast" selection and bail.
502    return false;
503
504  // If the operand is i1, arrange for the high bits in the register to be zero.
505  if (SrcVT == MVT::i1) {
506   SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
507   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
508   if (!InputReg)
509     return false;
510  }
511  // If the result is i1, truncate to the target's type for i1 first.
512  if (DstVT == MVT::i1)
513    DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
514
515  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
516                                  DstVT.getSimpleVT(),
517                                  Opcode,
518                                  InputReg);
519  if (!ResultReg)
520    return false;
521
522  UpdateValueMap(I, ResultReg);
523  return true;
524}
525
526bool FastISel::SelectBitCast(const User *I) {
527  // If the bitcast doesn't change the type, just use the operand value.
528  if (I->getType() == I->getOperand(0)->getType()) {
529    unsigned Reg = getRegForValue(I->getOperand(0));
530    if (Reg == 0)
531      return false;
532    UpdateValueMap(I, Reg);
533    return true;
534  }
535
536  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
537  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
538  EVT DstVT = TLI.getValueType(I->getType());
539
540  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
541      DstVT == MVT::Other || !DstVT.isSimple() ||
542      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
543    // Unhandled type. Halt "fast" selection and bail.
544    return false;
545
546  unsigned Op0 = getRegForValue(I->getOperand(0));
547  if (Op0 == 0)
548    // Unhandled operand. Halt "fast" selection and bail.
549    return false;
550
551  // First, try to perform the bitcast by inserting a reg-reg copy.
552  unsigned ResultReg = 0;
553  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
554    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
555    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
556    ResultReg = createResultReg(DstClass);
557
558    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
559                                         Op0, DstClass, SrcClass, DL);
560    if (!InsertedCopy)
561      ResultReg = 0;
562  }
563
564  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
565  if (!ResultReg)
566    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
567                           ISD::BIT_CONVERT, Op0);
568
569  if (!ResultReg)
570    return false;
571
572  UpdateValueMap(I, ResultReg);
573  return true;
574}
575
576bool
577FastISel::SelectInstruction(const Instruction *I) {
578  // Just before the terminator instruction, insert instructions to
579  // feed PHI nodes in successor blocks.
580  if (isa<TerminatorInst>(I))
581    if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
582      return false;
583
584  DL = I->getDebugLoc();
585
586  // First, try doing target-independent selection.
587  if (SelectOperator(I, I->getOpcode())) {
588    DL = DebugLoc();
589    return true;
590  }
591
592  // Next, try calling the target to attempt to handle the instruction.
593  if (TargetSelectInstruction(I)) {
594    DL = DebugLoc();
595    return true;
596  }
597
598  DL = DebugLoc();
599  return false;
600}
601
602/// FastEmitBranch - Emit an unconditional branch to the given block,
603/// unless it is the immediate (fall-through) successor, and update
604/// the CFG.
605void
606FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
607  if (MBB->isLayoutSuccessor(MSucc)) {
608    // The unconditional fall-through case, which needs no instructions.
609  } else {
610    // The unconditional branch case.
611    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
612  }
613  MBB->addSuccessor(MSucc);
614}
615
616/// SelectFNeg - Emit an FNeg operation.
617///
618bool
619FastISel::SelectFNeg(const User *I) {
620  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
621  if (OpReg == 0) return false;
622
623  // If the target has ISD::FNEG, use it.
624  EVT VT = TLI.getValueType(I->getType());
625  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
626                                  ISD::FNEG, OpReg);
627  if (ResultReg != 0) {
628    UpdateValueMap(I, ResultReg);
629    return true;
630  }
631
632  // Bitcast the value to integer, twiddle the sign bit with xor,
633  // and then bitcast it back to floating-point.
634  if (VT.getSizeInBits() > 64) return false;
635  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
636  if (!TLI.isTypeLegal(IntVT))
637    return false;
638
639  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
640                               ISD::BIT_CONVERT, OpReg);
641  if (IntReg == 0)
642    return false;
643
644  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, IntReg,
645                                       UINT64_C(1) << (VT.getSizeInBits()-1),
646                                       IntVT.getSimpleVT());
647  if (IntResultReg == 0)
648    return false;
649
650  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
651                         ISD::BIT_CONVERT, IntResultReg);
652  if (ResultReg == 0)
653    return false;
654
655  UpdateValueMap(I, ResultReg);
656  return true;
657}
658
659bool
660FastISel::SelectOperator(const User *I, unsigned Opcode) {
661  switch (Opcode) {
662  case Instruction::Add:
663    return SelectBinaryOp(I, ISD::ADD);
664  case Instruction::FAdd:
665    return SelectBinaryOp(I, ISD::FADD);
666  case Instruction::Sub:
667    return SelectBinaryOp(I, ISD::SUB);
668  case Instruction::FSub:
669    // FNeg is currently represented in LLVM IR as a special case of FSub.
670    if (BinaryOperator::isFNeg(I))
671      return SelectFNeg(I);
672    return SelectBinaryOp(I, ISD::FSUB);
673  case Instruction::Mul:
674    return SelectBinaryOp(I, ISD::MUL);
675  case Instruction::FMul:
676    return SelectBinaryOp(I, ISD::FMUL);
677  case Instruction::SDiv:
678    return SelectBinaryOp(I, ISD::SDIV);
679  case Instruction::UDiv:
680    return SelectBinaryOp(I, ISD::UDIV);
681  case Instruction::FDiv:
682    return SelectBinaryOp(I, ISD::FDIV);
683  case Instruction::SRem:
684    return SelectBinaryOp(I, ISD::SREM);
685  case Instruction::URem:
686    return SelectBinaryOp(I, ISD::UREM);
687  case Instruction::FRem:
688    return SelectBinaryOp(I, ISD::FREM);
689  case Instruction::Shl:
690    return SelectBinaryOp(I, ISD::SHL);
691  case Instruction::LShr:
692    return SelectBinaryOp(I, ISD::SRL);
693  case Instruction::AShr:
694    return SelectBinaryOp(I, ISD::SRA);
695  case Instruction::And:
696    return SelectBinaryOp(I, ISD::AND);
697  case Instruction::Or:
698    return SelectBinaryOp(I, ISD::OR);
699  case Instruction::Xor:
700    return SelectBinaryOp(I, ISD::XOR);
701
702  case Instruction::GetElementPtr:
703    return SelectGetElementPtr(I);
704
705  case Instruction::Br: {
706    const BranchInst *BI = cast<BranchInst>(I);
707
708    if (BI->isUnconditional()) {
709      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
710      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
711      FastEmitBranch(MSucc);
712      return true;
713    }
714
715    // Conditional branches are not handed yet.
716    // Halt "fast" selection and bail.
717    return false;
718  }
719
720  case Instruction::Unreachable:
721    // Nothing to emit.
722    return true;
723
724  case Instruction::Alloca:
725    // FunctionLowering has the static-sized case covered.
726    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
727      return true;
728
729    // Dynamic-sized alloca is not handled yet.
730    return false;
731
732  case Instruction::Call:
733    return SelectCall(I);
734
735  case Instruction::BitCast:
736    return SelectBitCast(I);
737
738  case Instruction::FPToSI:
739    return SelectCast(I, ISD::FP_TO_SINT);
740  case Instruction::ZExt:
741    return SelectCast(I, ISD::ZERO_EXTEND);
742  case Instruction::SExt:
743    return SelectCast(I, ISD::SIGN_EXTEND);
744  case Instruction::Trunc:
745    return SelectCast(I, ISD::TRUNCATE);
746  case Instruction::SIToFP:
747    return SelectCast(I, ISD::SINT_TO_FP);
748
749  case Instruction::IntToPtr: // Deliberate fall-through.
750  case Instruction::PtrToInt: {
751    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
752    EVT DstVT = TLI.getValueType(I->getType());
753    if (DstVT.bitsGT(SrcVT))
754      return SelectCast(I, ISD::ZERO_EXTEND);
755    if (DstVT.bitsLT(SrcVT))
756      return SelectCast(I, ISD::TRUNCATE);
757    unsigned Reg = getRegForValue(I->getOperand(0));
758    if (Reg == 0) return false;
759    UpdateValueMap(I, Reg);
760    return true;
761  }
762
763  case Instruction::PHI:
764    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
765
766  default:
767    // Unhandled instruction. Halt "fast" selection and bail.
768    return false;
769  }
770}
771
772FastISel::FastISel(MachineFunction &mf,
773                   DenseMap<const Value *, unsigned> &vm,
774                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
775                   DenseMap<const AllocaInst *, int> &am,
776                   std::vector<std::pair<MachineInstr*, unsigned> > &pn
777#ifndef NDEBUG
778                   , SmallSet<const Instruction *, 8> &cil
779#endif
780                   )
781  : MBB(0),
782    ValueMap(vm),
783    MBBMap(bm),
784    StaticAllocaMap(am),
785    PHINodesToUpdate(pn),
786#ifndef NDEBUG
787    CatchInfoLost(cil),
788#endif
789    MF(mf),
790    MRI(MF.getRegInfo()),
791    MFI(*MF.getFrameInfo()),
792    MCP(*MF.getConstantPool()),
793    TM(MF.getTarget()),
794    TD(*TM.getTargetData()),
795    TII(*TM.getInstrInfo()),
796    TLI(*TM.getTargetLowering()),
797    IsBottomUp(false) {
798}
799
800FastISel::~FastISel() {}
801
802unsigned FastISel::FastEmit_(MVT, MVT,
803                             unsigned) {
804  return 0;
805}
806
807unsigned FastISel::FastEmit_r(MVT, MVT,
808                              unsigned, unsigned /*Op0*/) {
809  return 0;
810}
811
812unsigned FastISel::FastEmit_rr(MVT, MVT,
813                               unsigned, unsigned /*Op0*/,
814                               unsigned /*Op0*/) {
815  return 0;
816}
817
818unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
819  return 0;
820}
821
822unsigned FastISel::FastEmit_f(MVT, MVT,
823                              unsigned, const ConstantFP * /*FPImm*/) {
824  return 0;
825}
826
827unsigned FastISel::FastEmit_ri(MVT, MVT,
828                               unsigned, unsigned /*Op0*/,
829                               uint64_t /*Imm*/) {
830  return 0;
831}
832
833unsigned FastISel::FastEmit_rf(MVT, MVT,
834                               unsigned, unsigned /*Op0*/,
835                               const ConstantFP * /*FPImm*/) {
836  return 0;
837}
838
839unsigned FastISel::FastEmit_rri(MVT, MVT,
840                                unsigned,
841                                unsigned /*Op0*/, unsigned /*Op1*/,
842                                uint64_t /*Imm*/) {
843  return 0;
844}
845
846/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
847/// to emit an instruction with an immediate operand using FastEmit_ri.
848/// If that fails, it materializes the immediate into a register and try
849/// FastEmit_rr instead.
850unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
851                                unsigned Op0, uint64_t Imm,
852                                MVT ImmType) {
853  // First check if immediate type is legal. If not, we can't use the ri form.
854  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
855  if (ResultReg != 0)
856    return ResultReg;
857  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
858  if (MaterialReg == 0)
859    return 0;
860  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
861}
862
863/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
864/// to emit an instruction with a floating-point immediate operand using
865/// FastEmit_rf. If that fails, it materializes the immediate into a register
866/// and try FastEmit_rr instead.
867unsigned FastISel::FastEmit_rf_(MVT VT, unsigned Opcode,
868                                unsigned Op0, const ConstantFP *FPImm,
869                                MVT ImmType) {
870  // First check if immediate type is legal. If not, we can't use the rf form.
871  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
872  if (ResultReg != 0)
873    return ResultReg;
874
875  // Materialize the constant in a register.
876  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
877  if (MaterialReg == 0) {
878    // If the target doesn't have a way to directly enter a floating-point
879    // value into a register, use an alternate approach.
880    // TODO: The current approach only supports floating-point constants
881    // that can be constructed by conversion from integer values. This should
882    // be replaced by code that creates a load from a constant-pool entry,
883    // which will require some target-specific work.
884    const APFloat &Flt = FPImm->getValueAPF();
885    EVT IntVT = TLI.getPointerTy();
886
887    uint64_t x[2];
888    uint32_t IntBitWidth = IntVT.getSizeInBits();
889    bool isExact;
890    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
891                             APFloat::rmTowardZero, &isExact);
892    if (!isExact)
893      return 0;
894    APInt IntVal(IntBitWidth, 2, x);
895
896    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
897                                     ISD::Constant, IntVal.getZExtValue());
898    if (IntegerReg == 0)
899      return 0;
900    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
901                             ISD::SINT_TO_FP, IntegerReg);
902    if (MaterialReg == 0)
903      return 0;
904  }
905  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
906}
907
908unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
909  return MRI.createVirtualRegister(RC);
910}
911
912unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
913                                 const TargetRegisterClass* RC) {
914  unsigned ResultReg = createResultReg(RC);
915  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
916
917  BuildMI(MBB, DL, II, ResultReg);
918  return ResultReg;
919}
920
921unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
922                                  const TargetRegisterClass *RC,
923                                  unsigned Op0) {
924  unsigned ResultReg = createResultReg(RC);
925  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
926
927  if (II.getNumDefs() >= 1)
928    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
929  else {
930    BuildMI(MBB, DL, II).addReg(Op0);
931    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
932                                         II.ImplicitDefs[0], RC, RC, DL);
933    if (!InsertedCopy)
934      ResultReg = 0;
935  }
936
937  return ResultReg;
938}
939
940unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
941                                   const TargetRegisterClass *RC,
942                                   unsigned Op0, unsigned Op1) {
943  unsigned ResultReg = createResultReg(RC);
944  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
945
946  if (II.getNumDefs() >= 1)
947    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
948  else {
949    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
950    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
951                                         II.ImplicitDefs[0], RC, RC, DL);
952    if (!InsertedCopy)
953      ResultReg = 0;
954  }
955  return ResultReg;
956}
957
958unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
959                                   const TargetRegisterClass *RC,
960                                   unsigned Op0, uint64_t Imm) {
961  unsigned ResultReg = createResultReg(RC);
962  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
963
964  if (II.getNumDefs() >= 1)
965    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
966  else {
967    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
968    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
969                                         II.ImplicitDefs[0], RC, RC, DL);
970    if (!InsertedCopy)
971      ResultReg = 0;
972  }
973  return ResultReg;
974}
975
976unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
977                                   const TargetRegisterClass *RC,
978                                   unsigned Op0, const ConstantFP *FPImm) {
979  unsigned ResultReg = createResultReg(RC);
980  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
981
982  if (II.getNumDefs() >= 1)
983    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
984  else {
985    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
986    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
987                                         II.ImplicitDefs[0], RC, RC, DL);
988    if (!InsertedCopy)
989      ResultReg = 0;
990  }
991  return ResultReg;
992}
993
994unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
995                                    const TargetRegisterClass *RC,
996                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
997  unsigned ResultReg = createResultReg(RC);
998  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
999
1000  if (II.getNumDefs() >= 1)
1001    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
1002  else {
1003    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
1004    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1005                                         II.ImplicitDefs[0], RC, RC, DL);
1006    if (!InsertedCopy)
1007      ResultReg = 0;
1008  }
1009  return ResultReg;
1010}
1011
1012unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1013                                  const TargetRegisterClass *RC,
1014                                  uint64_t Imm) {
1015  unsigned ResultReg = createResultReg(RC);
1016  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1017
1018  if (II.getNumDefs() >= 1)
1019    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
1020  else {
1021    BuildMI(MBB, DL, II).addImm(Imm);
1022    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1023                                         II.ImplicitDefs[0], RC, RC, DL);
1024    if (!InsertedCopy)
1025      ResultReg = 0;
1026  }
1027  return ResultReg;
1028}
1029
1030unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1031                                              unsigned Op0, uint32_t Idx) {
1032  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
1033
1034  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1035  const TargetInstrDesc &II = TII.get(TargetOpcode::EXTRACT_SUBREG);
1036
1037  if (II.getNumDefs() >= 1)
1038    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
1039  else {
1040    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
1041    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1042                                         II.ImplicitDefs[0], RC, RC, DL);
1043    if (!InsertedCopy)
1044      ResultReg = 0;
1045  }
1046  return ResultReg;
1047}
1048
1049/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1050/// with all but the least significant bit set to zero.
1051unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op) {
1052  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
1053}
1054
1055/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1056/// Emit code to ensure constants are copied into registers when needed.
1057/// Remember the virtual registers that need to be added to the Machine PHI
1058/// nodes as input.  We cannot just directly add them, because expansion
1059/// might result in multiple MBB's for one BB.  As such, the start of the
1060/// BB might correspond to a different MBB than the end.
1061bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1062  const TerminatorInst *TI = LLVMBB->getTerminator();
1063
1064  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1065  unsigned OrigNumPHINodesToUpdate = PHINodesToUpdate.size();
1066
1067  // Check successor nodes' PHI nodes that expect a constant to be available
1068  // from this block.
1069  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1070    const BasicBlock *SuccBB = TI->getSuccessor(succ);
1071    if (!isa<PHINode>(SuccBB->begin())) continue;
1072    MachineBasicBlock *SuccMBB = MBBMap[SuccBB];
1073
1074    // If this terminator has multiple identical successors (common for
1075    // switches), only handle each succ once.
1076    if (!SuccsHandled.insert(SuccMBB)) continue;
1077
1078    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1079
1080    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1081    // nodes and Machine PHI nodes, but the incoming operands have not been
1082    // emitted yet.
1083    for (BasicBlock::const_iterator I = SuccBB->begin();
1084         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1085
1086      // Ignore dead phi's.
1087      if (PN->use_empty()) continue;
1088
1089      // Only handle legal types. Two interesting things to note here. First,
1090      // by bailing out early, we may leave behind some dead instructions,
1091      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1092      // own moves. Second, this check is necessary becuase FastISel doesn't
1093      // use CreateRegForValue to create registers, so it always creates
1094      // exactly one register for each non-void instruction.
1095      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1096      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1097        // Promote MVT::i1.
1098        if (VT == MVT::i1)
1099          VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1100        else {
1101          PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1102          return false;
1103        }
1104      }
1105
1106      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1107
1108      // Set the DebugLoc for the copy. Prefer the location of the operand
1109      // if there is one; use the location of the PHI otherwise.
1110      DL = PN->getDebugLoc();
1111      if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1112        DL = Inst->getDebugLoc();
1113
1114      unsigned Reg = getRegForValue(PHIOp);
1115      if (Reg == 0) {
1116        PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1117        return false;
1118      }
1119      PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1120      DL = DebugLoc();
1121    }
1122  }
1123
1124  return true;
1125}
1126