FastISel.cpp revision 12e528beb5b91114ccdc12e7ff1b6e6597202321
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/DebugLoc.h"
51#include "llvm/CodeGen/DwarfWriter.h"
52#include "llvm/Analysis/DebugInfo.h"
53#include "llvm/Target/TargetData.h"
54#include "llvm/Target/TargetInstrInfo.h"
55#include "llvm/Target/TargetLowering.h"
56#include "llvm/Target/TargetMachine.h"
57#include "SelectionDAGBuild.h"
58using namespace llvm;
59
60unsigned FastISel::getRegForValue(Value *V) {
61  MVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
62  // Don't handle non-simple values in FastISel.
63  if (!RealVT.isSimple())
64    return 0;
65
66  // Ignore illegal types. We must do this before looking up the value
67  // in ValueMap because Arguments are given virtual registers regardless
68  // of whether FastISel can handle them.
69  MVT::SimpleValueType VT = RealVT.getSimpleVT();
70  if (!TLI.isTypeLegal(VT)) {
71    // Promote MVT::i1 to a legal type though, because it's common and easy.
72    if (VT == MVT::i1)
73      VT = TLI.getTypeToTransformTo(VT).getSimpleVT();
74    else
75      return 0;
76  }
77
78  // Look up the value to see if we already have a register for it. We
79  // cache values defined by Instructions across blocks, and other values
80  // only locally. This is because Instructions already have the SSA
81  // def-dominatess-use requirement enforced.
82  if (ValueMap.count(V))
83    return ValueMap[V];
84  unsigned Reg = LocalValueMap[V];
85  if (Reg != 0)
86    return Reg;
87
88  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
89    if (CI->getValue().getActiveBits() <= 64)
90      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
91  } else if (isa<AllocaInst>(V)) {
92    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
93  } else if (isa<ConstantPointerNull>(V)) {
94    // Translate this as an integer zero so that it can be
95    // local-CSE'd with actual integer zeros.
96    Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType()));
97  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
98    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
99
100    if (!Reg) {
101      const APFloat &Flt = CF->getValueAPF();
102      MVT IntVT = TLI.getPointerTy();
103
104      uint64_t x[2];
105      uint32_t IntBitWidth = IntVT.getSizeInBits();
106      bool isExact;
107      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
108                                APFloat::rmTowardZero, &isExact);
109      if (isExact) {
110        APInt IntVal(IntBitWidth, 2, x);
111
112        unsigned IntegerReg = getRegForValue(ConstantInt::get(IntVal));
113        if (IntegerReg != 0)
114          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
115      }
116    }
117  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
118    if (!SelectOperator(CE, CE->getOpcode())) return 0;
119    Reg = LocalValueMap[CE];
120  } else if (isa<UndefValue>(V)) {
121    Reg = createResultReg(TLI.getRegClassFor(VT));
122    BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
123  }
124
125  // If target-independent code couldn't handle the value, give target-specific
126  // code a try.
127  if (!Reg && isa<Constant>(V))
128    Reg = TargetMaterializeConstant(cast<Constant>(V));
129
130  // Don't cache constant materializations in the general ValueMap.
131  // To do so would require tracking what uses they dominate.
132  if (Reg != 0)
133    LocalValueMap[V] = Reg;
134  return Reg;
135}
136
137unsigned FastISel::lookUpRegForValue(Value *V) {
138  // Look up the value to see if we already have a register for it. We
139  // cache values defined by Instructions across blocks, and other values
140  // only locally. This is because Instructions already have the SSA
141  // def-dominatess-use requirement enforced.
142  if (ValueMap.count(V))
143    return ValueMap[V];
144  return LocalValueMap[V];
145}
146
147/// UpdateValueMap - Update the value map to include the new mapping for this
148/// instruction, or insert an extra copy to get the result in a previous
149/// determined register.
150/// NOTE: This is only necessary because we might select a block that uses
151/// a value before we select the block that defines the value.  It might be
152/// possible to fix this by selecting blocks in reverse postorder.
153unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
154  if (!isa<Instruction>(I)) {
155    LocalValueMap[I] = Reg;
156    return Reg;
157  }
158
159  unsigned &AssignedReg = ValueMap[I];
160  if (AssignedReg == 0)
161    AssignedReg = Reg;
162  else if (Reg != AssignedReg) {
163    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
164    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
165                     Reg, RegClass, RegClass);
166  }
167  return AssignedReg;
168}
169
170unsigned FastISel::getRegForGEPIndex(Value *Idx) {
171  unsigned IdxN = getRegForValue(Idx);
172  if (IdxN == 0)
173    // Unhandled operand. Halt "fast" selection and bail.
174    return 0;
175
176  // If the index is smaller or larger than intptr_t, truncate or extend it.
177  MVT PtrVT = TLI.getPointerTy();
178  MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
179  if (IdxVT.bitsLT(PtrVT))
180    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
181                      ISD::SIGN_EXTEND, IdxN);
182  else if (IdxVT.bitsGT(PtrVT))
183    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
184                      ISD::TRUNCATE, IdxN);
185  return IdxN;
186}
187
188/// SelectBinaryOp - Select and emit code for a binary operator instruction,
189/// which has an opcode which directly corresponds to the given ISD opcode.
190///
191bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
192  MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
193  if (VT == MVT::Other || !VT.isSimple())
194    // Unhandled type. Halt "fast" selection and bail.
195    return false;
196
197  // We only handle legal types. For example, on x86-32 the instruction
198  // selector contains all of the 64-bit instructions from x86-64,
199  // under the assumption that i64 won't be used if the target doesn't
200  // support it.
201  if (!TLI.isTypeLegal(VT)) {
202    // MVT::i1 is special. Allow AND, OR, or XOR because they
203    // don't require additional zeroing, which makes them easy.
204    if (VT == MVT::i1 &&
205        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
206         ISDOpcode == ISD::XOR))
207      VT = TLI.getTypeToTransformTo(VT);
208    else
209      return false;
210  }
211
212  unsigned Op0 = getRegForValue(I->getOperand(0));
213  if (Op0 == 0)
214    // Unhandled operand. Halt "fast" selection and bail.
215    return false;
216
217  // Check if the second operand is a constant and handle it appropriately.
218  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
219    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
220                                     ISDOpcode, Op0, CI->getZExtValue());
221    if (ResultReg != 0) {
222      // We successfully emitted code for the given LLVM Instruction.
223      UpdateValueMap(I, ResultReg);
224      return true;
225    }
226  }
227
228  // Check if the second operand is a constant float.
229  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
230    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
231                                     ISDOpcode, Op0, CF);
232    if (ResultReg != 0) {
233      // We successfully emitted code for the given LLVM Instruction.
234      UpdateValueMap(I, ResultReg);
235      return true;
236    }
237  }
238
239  unsigned Op1 = getRegForValue(I->getOperand(1));
240  if (Op1 == 0)
241    // Unhandled operand. Halt "fast" selection and bail.
242    return false;
243
244  // Now we have both operands in registers. Emit the instruction.
245  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
246                                   ISDOpcode, Op0, Op1);
247  if (ResultReg == 0)
248    // Target-specific code wasn't able to find a machine opcode for
249    // the given ISD opcode and type. Halt "fast" selection and bail.
250    return false;
251
252  // We successfully emitted code for the given LLVM Instruction.
253  UpdateValueMap(I, ResultReg);
254  return true;
255}
256
257bool FastISel::SelectGetElementPtr(User *I) {
258  unsigned N = getRegForValue(I->getOperand(0));
259  if (N == 0)
260    // Unhandled operand. Halt "fast" selection and bail.
261    return false;
262
263  const Type *Ty = I->getOperand(0)->getType();
264  MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
265  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
266       OI != E; ++OI) {
267    Value *Idx = *OI;
268    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
269      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
270      if (Field) {
271        // N = N + Offset
272        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
273        // FIXME: This can be optimized by combining the add with a
274        // subsequent one.
275        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
276        if (N == 0)
277          // Unhandled operand. Halt "fast" selection and bail.
278          return false;
279      }
280      Ty = StTy->getElementType(Field);
281    } else {
282      Ty = cast<SequentialType>(Ty)->getElementType();
283
284      // If this is a constant subscript, handle it quickly.
285      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
286        if (CI->getZExtValue() == 0) continue;
287        uint64_t Offs =
288          TD.getTypePaddedSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
289        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
290        if (N == 0)
291          // Unhandled operand. Halt "fast" selection and bail.
292          return false;
293        continue;
294      }
295
296      // N = N + Idx * ElementSize;
297      uint64_t ElementSize = TD.getTypePaddedSize(Ty);
298      unsigned IdxN = getRegForGEPIndex(Idx);
299      if (IdxN == 0)
300        // Unhandled operand. Halt "fast" selection and bail.
301        return false;
302
303      if (ElementSize != 1) {
304        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
305        if (IdxN == 0)
306          // Unhandled operand. Halt "fast" selection and bail.
307          return false;
308      }
309      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
310      if (N == 0)
311        // Unhandled operand. Halt "fast" selection and bail.
312        return false;
313    }
314  }
315
316  // We successfully emitted code for the given LLVM Instruction.
317  UpdateValueMap(I, N);
318  return true;
319}
320
321bool FastISel::SelectCall(User *I) {
322  Function *F = cast<CallInst>(I)->getCalledFunction();
323  if (!F) return false;
324
325  unsigned IID = F->getIntrinsicID();
326  switch (IID) {
327  default: break;
328  case Intrinsic::dbg_stoppoint: {
329    DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
330    if (DW && DW->ValidDebugInfo(SPI->getContext(), true)) {
331      DICompileUnit CU(cast<GlobalVariable>(SPI->getContext()));
332      std::string Dir, FN;
333      unsigned SrcFile = DW->getOrCreateSourceID(CU.getDirectory(Dir),
334                                                 CU.getFilename(FN));
335      unsigned Line = SPI->getLine();
336      unsigned Col = SPI->getColumn();
337      unsigned ID = DW->RecordSourceLine(Line, Col, SrcFile);
338      unsigned Idx = MF.getOrCreateDebugLocID(SrcFile, Line, Col);
339      setCurDebugLoc(DebugLoc::get(Idx));
340      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
341      BuildMI(MBB, DL, II).addImm(ID);
342    }
343    return true;
344  }
345  case Intrinsic::dbg_region_start: {
346    DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
347    if (DW && DW->ValidDebugInfo(RSI->getContext(), true)) {
348      unsigned ID =
349        DW->RecordRegionStart(cast<GlobalVariable>(RSI->getContext()));
350      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
351      BuildMI(MBB, DL, II).addImm(ID);
352    }
353    return true;
354  }
355  case Intrinsic::dbg_region_end: {
356    DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
357    if (DW && DW->ValidDebugInfo(REI->getContext(), true)) {
358     unsigned ID = 0;
359     DISubprogram Subprogram(cast<GlobalVariable>(REI->getContext()));
360     if (!Subprogram.isNull() && !Subprogram.describes(MF.getFunction())) {
361        // This is end of an inlined function.
362        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
363        ID = DW->RecordInlinedFnEnd(Subprogram);
364        if (ID)
365          // If ID is 0 then this was not an end of inlined region.
366          BuildMI(MBB, DL, II).addImm(ID);
367      } else {
368        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
369        ID =  DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext()));
370        BuildMI(MBB, DL, II).addImm(ID);
371      }
372    }
373    return true;
374  }
375  case Intrinsic::dbg_func_start: {
376    if (!DW) return true;
377    DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
378    Value *SP = FSI->getSubprogram();
379
380    if (DW->ValidDebugInfo(SP, true)) {
381      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what
382      // (most?) gdb expects.
383      DebugLoc PrevLoc = DL;
384      DISubprogram Subprogram(cast<GlobalVariable>(SP));
385      DICompileUnit CompileUnit = Subprogram.getCompileUnit();
386      std::string Dir, FN;
387      unsigned SrcFile = DW->getOrCreateSourceID(CompileUnit.getDirectory(Dir),
388                                                 CompileUnit.getFilename(FN));
389
390      // Record the source line.
391      unsigned Line = Subprogram.getLineNumber();
392      unsigned LabelID = DW->RecordSourceLine(Line, 0, SrcFile);
393      setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(SrcFile, Line, 0)));
394      if (!Subprogram.describes(MF.getFunction())) {
395        // This is a beginning of an inlined function.
396        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
397        BuildMI(MBB, DL, II).addImm(LabelID);
398        DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
399        DW->RecordInlinedFnStart(FSI, Subprogram, LabelID,
400                                 PrevLocTpl.Src,
401                                 PrevLocTpl.Line,
402                                 PrevLocTpl.Col);
403      } else {
404        // llvm.dbg.func_start also defines beginning of function scope.
405        DW->RecordRegionStart(cast<GlobalVariable>(FSI->getSubprogram()));
406      }
407    }
408
409    return true;
410  }
411  case Intrinsic::dbg_declare: {
412    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
413    Value *Variable = DI->getVariable();
414    if (DW && DW->ValidDebugInfo(Variable, true)) {
415      // Determine the address of the declared object.
416      Value *Address = DI->getAddress();
417      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
418        Address = BCI->getOperand(0);
419      AllocaInst *AI = dyn_cast<AllocaInst>(Address);
420      // Don't handle byval struct arguments or VLAs, for example.
421      if (!AI) break;
422      DenseMap<const AllocaInst*, int>::iterator SI =
423        StaticAllocaMap.find(AI);
424      if (SI == StaticAllocaMap.end()) break; // VLAs.
425      int FI = SI->second;
426
427      // Determine the debug globalvariable.
428      GlobalValue *GV = cast<GlobalVariable>(Variable);
429
430      // Build the DECLARE instruction.
431      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
432      MachineInstr *DeclareMI
433        = BuildMI(MBB, DL, II).addFrameIndex(FI).addGlobalAddress(GV);
434      DIVariable DV(cast<GlobalVariable>(GV));
435      if (!DV.isNull()) {
436        // This is a local variable
437        DW->RecordVariableScope(DV, DeclareMI);
438      }
439    }
440    return true;
441  }
442  case Intrinsic::eh_exception: {
443    MVT VT = TLI.getValueType(I->getType());
444    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
445    default: break;
446    case TargetLowering::Expand: {
447      if (!MBB->isLandingPad()) {
448        // FIXME: Mark exception register as live in.  Hack for PR1508.
449        unsigned Reg = TLI.getExceptionAddressRegister();
450        if (Reg) MBB->addLiveIn(Reg);
451      }
452      unsigned Reg = TLI.getExceptionAddressRegister();
453      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
454      unsigned ResultReg = createResultReg(RC);
455      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
456                                           Reg, RC, RC);
457      assert(InsertedCopy && "Can't copy address registers!");
458      InsertedCopy = InsertedCopy;
459      UpdateValueMap(I, ResultReg);
460      return true;
461    }
462    }
463    break;
464  }
465  case Intrinsic::eh_selector_i32:
466  case Intrinsic::eh_selector_i64: {
467    MVT VT = TLI.getValueType(I->getType());
468    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
469    default: break;
470    case TargetLowering::Expand: {
471      MVT VT = (IID == Intrinsic::eh_selector_i32 ?
472                           MVT::i32 : MVT::i64);
473
474      if (MMI) {
475        if (MBB->isLandingPad())
476          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
477        else {
478#ifndef NDEBUG
479          CatchInfoLost.insert(cast<CallInst>(I));
480#endif
481          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
482          unsigned Reg = TLI.getExceptionSelectorRegister();
483          if (Reg) MBB->addLiveIn(Reg);
484        }
485
486        unsigned Reg = TLI.getExceptionSelectorRegister();
487        const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
488        unsigned ResultReg = createResultReg(RC);
489        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
490                                             Reg, RC, RC);
491        assert(InsertedCopy && "Can't copy address registers!");
492        InsertedCopy = InsertedCopy;
493        UpdateValueMap(I, ResultReg);
494      } else {
495        unsigned ResultReg =
496          getRegForValue(Constant::getNullValue(I->getType()));
497        UpdateValueMap(I, ResultReg);
498      }
499      return true;
500    }
501    }
502    break;
503  }
504  }
505  return false;
506}
507
508bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
509  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
510  MVT DstVT = TLI.getValueType(I->getType());
511
512  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
513      DstVT == MVT::Other || !DstVT.isSimple())
514    // Unhandled type. Halt "fast" selection and bail.
515    return false;
516
517  // Check if the destination type is legal. Or as a special case,
518  // it may be i1 if we're doing a truncate because that's
519  // easy and somewhat common.
520  if (!TLI.isTypeLegal(DstVT))
521    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
522      // Unhandled type. Halt "fast" selection and bail.
523      return false;
524
525  // Check if the source operand is legal. Or as a special case,
526  // it may be i1 if we're doing zero-extension because that's
527  // easy and somewhat common.
528  if (!TLI.isTypeLegal(SrcVT))
529    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
530      // Unhandled type. Halt "fast" selection and bail.
531      return false;
532
533  unsigned InputReg = getRegForValue(I->getOperand(0));
534  if (!InputReg)
535    // Unhandled operand.  Halt "fast" selection and bail.
536    return false;
537
538  // If the operand is i1, arrange for the high bits in the register to be zero.
539  if (SrcVT == MVT::i1) {
540   SrcVT = TLI.getTypeToTransformTo(SrcVT);
541   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
542   if (!InputReg)
543     return false;
544  }
545  // If the result is i1, truncate to the target's type for i1 first.
546  if (DstVT == MVT::i1)
547    DstVT = TLI.getTypeToTransformTo(DstVT);
548
549  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
550                                  DstVT.getSimpleVT(),
551                                  Opcode,
552                                  InputReg);
553  if (!ResultReg)
554    return false;
555
556  UpdateValueMap(I, ResultReg);
557  return true;
558}
559
560bool FastISel::SelectBitCast(User *I) {
561  // If the bitcast doesn't change the type, just use the operand value.
562  if (I->getType() == I->getOperand(0)->getType()) {
563    unsigned Reg = getRegForValue(I->getOperand(0));
564    if (Reg == 0)
565      return false;
566    UpdateValueMap(I, Reg);
567    return true;
568  }
569
570  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
571  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
572  MVT DstVT = TLI.getValueType(I->getType());
573
574  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
575      DstVT == MVT::Other || !DstVT.isSimple() ||
576      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
577    // Unhandled type. Halt "fast" selection and bail.
578    return false;
579
580  unsigned Op0 = getRegForValue(I->getOperand(0));
581  if (Op0 == 0)
582    // Unhandled operand. Halt "fast" selection and bail.
583    return false;
584
585  // First, try to perform the bitcast by inserting a reg-reg copy.
586  unsigned ResultReg = 0;
587  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
588    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
589    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
590    ResultReg = createResultReg(DstClass);
591
592    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
593                                         Op0, DstClass, SrcClass);
594    if (!InsertedCopy)
595      ResultReg = 0;
596  }
597
598  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
599  if (!ResultReg)
600    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
601                           ISD::BIT_CONVERT, Op0);
602
603  if (!ResultReg)
604    return false;
605
606  UpdateValueMap(I, ResultReg);
607  return true;
608}
609
610bool
611FastISel::SelectInstruction(Instruction *I) {
612  return SelectOperator(I, I->getOpcode());
613}
614
615/// FastEmitBranch - Emit an unconditional branch to the given block,
616/// unless it is the immediate (fall-through) successor, and update
617/// the CFG.
618void
619FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
620  MachineFunction::iterator NextMBB =
621     next(MachineFunction::iterator(MBB));
622
623  if (MBB->isLayoutSuccessor(MSucc)) {
624    // The unconditional fall-through case, which needs no instructions.
625  } else {
626    // The unconditional branch case.
627    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
628  }
629  MBB->addSuccessor(MSucc);
630}
631
632bool
633FastISel::SelectOperator(User *I, unsigned Opcode) {
634  switch (Opcode) {
635  case Instruction::Add: {
636    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD;
637    return SelectBinaryOp(I, Opc);
638  }
639  case Instruction::Sub: {
640    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB;
641    return SelectBinaryOp(I, Opc);
642  }
643  case Instruction::Mul: {
644    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL;
645    return SelectBinaryOp(I, Opc);
646  }
647  case Instruction::SDiv:
648    return SelectBinaryOp(I, ISD::SDIV);
649  case Instruction::UDiv:
650    return SelectBinaryOp(I, ISD::UDIV);
651  case Instruction::FDiv:
652    return SelectBinaryOp(I, ISD::FDIV);
653  case Instruction::SRem:
654    return SelectBinaryOp(I, ISD::SREM);
655  case Instruction::URem:
656    return SelectBinaryOp(I, ISD::UREM);
657  case Instruction::FRem:
658    return SelectBinaryOp(I, ISD::FREM);
659  case Instruction::Shl:
660    return SelectBinaryOp(I, ISD::SHL);
661  case Instruction::LShr:
662    return SelectBinaryOp(I, ISD::SRL);
663  case Instruction::AShr:
664    return SelectBinaryOp(I, ISD::SRA);
665  case Instruction::And:
666    return SelectBinaryOp(I, ISD::AND);
667  case Instruction::Or:
668    return SelectBinaryOp(I, ISD::OR);
669  case Instruction::Xor:
670    return SelectBinaryOp(I, ISD::XOR);
671
672  case Instruction::GetElementPtr:
673    return SelectGetElementPtr(I);
674
675  case Instruction::Br: {
676    BranchInst *BI = cast<BranchInst>(I);
677
678    if (BI->isUnconditional()) {
679      BasicBlock *LLVMSucc = BI->getSuccessor(0);
680      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
681      FastEmitBranch(MSucc);
682      return true;
683    }
684
685    // Conditional branches are not handed yet.
686    // Halt "fast" selection and bail.
687    return false;
688  }
689
690  case Instruction::Unreachable:
691    // Nothing to emit.
692    return true;
693
694  case Instruction::PHI:
695    // PHI nodes are already emitted.
696    return true;
697
698  case Instruction::Alloca:
699    // FunctionLowering has the static-sized case covered.
700    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
701      return true;
702
703    // Dynamic-sized alloca is not handled yet.
704    return false;
705
706  case Instruction::Call:
707    return SelectCall(I);
708
709  case Instruction::BitCast:
710    return SelectBitCast(I);
711
712  case Instruction::FPToSI:
713    return SelectCast(I, ISD::FP_TO_SINT);
714  case Instruction::ZExt:
715    return SelectCast(I, ISD::ZERO_EXTEND);
716  case Instruction::SExt:
717    return SelectCast(I, ISD::SIGN_EXTEND);
718  case Instruction::Trunc:
719    return SelectCast(I, ISD::TRUNCATE);
720  case Instruction::SIToFP:
721    return SelectCast(I, ISD::SINT_TO_FP);
722
723  case Instruction::IntToPtr: // Deliberate fall-through.
724  case Instruction::PtrToInt: {
725    MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
726    MVT DstVT = TLI.getValueType(I->getType());
727    if (DstVT.bitsGT(SrcVT))
728      return SelectCast(I, ISD::ZERO_EXTEND);
729    if (DstVT.bitsLT(SrcVT))
730      return SelectCast(I, ISD::TRUNCATE);
731    unsigned Reg = getRegForValue(I->getOperand(0));
732    if (Reg == 0) return false;
733    UpdateValueMap(I, Reg);
734    return true;
735  }
736
737  default:
738    // Unhandled instruction. Halt "fast" selection and bail.
739    return false;
740  }
741}
742
743FastISel::FastISel(MachineFunction &mf,
744                   MachineModuleInfo *mmi,
745                   DwarfWriter *dw,
746                   DenseMap<const Value *, unsigned> &vm,
747                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
748                   DenseMap<const AllocaInst *, int> &am
749#ifndef NDEBUG
750                   , SmallSet<Instruction*, 8> &cil
751#endif
752                   )
753  : MBB(0),
754    ValueMap(vm),
755    MBBMap(bm),
756    StaticAllocaMap(am),
757#ifndef NDEBUG
758    CatchInfoLost(cil),
759#endif
760    MF(mf),
761    MMI(mmi),
762    DW(dw),
763    MRI(MF.getRegInfo()),
764    MFI(*MF.getFrameInfo()),
765    MCP(*MF.getConstantPool()),
766    TM(MF.getTarget()),
767    TD(*TM.getTargetData()),
768    TII(*TM.getInstrInfo()),
769    TLI(*TM.getTargetLowering()) {
770}
771
772FastISel::~FastISel() {}
773
774unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
775                             ISD::NodeType) {
776  return 0;
777}
778
779unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
780                              ISD::NodeType, unsigned /*Op0*/) {
781  return 0;
782}
783
784unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
785                               ISD::NodeType, unsigned /*Op0*/,
786                               unsigned /*Op0*/) {
787  return 0;
788}
789
790unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
791                              ISD::NodeType, uint64_t /*Imm*/) {
792  return 0;
793}
794
795unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
796                              ISD::NodeType, ConstantFP * /*FPImm*/) {
797  return 0;
798}
799
800unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
801                               ISD::NodeType, unsigned /*Op0*/,
802                               uint64_t /*Imm*/) {
803  return 0;
804}
805
806unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
807                               ISD::NodeType, unsigned /*Op0*/,
808                               ConstantFP * /*FPImm*/) {
809  return 0;
810}
811
812unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
813                                ISD::NodeType,
814                                unsigned /*Op0*/, unsigned /*Op1*/,
815                                uint64_t /*Imm*/) {
816  return 0;
817}
818
819/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
820/// to emit an instruction with an immediate operand using FastEmit_ri.
821/// If that fails, it materializes the immediate into a register and try
822/// FastEmit_rr instead.
823unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
824                                unsigned Op0, uint64_t Imm,
825                                MVT::SimpleValueType ImmType) {
826  // First check if immediate type is legal. If not, we can't use the ri form.
827  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
828  if (ResultReg != 0)
829    return ResultReg;
830  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
831  if (MaterialReg == 0)
832    return 0;
833  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
834}
835
836/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
837/// to emit an instruction with a floating-point immediate operand using
838/// FastEmit_rf. If that fails, it materializes the immediate into a register
839/// and try FastEmit_rr instead.
840unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
841                                unsigned Op0, ConstantFP *FPImm,
842                                MVT::SimpleValueType ImmType) {
843  // First check if immediate type is legal. If not, we can't use the rf form.
844  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
845  if (ResultReg != 0)
846    return ResultReg;
847
848  // Materialize the constant in a register.
849  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
850  if (MaterialReg == 0) {
851    // If the target doesn't have a way to directly enter a floating-point
852    // value into a register, use an alternate approach.
853    // TODO: The current approach only supports floating-point constants
854    // that can be constructed by conversion from integer values. This should
855    // be replaced by code that creates a load from a constant-pool entry,
856    // which will require some target-specific work.
857    const APFloat &Flt = FPImm->getValueAPF();
858    MVT IntVT = TLI.getPointerTy();
859
860    uint64_t x[2];
861    uint32_t IntBitWidth = IntVT.getSizeInBits();
862    bool isExact;
863    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
864                             APFloat::rmTowardZero, &isExact);
865    if (!isExact)
866      return 0;
867    APInt IntVal(IntBitWidth, 2, x);
868
869    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
870                                     ISD::Constant, IntVal.getZExtValue());
871    if (IntegerReg == 0)
872      return 0;
873    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
874                             ISD::SINT_TO_FP, IntegerReg);
875    if (MaterialReg == 0)
876      return 0;
877  }
878  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
879}
880
881unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
882  return MRI.createVirtualRegister(RC);
883}
884
885unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
886                                 const TargetRegisterClass* RC) {
887  unsigned ResultReg = createResultReg(RC);
888  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
889
890  BuildMI(MBB, DL, II, ResultReg);
891  return ResultReg;
892}
893
894unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
895                                  const TargetRegisterClass *RC,
896                                  unsigned Op0) {
897  unsigned ResultReg = createResultReg(RC);
898  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
899
900  if (II.getNumDefs() >= 1)
901    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
902  else {
903    BuildMI(MBB, DL, II).addReg(Op0);
904    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
905                                         II.ImplicitDefs[0], RC, RC);
906    if (!InsertedCopy)
907      ResultReg = 0;
908  }
909
910  return ResultReg;
911}
912
913unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
914                                   const TargetRegisterClass *RC,
915                                   unsigned Op0, unsigned Op1) {
916  unsigned ResultReg = createResultReg(RC);
917  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
918
919  if (II.getNumDefs() >= 1)
920    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
921  else {
922    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
923    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
924                                         II.ImplicitDefs[0], RC, RC);
925    if (!InsertedCopy)
926      ResultReg = 0;
927  }
928  return ResultReg;
929}
930
931unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
932                                   const TargetRegisterClass *RC,
933                                   unsigned Op0, uint64_t Imm) {
934  unsigned ResultReg = createResultReg(RC);
935  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
936
937  if (II.getNumDefs() >= 1)
938    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
939  else {
940    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
941    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
942                                         II.ImplicitDefs[0], RC, RC);
943    if (!InsertedCopy)
944      ResultReg = 0;
945  }
946  return ResultReg;
947}
948
949unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
950                                   const TargetRegisterClass *RC,
951                                   unsigned Op0, ConstantFP *FPImm) {
952  unsigned ResultReg = createResultReg(RC);
953  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
954
955  if (II.getNumDefs() >= 1)
956    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
957  else {
958    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
959    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
960                                         II.ImplicitDefs[0], RC, RC);
961    if (!InsertedCopy)
962      ResultReg = 0;
963  }
964  return ResultReg;
965}
966
967unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
968                                    const TargetRegisterClass *RC,
969                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
970  unsigned ResultReg = createResultReg(RC);
971  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
972
973  if (II.getNumDefs() >= 1)
974    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
975  else {
976    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
977    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
978                                         II.ImplicitDefs[0], RC, RC);
979    if (!InsertedCopy)
980      ResultReg = 0;
981  }
982  return ResultReg;
983}
984
985unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
986                                  const TargetRegisterClass *RC,
987                                  uint64_t Imm) {
988  unsigned ResultReg = createResultReg(RC);
989  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
990
991  if (II.getNumDefs() >= 1)
992    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
993  else {
994    BuildMI(MBB, DL, II).addImm(Imm);
995    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
996                                         II.ImplicitDefs[0], RC, RC);
997    if (!InsertedCopy)
998      ResultReg = 0;
999  }
1000  return ResultReg;
1001}
1002
1003unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT,
1004                                              unsigned Op0, uint32_t Idx) {
1005  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
1006
1007  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1008  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
1009
1010  if (II.getNumDefs() >= 1)
1011    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
1012  else {
1013    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
1014    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1015                                         II.ImplicitDefs[0], RC, RC);
1016    if (!InsertedCopy)
1017      ResultReg = 0;
1018  }
1019  return ResultReg;
1020}
1021
1022/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1023/// with all but the least significant bit set to zero.
1024unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT, unsigned Op) {
1025  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
1026}
1027