FastISel.cpp revision 0b44e49f000a4da6b9948bdaa923b48911d2f47a
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/DwarfWriter.h"
51#include "llvm/Analysis/DebugInfo.h"
52#include "llvm/Target/TargetData.h"
53#include "llvm/Target/TargetInstrInfo.h"
54#include "llvm/Target/TargetLowering.h"
55#include "llvm/Target/TargetMachine.h"
56#include "FunctionLoweringInfo.h"
57using namespace llvm;
58
59unsigned FastISel::getRegForValue(Value *V) {
60  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
61  // Don't handle non-simple values in FastISel.
62  if (!RealVT.isSimple())
63    return 0;
64
65  // Ignore illegal types. We must do this before looking up the value
66  // in ValueMap because Arguments are given virtual registers regardless
67  // of whether FastISel can handle them.
68  MVT VT = RealVT.getSimpleVT();
69  if (!TLI.isTypeLegal(VT)) {
70    // Promote MVT::i1 to a legal type though, because it's common and easy.
71    if (VT == MVT::i1)
72      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
73    else
74      return 0;
75  }
76
77  // Look up the value to see if we already have a register for it. We
78  // cache values defined by Instructions across blocks, and other values
79  // only locally. This is because Instructions already have the SSA
80  // def-dominates-use requirement enforced.
81  if (ValueMap.count(V))
82    return ValueMap[V];
83  unsigned Reg = LocalValueMap[V];
84  if (Reg != 0)
85    return Reg;
86
87  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
88    if (CI->getValue().getActiveBits() <= 64)
89      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
90  } else if (isa<AllocaInst>(V)) {
91    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
92  } else if (isa<ConstantPointerNull>(V)) {
93    // Translate this as an integer zero so that it can be
94    // local-CSE'd with actual integer zeros.
95    Reg =
96      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
97  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
98    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
99
100    if (!Reg) {
101      const APFloat &Flt = CF->getValueAPF();
102      EVT IntVT = TLI.getPointerTy();
103
104      uint64_t x[2];
105      uint32_t IntBitWidth = IntVT.getSizeInBits();
106      bool isExact;
107      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
108                                APFloat::rmTowardZero, &isExact);
109      if (isExact) {
110        APInt IntVal(IntBitWidth, 2, x);
111
112        unsigned IntegerReg =
113          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
114        if (IntegerReg != 0)
115          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
116      }
117    }
118  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
119    if (!SelectOperator(CE, CE->getOpcode())) return 0;
120    Reg = LocalValueMap[CE];
121  } else if (isa<UndefValue>(V)) {
122    Reg = createResultReg(TLI.getRegClassFor(VT));
123    BuildMI(MBB, DL, TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
124  }
125
126  // If target-independent code couldn't handle the value, give target-specific
127  // code a try.
128  if (!Reg && isa<Constant>(V))
129    Reg = TargetMaterializeConstant(cast<Constant>(V));
130
131  // Don't cache constant materializations in the general ValueMap.
132  // To do so would require tracking what uses they dominate.
133  if (Reg != 0)
134    LocalValueMap[V] = Reg;
135  return Reg;
136}
137
138unsigned FastISel::lookUpRegForValue(Value *V) {
139  // Look up the value to see if we already have a register for it. We
140  // cache values defined by Instructions across blocks, and other values
141  // only locally. This is because Instructions already have the SSA
142  // def-dominatess-use requirement enforced.
143  if (ValueMap.count(V))
144    return ValueMap[V];
145  return LocalValueMap[V];
146}
147
148/// UpdateValueMap - Update the value map to include the new mapping for this
149/// instruction, or insert an extra copy to get the result in a previous
150/// determined register.
151/// NOTE: This is only necessary because we might select a block that uses
152/// a value before we select the block that defines the value.  It might be
153/// possible to fix this by selecting blocks in reverse postorder.
154unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
155  if (!isa<Instruction>(I)) {
156    LocalValueMap[I] = Reg;
157    return Reg;
158  }
159
160  unsigned &AssignedReg = ValueMap[I];
161  if (AssignedReg == 0)
162    AssignedReg = Reg;
163  else if (Reg != AssignedReg) {
164    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
165    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
166                     Reg, RegClass, RegClass);
167  }
168  return AssignedReg;
169}
170
171unsigned FastISel::getRegForGEPIndex(Value *Idx) {
172  unsigned IdxN = getRegForValue(Idx);
173  if (IdxN == 0)
174    // Unhandled operand. Halt "fast" selection and bail.
175    return 0;
176
177  // If the index is smaller or larger than intptr_t, truncate or extend it.
178  MVT PtrVT = TLI.getPointerTy();
179  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
180  if (IdxVT.bitsLT(PtrVT))
181    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
182  else if (IdxVT.bitsGT(PtrVT))
183    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
184  return IdxN;
185}
186
187/// SelectBinaryOp - Select and emit code for a binary operator instruction,
188/// which has an opcode which directly corresponds to the given ISD opcode.
189///
190bool FastISel::SelectBinaryOp(User *I, unsigned ISDOpcode) {
191  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
192  if (VT == MVT::Other || !VT.isSimple())
193    // Unhandled type. Halt "fast" selection and bail.
194    return false;
195
196  // We only handle legal types. For example, on x86-32 the instruction
197  // selector contains all of the 64-bit instructions from x86-64,
198  // under the assumption that i64 won't be used if the target doesn't
199  // support it.
200  if (!TLI.isTypeLegal(VT)) {
201    // MVT::i1 is special. Allow AND, OR, or XOR because they
202    // don't require additional zeroing, which makes them easy.
203    if (VT == MVT::i1 &&
204        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
205         ISDOpcode == ISD::XOR))
206      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
207    else
208      return false;
209  }
210
211  unsigned Op0 = getRegForValue(I->getOperand(0));
212  if (Op0 == 0)
213    // Unhandled operand. Halt "fast" selection and bail.
214    return false;
215
216  // Check if the second operand is a constant and handle it appropriately.
217  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
218    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
219                                     ISDOpcode, Op0, CI->getZExtValue());
220    if (ResultReg != 0) {
221      // We successfully emitted code for the given LLVM Instruction.
222      UpdateValueMap(I, ResultReg);
223      return true;
224    }
225  }
226
227  // Check if the second operand is a constant float.
228  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
229    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
230                                     ISDOpcode, Op0, CF);
231    if (ResultReg != 0) {
232      // We successfully emitted code for the given LLVM Instruction.
233      UpdateValueMap(I, ResultReg);
234      return true;
235    }
236  }
237
238  unsigned Op1 = getRegForValue(I->getOperand(1));
239  if (Op1 == 0)
240    // Unhandled operand. Halt "fast" selection and bail.
241    return false;
242
243  // Now we have both operands in registers. Emit the instruction.
244  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
245                                   ISDOpcode, Op0, Op1);
246  if (ResultReg == 0)
247    // Target-specific code wasn't able to find a machine opcode for
248    // the given ISD opcode and type. Halt "fast" selection and bail.
249    return false;
250
251  // We successfully emitted code for the given LLVM Instruction.
252  UpdateValueMap(I, ResultReg);
253  return true;
254}
255
256bool FastISel::SelectGetElementPtr(User *I) {
257  unsigned N = getRegForValue(I->getOperand(0));
258  if (N == 0)
259    // Unhandled operand. Halt "fast" selection and bail.
260    return false;
261
262  const Type *Ty = I->getOperand(0)->getType();
263  MVT VT = TLI.getPointerTy();
264  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
265       OI != E; ++OI) {
266    Value *Idx = *OI;
267    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
268      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
269      if (Field) {
270        // N = N + Offset
271        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
272        // FIXME: This can be optimized by combining the add with a
273        // subsequent one.
274        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
275        if (N == 0)
276          // Unhandled operand. Halt "fast" selection and bail.
277          return false;
278      }
279      Ty = StTy->getElementType(Field);
280    } else {
281      Ty = cast<SequentialType>(Ty)->getElementType();
282
283      // If this is a constant subscript, handle it quickly.
284      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
285        if (CI->getZExtValue() == 0) continue;
286        uint64_t Offs =
287          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
288        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
289        if (N == 0)
290          // Unhandled operand. Halt "fast" selection and bail.
291          return false;
292        continue;
293      }
294
295      // N = N + Idx * ElementSize;
296      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
297      unsigned IdxN = getRegForGEPIndex(Idx);
298      if (IdxN == 0)
299        // Unhandled operand. Halt "fast" selection and bail.
300        return false;
301
302      if (ElementSize != 1) {
303        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
304        if (IdxN == 0)
305          // Unhandled operand. Halt "fast" selection and bail.
306          return false;
307      }
308      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
309      if (N == 0)
310        // Unhandled operand. Halt "fast" selection and bail.
311        return false;
312    }
313  }
314
315  // We successfully emitted code for the given LLVM Instruction.
316  UpdateValueMap(I, N);
317  return true;
318}
319
320bool FastISel::SelectCall(User *I) {
321  Function *F = cast<CallInst>(I)->getCalledFunction();
322  if (!F) return false;
323
324  unsigned IID = F->getIntrinsicID();
325  switch (IID) {
326  default: break;
327  case Intrinsic::dbg_declare: {
328    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
329    if (!DIDescriptor::ValidDebugInfo(DI->getVariable(), CodeGenOpt::None)||!DW
330        || !DW->ShouldEmitDwarfDebug())
331      return true;
332
333    Value *Address = DI->getAddress();
334    if (!Address)
335      return true;
336    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
337    // Don't handle byval struct arguments or VLAs, for example.
338    if (!AI) break;
339    DenseMap<const AllocaInst*, int>::iterator SI =
340      StaticAllocaMap.find(AI);
341    if (SI == StaticAllocaMap.end()) break; // VLAs.
342    int FI = SI->second;
343    if (MDNode *Dbg = DI->getDbgMetadata())
344      MMI->setVariableDbgInfo(DI->getVariable(), FI, Dbg);
345
346    // Building the map above is target independent.  Generating DBG_VALUE
347    // inline is target dependent; do this now.
348    (void)TargetSelectInstruction(cast<Instruction>(I));
349    return true;
350  }
351  case Intrinsic::dbg_value: {
352    // This requires target support, but right now X86 is the only Fast target.
353    DbgValueInst *DI = cast<DbgValueInst>(I);
354    const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
355    Value *V = DI->getValue();
356    if (!V) {
357      // Currently the optimizer can produce this; insert an undef to
358      // help debugging.  Probably the optimizer should not do this.
359      BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()).
360                                     addMetadata(DI->getVariable());
361    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
362      BuildMI(MBB, DL, II).addImm(CI->getZExtValue()).addImm(DI->getOffset()).
363                                     addMetadata(DI->getVariable());
364    } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
365      BuildMI(MBB, DL, II).addFPImm(CF).addImm(DI->getOffset()).
366                                     addMetadata(DI->getVariable());
367    } else if (unsigned Reg = lookUpRegForValue(V)) {
368      BuildMI(MBB, DL, II).addReg(Reg, RegState::Debug).addImm(DI->getOffset()).
369                                     addMetadata(DI->getVariable());
370    } else {
371      // We can't yet handle anything else here because it would require
372      // generating code, thus altering codegen because of debug info.
373      // Insert an undef so we can see what we dropped.
374      BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()).
375                                     addMetadata(DI->getVariable());
376    }
377    return true;
378  }
379  case Intrinsic::eh_exception: {
380    EVT VT = TLI.getValueType(I->getType());
381    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
382    default: break;
383    case TargetLowering::Expand: {
384      assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
385      unsigned Reg = TLI.getExceptionAddressRegister();
386      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
387      unsigned ResultReg = createResultReg(RC);
388      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
389                                           Reg, RC, RC);
390      assert(InsertedCopy && "Can't copy address registers!");
391      InsertedCopy = InsertedCopy;
392      UpdateValueMap(I, ResultReg);
393      return true;
394    }
395    }
396    break;
397  }
398  case Intrinsic::eh_selector: {
399    EVT VT = TLI.getValueType(I->getType());
400    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
401    default: break;
402    case TargetLowering::Expand: {
403      if (MMI) {
404        if (MBB->isLandingPad())
405          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
406        else {
407#ifndef NDEBUG
408          CatchInfoLost.insert(cast<CallInst>(I));
409#endif
410          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
411          unsigned Reg = TLI.getExceptionSelectorRegister();
412          if (Reg) MBB->addLiveIn(Reg);
413        }
414
415        unsigned Reg = TLI.getExceptionSelectorRegister();
416        EVT SrcVT = TLI.getPointerTy();
417        const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
418        unsigned ResultReg = createResultReg(RC);
419        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Reg,
420                                             RC, RC);
421        assert(InsertedCopy && "Can't copy address registers!");
422        InsertedCopy = InsertedCopy;
423
424        // Cast the register to the type of the selector.
425        if (SrcVT.bitsGT(MVT::i32))
426          ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
427                                 ResultReg);
428        else if (SrcVT.bitsLT(MVT::i32))
429          ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
430                                 ISD::SIGN_EXTEND, ResultReg);
431        if (ResultReg == 0)
432          // Unhandled operand. Halt "fast" selection and bail.
433          return false;
434
435        UpdateValueMap(I, ResultReg);
436      } else {
437        unsigned ResultReg =
438          getRegForValue(Constant::getNullValue(I->getType()));
439        UpdateValueMap(I, ResultReg);
440      }
441      return true;
442    }
443    }
444    break;
445  }
446  }
447  return false;
448}
449
450bool FastISel::SelectCast(User *I, unsigned Opcode) {
451  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
452  EVT DstVT = TLI.getValueType(I->getType());
453
454  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
455      DstVT == MVT::Other || !DstVT.isSimple())
456    // Unhandled type. Halt "fast" selection and bail.
457    return false;
458
459  // Check if the destination type is legal. Or as a special case,
460  // it may be i1 if we're doing a truncate because that's
461  // easy and somewhat common.
462  if (!TLI.isTypeLegal(DstVT))
463    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
464      // Unhandled type. Halt "fast" selection and bail.
465      return false;
466
467  // Check if the source operand is legal. Or as a special case,
468  // it may be i1 if we're doing zero-extension because that's
469  // easy and somewhat common.
470  if (!TLI.isTypeLegal(SrcVT))
471    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
472      // Unhandled type. Halt "fast" selection and bail.
473      return false;
474
475  unsigned InputReg = getRegForValue(I->getOperand(0));
476  if (!InputReg)
477    // Unhandled operand.  Halt "fast" selection and bail.
478    return false;
479
480  // If the operand is i1, arrange for the high bits in the register to be zero.
481  if (SrcVT == MVT::i1) {
482   SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
483   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
484   if (!InputReg)
485     return false;
486  }
487  // If the result is i1, truncate to the target's type for i1 first.
488  if (DstVT == MVT::i1)
489    DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
490
491  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
492                                  DstVT.getSimpleVT(),
493                                  Opcode,
494                                  InputReg);
495  if (!ResultReg)
496    return false;
497
498  UpdateValueMap(I, ResultReg);
499  return true;
500}
501
502bool FastISel::SelectBitCast(User *I) {
503  // If the bitcast doesn't change the type, just use the operand value.
504  if (I->getType() == I->getOperand(0)->getType()) {
505    unsigned Reg = getRegForValue(I->getOperand(0));
506    if (Reg == 0)
507      return false;
508    UpdateValueMap(I, Reg);
509    return true;
510  }
511
512  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
513  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
514  EVT DstVT = TLI.getValueType(I->getType());
515
516  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
517      DstVT == MVT::Other || !DstVT.isSimple() ||
518      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
519    // Unhandled type. Halt "fast" selection and bail.
520    return false;
521
522  unsigned Op0 = getRegForValue(I->getOperand(0));
523  if (Op0 == 0)
524    // Unhandled operand. Halt "fast" selection and bail.
525    return false;
526
527  // First, try to perform the bitcast by inserting a reg-reg copy.
528  unsigned ResultReg = 0;
529  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
530    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
531    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
532    ResultReg = createResultReg(DstClass);
533
534    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
535                                         Op0, DstClass, SrcClass);
536    if (!InsertedCopy)
537      ResultReg = 0;
538  }
539
540  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
541  if (!ResultReg)
542    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
543                           ISD::BIT_CONVERT, Op0);
544
545  if (!ResultReg)
546    return false;
547
548  UpdateValueMap(I, ResultReg);
549  return true;
550}
551
552bool
553FastISel::SelectInstruction(Instruction *I) {
554  // First, try doing target-independent selection.
555  if (SelectOperator(I, I->getOpcode()))
556    return true;
557
558  // Next, try calling the target to attempt to handle the instruction.
559  if (TargetSelectInstruction(I))
560    return true;
561
562  return false;
563}
564
565/// FastEmitBranch - Emit an unconditional branch to the given block,
566/// unless it is the immediate (fall-through) successor, and update
567/// the CFG.
568void
569FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
570  if (MBB->isLayoutSuccessor(MSucc)) {
571    // The unconditional fall-through case, which needs no instructions.
572  } else {
573    // The unconditional branch case.
574    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
575  }
576  MBB->addSuccessor(MSucc);
577}
578
579/// SelectFNeg - Emit an FNeg operation.
580///
581bool
582FastISel::SelectFNeg(User *I) {
583  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
584  if (OpReg == 0) return false;
585
586  // If the target has ISD::FNEG, use it.
587  EVT VT = TLI.getValueType(I->getType());
588  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
589                                  ISD::FNEG, OpReg);
590  if (ResultReg != 0) {
591    UpdateValueMap(I, ResultReg);
592    return true;
593  }
594
595  // Bitcast the value to integer, twiddle the sign bit with xor,
596  // and then bitcast it back to floating-point.
597  if (VT.getSizeInBits() > 64) return false;
598  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
599  if (!TLI.isTypeLegal(IntVT))
600    return false;
601
602  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
603                               ISD::BIT_CONVERT, OpReg);
604  if (IntReg == 0)
605    return false;
606
607  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, IntReg,
608                                       UINT64_C(1) << (VT.getSizeInBits()-1),
609                                       IntVT.getSimpleVT());
610  if (IntResultReg == 0)
611    return false;
612
613  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
614                         ISD::BIT_CONVERT, IntResultReg);
615  if (ResultReg == 0)
616    return false;
617
618  UpdateValueMap(I, ResultReg);
619  return true;
620}
621
622bool
623FastISel::SelectOperator(User *I, unsigned Opcode) {
624  switch (Opcode) {
625  case Instruction::Add:
626    return SelectBinaryOp(I, ISD::ADD);
627  case Instruction::FAdd:
628    return SelectBinaryOp(I, ISD::FADD);
629  case Instruction::Sub:
630    return SelectBinaryOp(I, ISD::SUB);
631  case Instruction::FSub:
632    // FNeg is currently represented in LLVM IR as a special case of FSub.
633    if (BinaryOperator::isFNeg(I))
634      return SelectFNeg(I);
635    return SelectBinaryOp(I, ISD::FSUB);
636  case Instruction::Mul:
637    return SelectBinaryOp(I, ISD::MUL);
638  case Instruction::FMul:
639    return SelectBinaryOp(I, ISD::FMUL);
640  case Instruction::SDiv:
641    return SelectBinaryOp(I, ISD::SDIV);
642  case Instruction::UDiv:
643    return SelectBinaryOp(I, ISD::UDIV);
644  case Instruction::FDiv:
645    return SelectBinaryOp(I, ISD::FDIV);
646  case Instruction::SRem:
647    return SelectBinaryOp(I, ISD::SREM);
648  case Instruction::URem:
649    return SelectBinaryOp(I, ISD::UREM);
650  case Instruction::FRem:
651    return SelectBinaryOp(I, ISD::FREM);
652  case Instruction::Shl:
653    return SelectBinaryOp(I, ISD::SHL);
654  case Instruction::LShr:
655    return SelectBinaryOp(I, ISD::SRL);
656  case Instruction::AShr:
657    return SelectBinaryOp(I, ISD::SRA);
658  case Instruction::And:
659    return SelectBinaryOp(I, ISD::AND);
660  case Instruction::Or:
661    return SelectBinaryOp(I, ISD::OR);
662  case Instruction::Xor:
663    return SelectBinaryOp(I, ISD::XOR);
664
665  case Instruction::GetElementPtr:
666    return SelectGetElementPtr(I);
667
668  case Instruction::Br: {
669    BranchInst *BI = cast<BranchInst>(I);
670
671    if (BI->isUnconditional()) {
672      BasicBlock *LLVMSucc = BI->getSuccessor(0);
673      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
674      FastEmitBranch(MSucc);
675      return true;
676    }
677
678    // Conditional branches are not handed yet.
679    // Halt "fast" selection and bail.
680    return false;
681  }
682
683  case Instruction::Unreachable:
684    // Nothing to emit.
685    return true;
686
687  case Instruction::PHI:
688    // PHI nodes are already emitted.
689    return true;
690
691  case Instruction::Alloca:
692    // FunctionLowering has the static-sized case covered.
693    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
694      return true;
695
696    // Dynamic-sized alloca is not handled yet.
697    return false;
698
699  case Instruction::Call:
700    return SelectCall(I);
701
702  case Instruction::BitCast:
703    return SelectBitCast(I);
704
705  case Instruction::FPToSI:
706    return SelectCast(I, ISD::FP_TO_SINT);
707  case Instruction::ZExt:
708    return SelectCast(I, ISD::ZERO_EXTEND);
709  case Instruction::SExt:
710    return SelectCast(I, ISD::SIGN_EXTEND);
711  case Instruction::Trunc:
712    return SelectCast(I, ISD::TRUNCATE);
713  case Instruction::SIToFP:
714    return SelectCast(I, ISD::SINT_TO_FP);
715
716  case Instruction::IntToPtr: // Deliberate fall-through.
717  case Instruction::PtrToInt: {
718    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
719    EVT DstVT = TLI.getValueType(I->getType());
720    if (DstVT.bitsGT(SrcVT))
721      return SelectCast(I, ISD::ZERO_EXTEND);
722    if (DstVT.bitsLT(SrcVT))
723      return SelectCast(I, ISD::TRUNCATE);
724    unsigned Reg = getRegForValue(I->getOperand(0));
725    if (Reg == 0) return false;
726    UpdateValueMap(I, Reg);
727    return true;
728  }
729
730  default:
731    // Unhandled instruction. Halt "fast" selection and bail.
732    return false;
733  }
734}
735
736FastISel::FastISel(MachineFunction &mf,
737                   MachineModuleInfo *mmi,
738                   DwarfWriter *dw,
739                   DenseMap<const Value *, unsigned> &vm,
740                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
741                   DenseMap<const AllocaInst *, int> &am
742#ifndef NDEBUG
743                   , SmallSet<Instruction*, 8> &cil
744#endif
745                   )
746  : MBB(0),
747    ValueMap(vm),
748    MBBMap(bm),
749    StaticAllocaMap(am),
750#ifndef NDEBUG
751    CatchInfoLost(cil),
752#endif
753    MF(mf),
754    MMI(mmi),
755    DW(dw),
756    MRI(MF.getRegInfo()),
757    MFI(*MF.getFrameInfo()),
758    MCP(*MF.getConstantPool()),
759    TM(MF.getTarget()),
760    TD(*TM.getTargetData()),
761    TII(*TM.getInstrInfo()),
762    TLI(*TM.getTargetLowering()) {
763}
764
765FastISel::~FastISel() {}
766
767unsigned FastISel::FastEmit_(MVT, MVT,
768                             unsigned) {
769  return 0;
770}
771
772unsigned FastISel::FastEmit_r(MVT, MVT,
773                              unsigned, unsigned /*Op0*/) {
774  return 0;
775}
776
777unsigned FastISel::FastEmit_rr(MVT, MVT,
778                               unsigned, unsigned /*Op0*/,
779                               unsigned /*Op0*/) {
780  return 0;
781}
782
783unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
784  return 0;
785}
786
787unsigned FastISel::FastEmit_f(MVT, MVT,
788                              unsigned, ConstantFP * /*FPImm*/) {
789  return 0;
790}
791
792unsigned FastISel::FastEmit_ri(MVT, MVT,
793                               unsigned, unsigned /*Op0*/,
794                               uint64_t /*Imm*/) {
795  return 0;
796}
797
798unsigned FastISel::FastEmit_rf(MVT, MVT,
799                               unsigned, unsigned /*Op0*/,
800                               ConstantFP * /*FPImm*/) {
801  return 0;
802}
803
804unsigned FastISel::FastEmit_rri(MVT, MVT,
805                                unsigned,
806                                unsigned /*Op0*/, unsigned /*Op1*/,
807                                uint64_t /*Imm*/) {
808  return 0;
809}
810
811/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
812/// to emit an instruction with an immediate operand using FastEmit_ri.
813/// If that fails, it materializes the immediate into a register and try
814/// FastEmit_rr instead.
815unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
816                                unsigned Op0, uint64_t Imm,
817                                MVT ImmType) {
818  // First check if immediate type is legal. If not, we can't use the ri form.
819  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
820  if (ResultReg != 0)
821    return ResultReg;
822  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
823  if (MaterialReg == 0)
824    return 0;
825  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
826}
827
828/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
829/// to emit an instruction with a floating-point immediate operand using
830/// FastEmit_rf. If that fails, it materializes the immediate into a register
831/// and try FastEmit_rr instead.
832unsigned FastISel::FastEmit_rf_(MVT VT, unsigned Opcode,
833                                unsigned Op0, ConstantFP *FPImm,
834                                MVT ImmType) {
835  // First check if immediate type is legal. If not, we can't use the rf form.
836  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
837  if (ResultReg != 0)
838    return ResultReg;
839
840  // Materialize the constant in a register.
841  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
842  if (MaterialReg == 0) {
843    // If the target doesn't have a way to directly enter a floating-point
844    // value into a register, use an alternate approach.
845    // TODO: The current approach only supports floating-point constants
846    // that can be constructed by conversion from integer values. This should
847    // be replaced by code that creates a load from a constant-pool entry,
848    // which will require some target-specific work.
849    const APFloat &Flt = FPImm->getValueAPF();
850    EVT IntVT = TLI.getPointerTy();
851
852    uint64_t x[2];
853    uint32_t IntBitWidth = IntVT.getSizeInBits();
854    bool isExact;
855    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
856                             APFloat::rmTowardZero, &isExact);
857    if (!isExact)
858      return 0;
859    APInt IntVal(IntBitWidth, 2, x);
860
861    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
862                                     ISD::Constant, IntVal.getZExtValue());
863    if (IntegerReg == 0)
864      return 0;
865    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
866                             ISD::SINT_TO_FP, IntegerReg);
867    if (MaterialReg == 0)
868      return 0;
869  }
870  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
871}
872
873unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
874  return MRI.createVirtualRegister(RC);
875}
876
877unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
878                                 const TargetRegisterClass* RC) {
879  unsigned ResultReg = createResultReg(RC);
880  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
881
882  BuildMI(MBB, DL, II, ResultReg);
883  return ResultReg;
884}
885
886unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
887                                  const TargetRegisterClass *RC,
888                                  unsigned Op0) {
889  unsigned ResultReg = createResultReg(RC);
890  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
891
892  if (II.getNumDefs() >= 1)
893    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
894  else {
895    BuildMI(MBB, DL, II).addReg(Op0);
896    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
897                                         II.ImplicitDefs[0], RC, RC);
898    if (!InsertedCopy)
899      ResultReg = 0;
900  }
901
902  return ResultReg;
903}
904
905unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
906                                   const TargetRegisterClass *RC,
907                                   unsigned Op0, unsigned Op1) {
908  unsigned ResultReg = createResultReg(RC);
909  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
910
911  if (II.getNumDefs() >= 1)
912    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
913  else {
914    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
915    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
916                                         II.ImplicitDefs[0], RC, RC);
917    if (!InsertedCopy)
918      ResultReg = 0;
919  }
920  return ResultReg;
921}
922
923unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
924                                   const TargetRegisterClass *RC,
925                                   unsigned Op0, uint64_t Imm) {
926  unsigned ResultReg = createResultReg(RC);
927  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
928
929  if (II.getNumDefs() >= 1)
930    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
931  else {
932    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
933    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
934                                         II.ImplicitDefs[0], RC, RC);
935    if (!InsertedCopy)
936      ResultReg = 0;
937  }
938  return ResultReg;
939}
940
941unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
942                                   const TargetRegisterClass *RC,
943                                   unsigned Op0, ConstantFP *FPImm) {
944  unsigned ResultReg = createResultReg(RC);
945  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
946
947  if (II.getNumDefs() >= 1)
948    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
949  else {
950    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
951    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
952                                         II.ImplicitDefs[0], RC, RC);
953    if (!InsertedCopy)
954      ResultReg = 0;
955  }
956  return ResultReg;
957}
958
959unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
960                                    const TargetRegisterClass *RC,
961                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
962  unsigned ResultReg = createResultReg(RC);
963  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
964
965  if (II.getNumDefs() >= 1)
966    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
967  else {
968    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
969    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
970                                         II.ImplicitDefs[0], RC, RC);
971    if (!InsertedCopy)
972      ResultReg = 0;
973  }
974  return ResultReg;
975}
976
977unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
978                                  const TargetRegisterClass *RC,
979                                  uint64_t Imm) {
980  unsigned ResultReg = createResultReg(RC);
981  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
982
983  if (II.getNumDefs() >= 1)
984    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
985  else {
986    BuildMI(MBB, DL, II).addImm(Imm);
987    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
988                                         II.ImplicitDefs[0], RC, RC);
989    if (!InsertedCopy)
990      ResultReg = 0;
991  }
992  return ResultReg;
993}
994
995unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
996                                              unsigned Op0, uint32_t Idx) {
997  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
998
999  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1000  const TargetInstrDesc &II = TII.get(TargetOpcode::EXTRACT_SUBREG);
1001
1002  if (II.getNumDefs() >= 1)
1003    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
1004  else {
1005    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
1006    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1007                                         II.ImplicitDefs[0], RC, RC);
1008    if (!InsertedCopy)
1009      ResultReg = 0;
1010  }
1011  return ResultReg;
1012}
1013
1014/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1015/// with all but the least significant bit set to zero.
1016unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op) {
1017  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
1018}
1019