FastISel.cpp revision 0c41264d8ca7e8bd4bab0413891e7fb1aa22d864
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/DebugLoc.h"
51#include "llvm/CodeGen/DwarfWriter.h"
52#include "llvm/Analysis/DebugInfo.h"
53#include "llvm/Target/TargetData.h"
54#include "llvm/Target/TargetInstrInfo.h"
55#include "llvm/Target/TargetLowering.h"
56#include "llvm/Target/TargetMachine.h"
57#include "SelectionDAGBuild.h"
58using namespace llvm;
59
60unsigned FastISel::getRegForValue(Value *V) {
61  MVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
62  // Don't handle non-simple values in FastISel.
63  if (!RealVT.isSimple())
64    return 0;
65
66  // Ignore illegal types. We must do this before looking up the value
67  // in ValueMap because Arguments are given virtual registers regardless
68  // of whether FastISel can handle them.
69  MVT::SimpleValueType VT = RealVT.getSimpleVT();
70  if (!TLI.isTypeLegal(VT)) {
71    // Promote MVT::i1 to a legal type though, because it's common and easy.
72    if (VT == MVT::i1)
73      VT = TLI.getTypeToTransformTo(VT).getSimpleVT();
74    else
75      return 0;
76  }
77
78  // Look up the value to see if we already have a register for it. We
79  // cache values defined by Instructions across blocks, and other values
80  // only locally. This is because Instructions already have the SSA
81  // def-dominatess-use requirement enforced.
82  if (ValueMap.count(V))
83    return ValueMap[V];
84  unsigned Reg = LocalValueMap[V];
85  if (Reg != 0)
86    return Reg;
87
88  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
89    if (CI->getValue().getActiveBits() <= 64)
90      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
91  } else if (isa<AllocaInst>(V)) {
92    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
93  } else if (isa<ConstantPointerNull>(V)) {
94    // Translate this as an integer zero so that it can be
95    // local-CSE'd with actual integer zeros.
96    Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType()));
97  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
98    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
99
100    if (!Reg) {
101      const APFloat &Flt = CF->getValueAPF();
102      MVT IntVT = TLI.getPointerTy();
103
104      uint64_t x[2];
105      uint32_t IntBitWidth = IntVT.getSizeInBits();
106      bool isExact;
107      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
108                                APFloat::rmTowardZero, &isExact);
109      if (isExact) {
110        APInt IntVal(IntBitWidth, 2, x);
111
112        unsigned IntegerReg = getRegForValue(ConstantInt::get(IntVal));
113        if (IntegerReg != 0)
114          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
115      }
116    }
117  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
118    if (!SelectOperator(CE, CE->getOpcode())) return 0;
119    Reg = LocalValueMap[CE];
120  } else if (isa<UndefValue>(V)) {
121    Reg = createResultReg(TLI.getRegClassFor(VT));
122    BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
123  }
124
125  // If target-independent code couldn't handle the value, give target-specific
126  // code a try.
127  if (!Reg && isa<Constant>(V))
128    Reg = TargetMaterializeConstant(cast<Constant>(V));
129
130  // Don't cache constant materializations in the general ValueMap.
131  // To do so would require tracking what uses they dominate.
132  if (Reg != 0)
133    LocalValueMap[V] = Reg;
134  return Reg;
135}
136
137unsigned FastISel::lookUpRegForValue(Value *V) {
138  // Look up the value to see if we already have a register for it. We
139  // cache values defined by Instructions across blocks, and other values
140  // only locally. This is because Instructions already have the SSA
141  // def-dominatess-use requirement enforced.
142  if (ValueMap.count(V))
143    return ValueMap[V];
144  return LocalValueMap[V];
145}
146
147/// UpdateValueMap - Update the value map to include the new mapping for this
148/// instruction, or insert an extra copy to get the result in a previous
149/// determined register.
150/// NOTE: This is only necessary because we might select a block that uses
151/// a value before we select the block that defines the value.  It might be
152/// possible to fix this by selecting blocks in reverse postorder.
153unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
154  if (!isa<Instruction>(I)) {
155    LocalValueMap[I] = Reg;
156    return Reg;
157  }
158
159  unsigned &AssignedReg = ValueMap[I];
160  if (AssignedReg == 0)
161    AssignedReg = Reg;
162  else if (Reg != AssignedReg) {
163    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
164    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
165                     Reg, RegClass, RegClass);
166  }
167  return AssignedReg;
168}
169
170unsigned FastISel::getRegForGEPIndex(Value *Idx) {
171  unsigned IdxN = getRegForValue(Idx);
172  if (IdxN == 0)
173    // Unhandled operand. Halt "fast" selection and bail.
174    return 0;
175
176  // If the index is smaller or larger than intptr_t, truncate or extend it.
177  MVT PtrVT = TLI.getPointerTy();
178  MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
179  if (IdxVT.bitsLT(PtrVT))
180    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
181                      ISD::SIGN_EXTEND, IdxN);
182  else if (IdxVT.bitsGT(PtrVT))
183    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
184                      ISD::TRUNCATE, IdxN);
185  return IdxN;
186}
187
188/// SelectBinaryOp - Select and emit code for a binary operator instruction,
189/// which has an opcode which directly corresponds to the given ISD opcode.
190///
191bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
192  MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
193  if (VT == MVT::Other || !VT.isSimple())
194    // Unhandled type. Halt "fast" selection and bail.
195    return false;
196
197  // We only handle legal types. For example, on x86-32 the instruction
198  // selector contains all of the 64-bit instructions from x86-64,
199  // under the assumption that i64 won't be used if the target doesn't
200  // support it.
201  if (!TLI.isTypeLegal(VT)) {
202    // MVT::i1 is special. Allow AND, OR, or XOR because they
203    // don't require additional zeroing, which makes them easy.
204    if (VT == MVT::i1 &&
205        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
206         ISDOpcode == ISD::XOR))
207      VT = TLI.getTypeToTransformTo(VT);
208    else
209      return false;
210  }
211
212  unsigned Op0 = getRegForValue(I->getOperand(0));
213  if (Op0 == 0)
214    // Unhandled operand. Halt "fast" selection and bail.
215    return false;
216
217  // Check if the second operand is a constant and handle it appropriately.
218  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
219    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
220                                     ISDOpcode, Op0, CI->getZExtValue());
221    if (ResultReg != 0) {
222      // We successfully emitted code for the given LLVM Instruction.
223      UpdateValueMap(I, ResultReg);
224      return true;
225    }
226  }
227
228  // Check if the second operand is a constant float.
229  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
230    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
231                                     ISDOpcode, Op0, CF);
232    if (ResultReg != 0) {
233      // We successfully emitted code for the given LLVM Instruction.
234      UpdateValueMap(I, ResultReg);
235      return true;
236    }
237  }
238
239  unsigned Op1 = getRegForValue(I->getOperand(1));
240  if (Op1 == 0)
241    // Unhandled operand. Halt "fast" selection and bail.
242    return false;
243
244  // Now we have both operands in registers. Emit the instruction.
245  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
246                                   ISDOpcode, Op0, Op1);
247  if (ResultReg == 0)
248    // Target-specific code wasn't able to find a machine opcode for
249    // the given ISD opcode and type. Halt "fast" selection and bail.
250    return false;
251
252  // We successfully emitted code for the given LLVM Instruction.
253  UpdateValueMap(I, ResultReg);
254  return true;
255}
256
257bool FastISel::SelectGetElementPtr(User *I) {
258  unsigned N = getRegForValue(I->getOperand(0));
259  if (N == 0)
260    // Unhandled operand. Halt "fast" selection and bail.
261    return false;
262
263  const Type *Ty = I->getOperand(0)->getType();
264  MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
265  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
266       OI != E; ++OI) {
267    Value *Idx = *OI;
268    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
269      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
270      if (Field) {
271        // N = N + Offset
272        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
273        // FIXME: This can be optimized by combining the add with a
274        // subsequent one.
275        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
276        if (N == 0)
277          // Unhandled operand. Halt "fast" selection and bail.
278          return false;
279      }
280      Ty = StTy->getElementType(Field);
281    } else {
282      Ty = cast<SequentialType>(Ty)->getElementType();
283
284      // If this is a constant subscript, handle it quickly.
285      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
286        if (CI->getZExtValue() == 0) continue;
287        uint64_t Offs =
288          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
289        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
290        if (N == 0)
291          // Unhandled operand. Halt "fast" selection and bail.
292          return false;
293        continue;
294      }
295
296      // N = N + Idx * ElementSize;
297      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
298      unsigned IdxN = getRegForGEPIndex(Idx);
299      if (IdxN == 0)
300        // Unhandled operand. Halt "fast" selection and bail.
301        return false;
302
303      if (ElementSize != 1) {
304        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
305        if (IdxN == 0)
306          // Unhandled operand. Halt "fast" selection and bail.
307          return false;
308      }
309      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
310      if (N == 0)
311        // Unhandled operand. Halt "fast" selection and bail.
312        return false;
313    }
314  }
315
316  // We successfully emitted code for the given LLVM Instruction.
317  UpdateValueMap(I, N);
318  return true;
319}
320
321bool FastISel::SelectCall(User *I) {
322  Function *F = cast<CallInst>(I)->getCalledFunction();
323  if (!F) return false;
324
325  unsigned IID = F->getIntrinsicID();
326  switch (IID) {
327  default: break;
328  case Intrinsic::dbg_stoppoint: {
329    DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
330    if (DIDescriptor::ValidDebugInfo(SPI->getContext(), CodeGenOpt::None)) {
331      DICompileUnit CU(cast<GlobalVariable>(SPI->getContext()));
332      unsigned Line = SPI->getLine();
333      unsigned Col = SPI->getColumn();
334      unsigned Idx = MF.getOrCreateDebugLocID(CU.getGV(),
335                                              DbgScopeTrack.getCurScope(),
336                                              Line, Col);
337      setCurDebugLoc(DebugLoc::get(Idx));
338    }
339    return true;
340  }
341  case Intrinsic::dbg_region_start: {
342    DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
343    if (!DIDescriptor::ValidDebugInfo(RSI->getContext(), CodeGenOpt::None))
344      return true;
345
346    GlobalVariable *Rgn = cast<GlobalVariable>(RSI->getContext());
347    DbgScopeTrack.EnterDebugScope(Rgn, MF);
348    if (DW && DW->ShouldEmitDwarfDebug()) {
349      unsigned ID = DW->RecordRegionStart(Rgn);
350      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
351      BuildMI(MBB, DL, II).addImm(ID);
352    }
353    return true;
354  }
355  case Intrinsic::dbg_region_end: {
356    DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
357    if (!DIDescriptor::ValidDebugInfo(REI->getContext(), CodeGenOpt::None))
358      return true;
359
360    GlobalVariable *Rgn = cast<GlobalVariable>(REI->getContext());
361    DbgScopeTrack.ExitDebugScope(Rgn, MF);
362    if (DW && DW->ShouldEmitDwarfDebug()) {
363     unsigned ID = 0;
364     DISubprogram Subprogram(Rgn);
365     if (!Subprogram.isNull() && !Subprogram.describes(MF.getFunction())) {
366        // This is end of an inlined function.
367        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
368        ID = DW->RecordInlinedFnEnd(Subprogram);
369        if (ID)
370          // Returned ID is 0 if this is unbalanced "end of inlined
371          // scope". This could happen if optimizer eats dbg intrinsics
372          // or "beginning of inlined scope" is not recoginized due to
373          // missing location info. In such cases, do ignore this region.end.
374          BuildMI(MBB, DL, II).addImm(ID);
375      } else {
376        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
377        ID =  DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext()));
378        BuildMI(MBB, DL, II).addImm(ID);
379      }
380    }
381    return true;
382  }
383  case Intrinsic::dbg_func_start: {
384    DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
385    Value *SP = FSI->getSubprogram();
386    if (!DIDescriptor::ValidDebugInfo(SP, CodeGenOpt::None))
387      return true;
388
389    // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what
390    // (most?) gdb expects.
391    DebugLoc PrevLoc = DL;
392    DISubprogram Subprogram(cast<GlobalVariable>(SP));
393    DICompileUnit CompileUnit = Subprogram.getCompileUnit();
394    DbgScopeTrack.EnterDebugScope(Subprogram.getGV(), MF);
395
396    if (!Subprogram.describes(MF.getFunction())) {
397      // This is a beginning of an inlined function.
398
399      // If llvm.dbg.func.start is seen in a new block before any
400      // llvm.dbg.stoppoint intrinsic then the location info is unknown.
401      // FIXME : Why DebugLoc is reset at the beginning of each block ?
402      if (PrevLoc.isUnknown())
403        return true;
404      // Record the source line.
405      unsigned Line = Subprogram.getLineNumber();
406      setCurDebugLoc(
407        DebugLoc::get(MF.getOrCreateDebugLocID(CompileUnit.getGV(),
408                                               DbgScopeTrack.getCurScope(),
409                                               Line, 0)));
410
411      if (DW && DW->ShouldEmitDwarfDebug()) {
412        DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
413        unsigned LabelID = DW->RecordInlinedFnStart(Subprogram,
414                                          DICompileUnit(PrevLocTpl.CompileUnit),
415                                          PrevLocTpl.Line,
416                                          PrevLocTpl.Col);
417        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
418        BuildMI(MBB, DL, II).addImm(LabelID);
419      }
420    } else {
421      // Record the source line.
422      unsigned Line = Subprogram.getLineNumber();
423      MF.setDefaultDebugLoc(
424        DebugLoc::get(MF.getOrCreateDebugLocID(CompileUnit.getGV(),
425                                               DbgScopeTrack.getCurScope(),
426                                               Line, 0)));
427      if (DW && DW->ShouldEmitDwarfDebug()) {
428        // llvm.dbg.func_start also defines beginning of function scope.
429        DW->RecordRegionStart(cast<GlobalVariable>(FSI->getSubprogram()));
430      }
431    }
432
433    return true;
434  }
435  case Intrinsic::dbg_declare: {
436    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
437    Value *Variable = DI->getVariable();
438    if (DIDescriptor::ValidDebugInfo(Variable, CodeGenOpt::None) &&
439        DW && DW->ShouldEmitDwarfDebug()) {
440      // Determine the address of the declared object.
441      Value *Address = DI->getAddress();
442      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
443        Address = BCI->getOperand(0);
444      AllocaInst *AI = dyn_cast<AllocaInst>(Address);
445      // Don't handle byval struct arguments or VLAs, for example.
446      if (!AI) break;
447      DenseMap<const AllocaInst*, int>::iterator SI =
448        StaticAllocaMap.find(AI);
449      if (SI == StaticAllocaMap.end()) break; // VLAs.
450      int FI = SI->second;
451
452      // Determine the debug globalvariable.
453      GlobalValue *GV = cast<GlobalVariable>(Variable);
454
455      // Build the DECLARE instruction.
456      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
457      MachineInstr *DeclareMI
458        = BuildMI(MBB, DL, II).addFrameIndex(FI).addGlobalAddress(GV);
459      DIVariable DV(cast<GlobalVariable>(GV));
460      if (!DV.isNull()) {
461        // This is a local variable
462        DW->RecordVariableScope(DV, DeclareMI);
463      }
464    }
465    return true;
466  }
467  case Intrinsic::eh_exception: {
468    MVT VT = TLI.getValueType(I->getType());
469    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
470    default: break;
471    case TargetLowering::Expand: {
472      if (!MBB->isLandingPad()) {
473        // FIXME: Mark exception register as live in.  Hack for PR1508.
474        unsigned Reg = TLI.getExceptionAddressRegister();
475        if (Reg) MBB->addLiveIn(Reg);
476      }
477      unsigned Reg = TLI.getExceptionAddressRegister();
478      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
479      unsigned ResultReg = createResultReg(RC);
480      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
481                                           Reg, RC, RC);
482      assert(InsertedCopy && "Can't copy address registers!");
483      InsertedCopy = InsertedCopy;
484      UpdateValueMap(I, ResultReg);
485      return true;
486    }
487    }
488    break;
489  }
490  case Intrinsic::eh_selector_i32:
491  case Intrinsic::eh_selector_i64: {
492    MVT VT = TLI.getValueType(I->getType());
493    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
494    default: break;
495    case TargetLowering::Expand: {
496      MVT VT = (IID == Intrinsic::eh_selector_i32 ?
497                           MVT::i32 : MVT::i64);
498
499      if (MMI) {
500        if (MBB->isLandingPad())
501          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
502        else {
503#ifndef NDEBUG
504          CatchInfoLost.insert(cast<CallInst>(I));
505#endif
506          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
507          unsigned Reg = TLI.getExceptionSelectorRegister();
508          if (Reg) MBB->addLiveIn(Reg);
509        }
510
511        unsigned Reg = TLI.getExceptionSelectorRegister();
512        const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
513        unsigned ResultReg = createResultReg(RC);
514        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
515                                             Reg, RC, RC);
516        assert(InsertedCopy && "Can't copy address registers!");
517        InsertedCopy = InsertedCopy;
518        UpdateValueMap(I, ResultReg);
519      } else {
520        unsigned ResultReg =
521          getRegForValue(Constant::getNullValue(I->getType()));
522        UpdateValueMap(I, ResultReg);
523      }
524      return true;
525    }
526    }
527    break;
528  }
529  }
530  return false;
531}
532
533bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
534  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
535  MVT DstVT = TLI.getValueType(I->getType());
536
537  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
538      DstVT == MVT::Other || !DstVT.isSimple())
539    // Unhandled type. Halt "fast" selection and bail.
540    return false;
541
542  // Check if the destination type is legal. Or as a special case,
543  // it may be i1 if we're doing a truncate because that's
544  // easy and somewhat common.
545  if (!TLI.isTypeLegal(DstVT))
546    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
547      // Unhandled type. Halt "fast" selection and bail.
548      return false;
549
550  // Check if the source operand is legal. Or as a special case,
551  // it may be i1 if we're doing zero-extension because that's
552  // easy and somewhat common.
553  if (!TLI.isTypeLegal(SrcVT))
554    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
555      // Unhandled type. Halt "fast" selection and bail.
556      return false;
557
558  unsigned InputReg = getRegForValue(I->getOperand(0));
559  if (!InputReg)
560    // Unhandled operand.  Halt "fast" selection and bail.
561    return false;
562
563  // If the operand is i1, arrange for the high bits in the register to be zero.
564  if (SrcVT == MVT::i1) {
565   SrcVT = TLI.getTypeToTransformTo(SrcVT);
566   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
567   if (!InputReg)
568     return false;
569  }
570  // If the result is i1, truncate to the target's type for i1 first.
571  if (DstVT == MVT::i1)
572    DstVT = TLI.getTypeToTransformTo(DstVT);
573
574  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
575                                  DstVT.getSimpleVT(),
576                                  Opcode,
577                                  InputReg);
578  if (!ResultReg)
579    return false;
580
581  UpdateValueMap(I, ResultReg);
582  return true;
583}
584
585bool FastISel::SelectBitCast(User *I) {
586  // If the bitcast doesn't change the type, just use the operand value.
587  if (I->getType() == I->getOperand(0)->getType()) {
588    unsigned Reg = getRegForValue(I->getOperand(0));
589    if (Reg == 0)
590      return false;
591    UpdateValueMap(I, Reg);
592    return true;
593  }
594
595  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
596  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
597  MVT DstVT = TLI.getValueType(I->getType());
598
599  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
600      DstVT == MVT::Other || !DstVT.isSimple() ||
601      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
602    // Unhandled type. Halt "fast" selection and bail.
603    return false;
604
605  unsigned Op0 = getRegForValue(I->getOperand(0));
606  if (Op0 == 0)
607    // Unhandled operand. Halt "fast" selection and bail.
608    return false;
609
610  // First, try to perform the bitcast by inserting a reg-reg copy.
611  unsigned ResultReg = 0;
612  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
613    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
614    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
615    ResultReg = createResultReg(DstClass);
616
617    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
618                                         Op0, DstClass, SrcClass);
619    if (!InsertedCopy)
620      ResultReg = 0;
621  }
622
623  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
624  if (!ResultReg)
625    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
626                           ISD::BIT_CONVERT, Op0);
627
628  if (!ResultReg)
629    return false;
630
631  UpdateValueMap(I, ResultReg);
632  return true;
633}
634
635bool
636FastISel::SelectInstruction(Instruction *I) {
637  return SelectOperator(I, I->getOpcode());
638}
639
640/// FastEmitBranch - Emit an unconditional branch to the given block,
641/// unless it is the immediate (fall-through) successor, and update
642/// the CFG.
643void
644FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
645  MachineFunction::iterator NextMBB =
646     next(MachineFunction::iterator(MBB));
647
648  if (MBB->isLayoutSuccessor(MSucc)) {
649    // The unconditional fall-through case, which needs no instructions.
650  } else {
651    // The unconditional branch case.
652    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
653  }
654  MBB->addSuccessor(MSucc);
655}
656
657bool
658FastISel::SelectOperator(User *I, unsigned Opcode) {
659  switch (Opcode) {
660  case Instruction::Add: {
661    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD;
662    return SelectBinaryOp(I, Opc);
663  }
664  case Instruction::Sub: {
665    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB;
666    return SelectBinaryOp(I, Opc);
667  }
668  case Instruction::Mul: {
669    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL;
670    return SelectBinaryOp(I, Opc);
671  }
672  case Instruction::SDiv:
673    return SelectBinaryOp(I, ISD::SDIV);
674  case Instruction::UDiv:
675    return SelectBinaryOp(I, ISD::UDIV);
676  case Instruction::FDiv:
677    return SelectBinaryOp(I, ISD::FDIV);
678  case Instruction::SRem:
679    return SelectBinaryOp(I, ISD::SREM);
680  case Instruction::URem:
681    return SelectBinaryOp(I, ISD::UREM);
682  case Instruction::FRem:
683    return SelectBinaryOp(I, ISD::FREM);
684  case Instruction::Shl:
685    return SelectBinaryOp(I, ISD::SHL);
686  case Instruction::LShr:
687    return SelectBinaryOp(I, ISD::SRL);
688  case Instruction::AShr:
689    return SelectBinaryOp(I, ISD::SRA);
690  case Instruction::And:
691    return SelectBinaryOp(I, ISD::AND);
692  case Instruction::Or:
693    return SelectBinaryOp(I, ISD::OR);
694  case Instruction::Xor:
695    return SelectBinaryOp(I, ISD::XOR);
696
697  case Instruction::GetElementPtr:
698    return SelectGetElementPtr(I);
699
700  case Instruction::Br: {
701    BranchInst *BI = cast<BranchInst>(I);
702
703    if (BI->isUnconditional()) {
704      BasicBlock *LLVMSucc = BI->getSuccessor(0);
705      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
706      FastEmitBranch(MSucc);
707      return true;
708    }
709
710    // Conditional branches are not handed yet.
711    // Halt "fast" selection and bail.
712    return false;
713  }
714
715  case Instruction::Unreachable:
716    // Nothing to emit.
717    return true;
718
719  case Instruction::PHI:
720    // PHI nodes are already emitted.
721    return true;
722
723  case Instruction::Alloca:
724    // FunctionLowering has the static-sized case covered.
725    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
726      return true;
727
728    // Dynamic-sized alloca is not handled yet.
729    return false;
730
731  case Instruction::Call:
732    return SelectCall(I);
733
734  case Instruction::BitCast:
735    return SelectBitCast(I);
736
737  case Instruction::FPToSI:
738    return SelectCast(I, ISD::FP_TO_SINT);
739  case Instruction::ZExt:
740    return SelectCast(I, ISD::ZERO_EXTEND);
741  case Instruction::SExt:
742    return SelectCast(I, ISD::SIGN_EXTEND);
743  case Instruction::Trunc:
744    return SelectCast(I, ISD::TRUNCATE);
745  case Instruction::SIToFP:
746    return SelectCast(I, ISD::SINT_TO_FP);
747
748  case Instruction::IntToPtr: // Deliberate fall-through.
749  case Instruction::PtrToInt: {
750    MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
751    MVT DstVT = TLI.getValueType(I->getType());
752    if (DstVT.bitsGT(SrcVT))
753      return SelectCast(I, ISD::ZERO_EXTEND);
754    if (DstVT.bitsLT(SrcVT))
755      return SelectCast(I, ISD::TRUNCATE);
756    unsigned Reg = getRegForValue(I->getOperand(0));
757    if (Reg == 0) return false;
758    UpdateValueMap(I, Reg);
759    return true;
760  }
761
762  default:
763    // Unhandled instruction. Halt "fast" selection and bail.
764    return false;
765  }
766}
767
768FastISel::FastISel(MachineFunction &mf,
769                   MachineModuleInfo *mmi,
770                   DwarfWriter *dw,
771                   DenseMap<const Value *, unsigned> &vm,
772                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
773                   DenseMap<const AllocaInst *, int> &am
774#ifndef NDEBUG
775                   , SmallSet<Instruction*, 8> &cil
776#endif
777                   )
778  : MBB(0),
779    ValueMap(vm),
780    MBBMap(bm),
781    StaticAllocaMap(am),
782#ifndef NDEBUG
783    CatchInfoLost(cil),
784#endif
785    MF(mf),
786    MMI(mmi),
787    DW(dw),
788    MRI(MF.getRegInfo()),
789    MFI(*MF.getFrameInfo()),
790    MCP(*MF.getConstantPool()),
791    TM(MF.getTarget()),
792    TD(*TM.getTargetData()),
793    TII(*TM.getInstrInfo()),
794    TLI(*TM.getTargetLowering()) {
795}
796
797FastISel::~FastISel() {}
798
799unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
800                             ISD::NodeType) {
801  return 0;
802}
803
804unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
805                              ISD::NodeType, unsigned /*Op0*/) {
806  return 0;
807}
808
809unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
810                               ISD::NodeType, unsigned /*Op0*/,
811                               unsigned /*Op0*/) {
812  return 0;
813}
814
815unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
816                              ISD::NodeType, uint64_t /*Imm*/) {
817  return 0;
818}
819
820unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
821                              ISD::NodeType, ConstantFP * /*FPImm*/) {
822  return 0;
823}
824
825unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
826                               ISD::NodeType, unsigned /*Op0*/,
827                               uint64_t /*Imm*/) {
828  return 0;
829}
830
831unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
832                               ISD::NodeType, unsigned /*Op0*/,
833                               ConstantFP * /*FPImm*/) {
834  return 0;
835}
836
837unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
838                                ISD::NodeType,
839                                unsigned /*Op0*/, unsigned /*Op1*/,
840                                uint64_t /*Imm*/) {
841  return 0;
842}
843
844/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
845/// to emit an instruction with an immediate operand using FastEmit_ri.
846/// If that fails, it materializes the immediate into a register and try
847/// FastEmit_rr instead.
848unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
849                                unsigned Op0, uint64_t Imm,
850                                MVT::SimpleValueType ImmType) {
851  // First check if immediate type is legal. If not, we can't use the ri form.
852  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
853  if (ResultReg != 0)
854    return ResultReg;
855  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
856  if (MaterialReg == 0)
857    return 0;
858  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
859}
860
861/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
862/// to emit an instruction with a floating-point immediate operand using
863/// FastEmit_rf. If that fails, it materializes the immediate into a register
864/// and try FastEmit_rr instead.
865unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
866                                unsigned Op0, ConstantFP *FPImm,
867                                MVT::SimpleValueType ImmType) {
868  // First check if immediate type is legal. If not, we can't use the rf form.
869  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
870  if (ResultReg != 0)
871    return ResultReg;
872
873  // Materialize the constant in a register.
874  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
875  if (MaterialReg == 0) {
876    // If the target doesn't have a way to directly enter a floating-point
877    // value into a register, use an alternate approach.
878    // TODO: The current approach only supports floating-point constants
879    // that can be constructed by conversion from integer values. This should
880    // be replaced by code that creates a load from a constant-pool entry,
881    // which will require some target-specific work.
882    const APFloat &Flt = FPImm->getValueAPF();
883    MVT IntVT = TLI.getPointerTy();
884
885    uint64_t x[2];
886    uint32_t IntBitWidth = IntVT.getSizeInBits();
887    bool isExact;
888    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
889                             APFloat::rmTowardZero, &isExact);
890    if (!isExact)
891      return 0;
892    APInt IntVal(IntBitWidth, 2, x);
893
894    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
895                                     ISD::Constant, IntVal.getZExtValue());
896    if (IntegerReg == 0)
897      return 0;
898    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
899                             ISD::SINT_TO_FP, IntegerReg);
900    if (MaterialReg == 0)
901      return 0;
902  }
903  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
904}
905
906unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
907  return MRI.createVirtualRegister(RC);
908}
909
910unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
911                                 const TargetRegisterClass* RC) {
912  unsigned ResultReg = createResultReg(RC);
913  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
914
915  BuildMI(MBB, DL, II, ResultReg);
916  return ResultReg;
917}
918
919unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
920                                  const TargetRegisterClass *RC,
921                                  unsigned Op0) {
922  unsigned ResultReg = createResultReg(RC);
923  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
924
925  if (II.getNumDefs() >= 1)
926    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
927  else {
928    BuildMI(MBB, DL, II).addReg(Op0);
929    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
930                                         II.ImplicitDefs[0], RC, RC);
931    if (!InsertedCopy)
932      ResultReg = 0;
933  }
934
935  return ResultReg;
936}
937
938unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
939                                   const TargetRegisterClass *RC,
940                                   unsigned Op0, unsigned Op1) {
941  unsigned ResultReg = createResultReg(RC);
942  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
943
944  if (II.getNumDefs() >= 1)
945    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
946  else {
947    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
948    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
949                                         II.ImplicitDefs[0], RC, RC);
950    if (!InsertedCopy)
951      ResultReg = 0;
952  }
953  return ResultReg;
954}
955
956unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
957                                   const TargetRegisterClass *RC,
958                                   unsigned Op0, uint64_t Imm) {
959  unsigned ResultReg = createResultReg(RC);
960  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
961
962  if (II.getNumDefs() >= 1)
963    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
964  else {
965    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
966    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
967                                         II.ImplicitDefs[0], RC, RC);
968    if (!InsertedCopy)
969      ResultReg = 0;
970  }
971  return ResultReg;
972}
973
974unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
975                                   const TargetRegisterClass *RC,
976                                   unsigned Op0, ConstantFP *FPImm) {
977  unsigned ResultReg = createResultReg(RC);
978  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
979
980  if (II.getNumDefs() >= 1)
981    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
982  else {
983    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
984    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
985                                         II.ImplicitDefs[0], RC, RC);
986    if (!InsertedCopy)
987      ResultReg = 0;
988  }
989  return ResultReg;
990}
991
992unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
993                                    const TargetRegisterClass *RC,
994                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
995  unsigned ResultReg = createResultReg(RC);
996  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
997
998  if (II.getNumDefs() >= 1)
999    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
1000  else {
1001    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
1002    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1003                                         II.ImplicitDefs[0], RC, RC);
1004    if (!InsertedCopy)
1005      ResultReg = 0;
1006  }
1007  return ResultReg;
1008}
1009
1010unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1011                                  const TargetRegisterClass *RC,
1012                                  uint64_t Imm) {
1013  unsigned ResultReg = createResultReg(RC);
1014  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1015
1016  if (II.getNumDefs() >= 1)
1017    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
1018  else {
1019    BuildMI(MBB, DL, II).addImm(Imm);
1020    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1021                                         II.ImplicitDefs[0], RC, RC);
1022    if (!InsertedCopy)
1023      ResultReg = 0;
1024  }
1025  return ResultReg;
1026}
1027
1028unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT,
1029                                              unsigned Op0, uint32_t Idx) {
1030  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
1031
1032  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1033  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
1034
1035  if (II.getNumDefs() >= 1)
1036    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
1037  else {
1038    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
1039    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1040                                         II.ImplicitDefs[0], RC, RC);
1041    if (!InsertedCopy)
1042      ResultReg = 0;
1043  }
1044  return ResultReg;
1045}
1046
1047/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1048/// with all but the least significant bit set to zero.
1049unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT, unsigned Op) {
1050  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
1051}
1052