FastISel.cpp revision 2057532679fc1045cfeb38b477ac9e749e6b1dd8
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/DwarfWriter.h"
51#include "llvm/Analysis/DebugInfo.h"
52#include "llvm/Target/TargetData.h"
53#include "llvm/Target/TargetInstrInfo.h"
54#include "llvm/Target/TargetLowering.h"
55#include "llvm/Target/TargetMachine.h"
56#include "SelectionDAGBuild.h"
57using namespace llvm;
58
59unsigned FastISel::getRegForValue(Value *V) {
60  MVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
61  // Don't handle non-simple values in FastISel.
62  if (!RealVT.isSimple())
63    return 0;
64
65  // Ignore illegal types. We must do this before looking up the value
66  // in ValueMap because Arguments are given virtual registers regardless
67  // of whether FastISel can handle them.
68  MVT::SimpleValueType VT = RealVT.getSimpleVT();
69  if (!TLI.isTypeLegal(VT)) {
70    // Promote MVT::i1 to a legal type though, because it's common and easy.
71    if (VT == MVT::i1)
72      VT = TLI.getTypeToTransformTo(VT).getSimpleVT();
73    else
74      return 0;
75  }
76
77  // Look up the value to see if we already have a register for it. We
78  // cache values defined by Instructions across blocks, and other values
79  // only locally. This is because Instructions already have the SSA
80  // def-dominatess-use requirement enforced.
81  if (ValueMap.count(V))
82    return ValueMap[V];
83  unsigned Reg = LocalValueMap[V];
84  if (Reg != 0)
85    return Reg;
86
87  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
88    if (CI->getValue().getActiveBits() <= 64)
89      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
90  } else if (isa<AllocaInst>(V)) {
91    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
92  } else if (isa<ConstantPointerNull>(V)) {
93    // Translate this as an integer zero so that it can be
94    // local-CSE'd with actual integer zeros.
95    Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType()));
96  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
97    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
98
99    if (!Reg) {
100      const APFloat &Flt = CF->getValueAPF();
101      MVT IntVT = TLI.getPointerTy();
102
103      uint64_t x[2];
104      uint32_t IntBitWidth = IntVT.getSizeInBits();
105      bool isExact;
106      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
107                                APFloat::rmTowardZero, &isExact);
108      if (isExact) {
109        APInt IntVal(IntBitWidth, 2, x);
110
111        unsigned IntegerReg = getRegForValue(ConstantInt::get(IntVal));
112        if (IntegerReg != 0)
113          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
114      }
115    }
116  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
117    if (!SelectOperator(CE, CE->getOpcode())) return 0;
118    Reg = LocalValueMap[CE];
119  } else if (isa<UndefValue>(V)) {
120    Reg = createResultReg(TLI.getRegClassFor(VT));
121    BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
122  }
123
124  // If target-independent code couldn't handle the value, give target-specific
125  // code a try.
126  if (!Reg && isa<Constant>(V))
127    Reg = TargetMaterializeConstant(cast<Constant>(V));
128
129  // Don't cache constant materializations in the general ValueMap.
130  // To do so would require tracking what uses they dominate.
131  if (Reg != 0)
132    LocalValueMap[V] = Reg;
133  return Reg;
134}
135
136unsigned FastISel::lookUpRegForValue(Value *V) {
137  // Look up the value to see if we already have a register for it. We
138  // cache values defined by Instructions across blocks, and other values
139  // only locally. This is because Instructions already have the SSA
140  // def-dominatess-use requirement enforced.
141  if (ValueMap.count(V))
142    return ValueMap[V];
143  return LocalValueMap[V];
144}
145
146/// UpdateValueMap - Update the value map to include the new mapping for this
147/// instruction, or insert an extra copy to get the result in a previous
148/// determined register.
149/// NOTE: This is only necessary because we might select a block that uses
150/// a value before we select the block that defines the value.  It might be
151/// possible to fix this by selecting blocks in reverse postorder.
152void FastISel::UpdateValueMap(Value* I, unsigned Reg) {
153  if (!isa<Instruction>(I)) {
154    LocalValueMap[I] = Reg;
155    return;
156  }
157  if (!ValueMap.count(I))
158    ValueMap[I] = Reg;
159  else
160    TII.copyRegToReg(*MBB, MBB->end(), ValueMap[I],
161                     Reg, MRI.getRegClass(Reg), MRI.getRegClass(Reg));
162}
163
164unsigned FastISel::getRegForGEPIndex(Value *Idx) {
165  unsigned IdxN = getRegForValue(Idx);
166  if (IdxN == 0)
167    // Unhandled operand. Halt "fast" selection and bail.
168    return 0;
169
170  // If the index is smaller or larger than intptr_t, truncate or extend it.
171  MVT PtrVT = TLI.getPointerTy();
172  MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
173  if (IdxVT.bitsLT(PtrVT))
174    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
175                      ISD::SIGN_EXTEND, IdxN);
176  else if (IdxVT.bitsGT(PtrVT))
177    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
178                      ISD::TRUNCATE, IdxN);
179  return IdxN;
180}
181
182/// SelectBinaryOp - Select and emit code for a binary operator instruction,
183/// which has an opcode which directly corresponds to the given ISD opcode.
184///
185bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
186  MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
187  if (VT == MVT::Other || !VT.isSimple())
188    // Unhandled type. Halt "fast" selection and bail.
189    return false;
190
191  // We only handle legal types. For example, on x86-32 the instruction
192  // selector contains all of the 64-bit instructions from x86-64,
193  // under the assumption that i64 won't be used if the target doesn't
194  // support it.
195  if (!TLI.isTypeLegal(VT)) {
196    // MVT::i1 is special. Allow AND, OR, or XOR because they
197    // don't require additional zeroing, which makes them easy.
198    if (VT == MVT::i1 &&
199        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
200         ISDOpcode == ISD::XOR))
201      VT = TLI.getTypeToTransformTo(VT);
202    else
203      return false;
204  }
205
206  unsigned Op0 = getRegForValue(I->getOperand(0));
207  if (Op0 == 0)
208    // Unhandled operand. Halt "fast" selection and bail.
209    return false;
210
211  // Check if the second operand is a constant and handle it appropriately.
212  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
213    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
214                                     ISDOpcode, Op0, CI->getZExtValue());
215    if (ResultReg != 0) {
216      // We successfully emitted code for the given LLVM Instruction.
217      UpdateValueMap(I, ResultReg);
218      return true;
219    }
220  }
221
222  // Check if the second operand is a constant float.
223  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
224    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
225                                     ISDOpcode, Op0, CF);
226    if (ResultReg != 0) {
227      // We successfully emitted code for the given LLVM Instruction.
228      UpdateValueMap(I, ResultReg);
229      return true;
230    }
231  }
232
233  unsigned Op1 = getRegForValue(I->getOperand(1));
234  if (Op1 == 0)
235    // Unhandled operand. Halt "fast" selection and bail.
236    return false;
237
238  // Now we have both operands in registers. Emit the instruction.
239  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
240                                   ISDOpcode, Op0, Op1);
241  if (ResultReg == 0)
242    // Target-specific code wasn't able to find a machine opcode for
243    // the given ISD opcode and type. Halt "fast" selection and bail.
244    return false;
245
246  // We successfully emitted code for the given LLVM Instruction.
247  UpdateValueMap(I, ResultReg);
248  return true;
249}
250
251bool FastISel::SelectGetElementPtr(User *I) {
252  unsigned N = getRegForValue(I->getOperand(0));
253  if (N == 0)
254    // Unhandled operand. Halt "fast" selection and bail.
255    return false;
256
257  const Type *Ty = I->getOperand(0)->getType();
258  MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
259  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
260       OI != E; ++OI) {
261    Value *Idx = *OI;
262    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
263      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
264      if (Field) {
265        // N = N + Offset
266        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
267        // FIXME: This can be optimized by combining the add with a
268        // subsequent one.
269        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
270        if (N == 0)
271          // Unhandled operand. Halt "fast" selection and bail.
272          return false;
273      }
274      Ty = StTy->getElementType(Field);
275    } else {
276      Ty = cast<SequentialType>(Ty)->getElementType();
277
278      // If this is a constant subscript, handle it quickly.
279      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
280        if (CI->getZExtValue() == 0) continue;
281        uint64_t Offs =
282          TD.getTypePaddedSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
283        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
284        if (N == 0)
285          // Unhandled operand. Halt "fast" selection and bail.
286          return false;
287        continue;
288      }
289
290      // N = N + Idx * ElementSize;
291      uint64_t ElementSize = TD.getTypePaddedSize(Ty);
292      unsigned IdxN = getRegForGEPIndex(Idx);
293      if (IdxN == 0)
294        // Unhandled operand. Halt "fast" selection and bail.
295        return false;
296
297      if (ElementSize != 1) {
298        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
299        if (IdxN == 0)
300          // Unhandled operand. Halt "fast" selection and bail.
301          return false;
302      }
303      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
304      if (N == 0)
305        // Unhandled operand. Halt "fast" selection and bail.
306        return false;
307    }
308  }
309
310  // We successfully emitted code for the given LLVM Instruction.
311  UpdateValueMap(I, N);
312  return true;
313}
314
315bool FastISel::SelectCall(User *I) {
316  Function *F = cast<CallInst>(I)->getCalledFunction();
317  if (!F) return false;
318
319  unsigned IID = F->getIntrinsicID();
320  switch (IID) {
321  default: break;
322  case Intrinsic::dbg_stoppoint: {
323    DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
324    if (DW && DW->ValidDebugInfo(SPI->getContext())) {
325      DICompileUnit CU(cast<GlobalVariable>(SPI->getContext()));
326      std::string Dir, FN;
327      unsigned SrcFile = DW->getOrCreateSourceID(CU.getDirectory(Dir),
328                                                 CU.getFilename(FN));
329      unsigned Line = SPI->getLine();
330      unsigned Col = SPI->getColumn();
331      unsigned ID = DW->RecordSourceLine(Line, Col, SrcFile);
332      unsigned Idx = MF.getOrCreateDebugLocID(SrcFile, Line, Col);
333      setCurDebugLoc(DebugLoc::get(Idx));
334      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
335      BuildMI(MBB, DL, II).addImm(ID);
336    }
337    return true;
338  }
339  case Intrinsic::dbg_region_start: {
340    DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
341    if (DW && DW->ValidDebugInfo(RSI->getContext())) {
342      unsigned ID =
343        DW->RecordRegionStart(cast<GlobalVariable>(RSI->getContext()));
344      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
345      BuildMI(MBB, DL, II).addImm(ID);
346    }
347    return true;
348  }
349  case Intrinsic::dbg_region_end: {
350    DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
351    if (DW && DW->ValidDebugInfo(REI->getContext())) {
352      unsigned ID =
353        DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext()));
354      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
355      BuildMI(MBB, DL, II).addImm(ID);
356    }
357    return true;
358  }
359  case Intrinsic::dbg_func_start: {
360    if (!DW) return true;
361    DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
362    Value *SP = FSI->getSubprogram();
363
364    if (DW->ValidDebugInfo(SP)) {
365      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what
366      // (most?) gdb expects.
367      DISubprogram Subprogram(cast<GlobalVariable>(SP));
368      DICompileUnit CompileUnit = Subprogram.getCompileUnit();
369      std::string Dir, FN;
370      unsigned SrcFile = DW->getOrCreateSourceID(CompileUnit.getDirectory(Dir),
371                                                 CompileUnit.getFilename(FN));
372
373      // Record the source line.
374      unsigned Line = Subprogram.getLineNumber();
375      unsigned LabelID = DW->RecordSourceLine(Line, 0, SrcFile);
376      setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(SrcFile, Line, 0)));
377
378      std::string SPName;
379      Subprogram.getLinkageName(SPName);
380      if (!SPName.empty()
381          && strcmp(SPName.c_str(), MF.getFunction()->getNameStart())) {
382        // This is a beginning of inlined function.
383        DW->RecordRegionStart(cast<GlobalVariable>(FSI->getSubprogram()),
384                              LabelID);
385        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
386        BuildMI(MBB, DL, II).addImm(LabelID);
387        DW->RecordInlineInfo(Subprogram.getGV(), LabelID);
388      } else {
389        // llvm.dbg.func_start also defines beginning of function scope.
390        DW->RecordRegionStart(cast<GlobalVariable>(FSI->getSubprogram()));
391      }
392    }
393
394    return true;
395  }
396  case Intrinsic::dbg_declare: {
397    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
398    Value *Variable = DI->getVariable();
399    if (DW && DW->ValidDebugInfo(Variable)) {
400      // Determine the address of the declared object.
401      Value *Address = DI->getAddress();
402      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
403        Address = BCI->getOperand(0);
404      AllocaInst *AI = dyn_cast<AllocaInst>(Address);
405      // Don't handle byval struct arguments or VLAs, for example.
406      if (!AI) break;
407      DenseMap<const AllocaInst*, int>::iterator SI =
408        StaticAllocaMap.find(AI);
409      if (SI == StaticAllocaMap.end()) break; // VLAs.
410      int FI = SI->second;
411
412      // Determine the debug globalvariable.
413      GlobalValue *GV = cast<GlobalVariable>(Variable);
414
415      // Build the DECLARE instruction.
416      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
417      BuildMI(MBB, DL, II).addFrameIndex(FI).addGlobalAddress(GV);
418    }
419    return true;
420  }
421  case Intrinsic::eh_exception: {
422    MVT VT = TLI.getValueType(I->getType());
423    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
424    default: break;
425    case TargetLowering::Expand: {
426      if (!MBB->isLandingPad()) {
427        // FIXME: Mark exception register as live in.  Hack for PR1508.
428        unsigned Reg = TLI.getExceptionAddressRegister();
429        if (Reg) MBB->addLiveIn(Reg);
430      }
431      unsigned Reg = TLI.getExceptionAddressRegister();
432      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
433      unsigned ResultReg = createResultReg(RC);
434      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
435                                           Reg, RC, RC);
436      assert(InsertedCopy && "Can't copy address registers!");
437      InsertedCopy = InsertedCopy;
438      UpdateValueMap(I, ResultReg);
439      return true;
440    }
441    }
442    break;
443  }
444  case Intrinsic::eh_selector_i32:
445  case Intrinsic::eh_selector_i64: {
446    MVT VT = TLI.getValueType(I->getType());
447    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
448    default: break;
449    case TargetLowering::Expand: {
450      MVT VT = (IID == Intrinsic::eh_selector_i32 ?
451                           MVT::i32 : MVT::i64);
452
453      if (MMI) {
454        if (MBB->isLandingPad())
455          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
456        else {
457#ifndef NDEBUG
458          CatchInfoLost.insert(cast<CallInst>(I));
459#endif
460          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
461          unsigned Reg = TLI.getExceptionSelectorRegister();
462          if (Reg) MBB->addLiveIn(Reg);
463        }
464
465        unsigned Reg = TLI.getExceptionSelectorRegister();
466        const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
467        unsigned ResultReg = createResultReg(RC);
468        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
469                                             Reg, RC, RC);
470        assert(InsertedCopy && "Can't copy address registers!");
471        InsertedCopy = InsertedCopy;
472        UpdateValueMap(I, ResultReg);
473      } else {
474        unsigned ResultReg =
475          getRegForValue(Constant::getNullValue(I->getType()));
476        UpdateValueMap(I, ResultReg);
477      }
478      return true;
479    }
480    }
481    break;
482  }
483  }
484  return false;
485}
486
487bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
488  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
489  MVT DstVT = TLI.getValueType(I->getType());
490
491  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
492      DstVT == MVT::Other || !DstVT.isSimple())
493    // Unhandled type. Halt "fast" selection and bail.
494    return false;
495
496  // Check if the destination type is legal. Or as a special case,
497  // it may be i1 if we're doing a truncate because that's
498  // easy and somewhat common.
499  if (!TLI.isTypeLegal(DstVT))
500    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
501      // Unhandled type. Halt "fast" selection and bail.
502      return false;
503
504  // Check if the source operand is legal. Or as a special case,
505  // it may be i1 if we're doing zero-extension because that's
506  // easy and somewhat common.
507  if (!TLI.isTypeLegal(SrcVT))
508    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
509      // Unhandled type. Halt "fast" selection and bail.
510      return false;
511
512  unsigned InputReg = getRegForValue(I->getOperand(0));
513  if (!InputReg)
514    // Unhandled operand.  Halt "fast" selection and bail.
515    return false;
516
517  // If the operand is i1, arrange for the high bits in the register to be zero.
518  if (SrcVT == MVT::i1) {
519   SrcVT = TLI.getTypeToTransformTo(SrcVT);
520   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
521   if (!InputReg)
522     return false;
523  }
524  // If the result is i1, truncate to the target's type for i1 first.
525  if (DstVT == MVT::i1)
526    DstVT = TLI.getTypeToTransformTo(DstVT);
527
528  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
529                                  DstVT.getSimpleVT(),
530                                  Opcode,
531                                  InputReg);
532  if (!ResultReg)
533    return false;
534
535  UpdateValueMap(I, ResultReg);
536  return true;
537}
538
539bool FastISel::SelectBitCast(User *I) {
540  // If the bitcast doesn't change the type, just use the operand value.
541  if (I->getType() == I->getOperand(0)->getType()) {
542    unsigned Reg = getRegForValue(I->getOperand(0));
543    if (Reg == 0)
544      return false;
545    UpdateValueMap(I, Reg);
546    return true;
547  }
548
549  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
550  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
551  MVT DstVT = TLI.getValueType(I->getType());
552
553  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
554      DstVT == MVT::Other || !DstVT.isSimple() ||
555      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
556    // Unhandled type. Halt "fast" selection and bail.
557    return false;
558
559  unsigned Op0 = getRegForValue(I->getOperand(0));
560  if (Op0 == 0)
561    // Unhandled operand. Halt "fast" selection and bail.
562    return false;
563
564  // First, try to perform the bitcast by inserting a reg-reg copy.
565  unsigned ResultReg = 0;
566  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
567    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
568    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
569    ResultReg = createResultReg(DstClass);
570
571    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
572                                         Op0, DstClass, SrcClass);
573    if (!InsertedCopy)
574      ResultReg = 0;
575  }
576
577  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
578  if (!ResultReg)
579    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
580                           ISD::BIT_CONVERT, Op0);
581
582  if (!ResultReg)
583    return false;
584
585  UpdateValueMap(I, ResultReg);
586  return true;
587}
588
589bool
590FastISel::SelectInstruction(Instruction *I) {
591  return SelectOperator(I, I->getOpcode());
592}
593
594/// FastEmitBranch - Emit an unconditional branch to the given block,
595/// unless it is the immediate (fall-through) successor, and update
596/// the CFG.
597void
598FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
599  MachineFunction::iterator NextMBB =
600     next(MachineFunction::iterator(MBB));
601
602  if (MBB->isLayoutSuccessor(MSucc)) {
603    // The unconditional fall-through case, which needs no instructions.
604  } else {
605    // The unconditional branch case.
606    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
607  }
608  MBB->addSuccessor(MSucc);
609}
610
611bool
612FastISel::SelectOperator(User *I, unsigned Opcode) {
613  switch (Opcode) {
614  case Instruction::Add: {
615    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD;
616    return SelectBinaryOp(I, Opc);
617  }
618  case Instruction::Sub: {
619    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB;
620    return SelectBinaryOp(I, Opc);
621  }
622  case Instruction::Mul: {
623    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL;
624    return SelectBinaryOp(I, Opc);
625  }
626  case Instruction::SDiv:
627    return SelectBinaryOp(I, ISD::SDIV);
628  case Instruction::UDiv:
629    return SelectBinaryOp(I, ISD::UDIV);
630  case Instruction::FDiv:
631    return SelectBinaryOp(I, ISD::FDIV);
632  case Instruction::SRem:
633    return SelectBinaryOp(I, ISD::SREM);
634  case Instruction::URem:
635    return SelectBinaryOp(I, ISD::UREM);
636  case Instruction::FRem:
637    return SelectBinaryOp(I, ISD::FREM);
638  case Instruction::Shl:
639    return SelectBinaryOp(I, ISD::SHL);
640  case Instruction::LShr:
641    return SelectBinaryOp(I, ISD::SRL);
642  case Instruction::AShr:
643    return SelectBinaryOp(I, ISD::SRA);
644  case Instruction::And:
645    return SelectBinaryOp(I, ISD::AND);
646  case Instruction::Or:
647    return SelectBinaryOp(I, ISD::OR);
648  case Instruction::Xor:
649    return SelectBinaryOp(I, ISD::XOR);
650
651  case Instruction::GetElementPtr:
652    return SelectGetElementPtr(I);
653
654  case Instruction::Br: {
655    BranchInst *BI = cast<BranchInst>(I);
656
657    if (BI->isUnconditional()) {
658      BasicBlock *LLVMSucc = BI->getSuccessor(0);
659      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
660      FastEmitBranch(MSucc);
661      return true;
662    }
663
664    // Conditional branches are not handed yet.
665    // Halt "fast" selection and bail.
666    return false;
667  }
668
669  case Instruction::Unreachable:
670    // Nothing to emit.
671    return true;
672
673  case Instruction::PHI:
674    // PHI nodes are already emitted.
675    return true;
676
677  case Instruction::Alloca:
678    // FunctionLowering has the static-sized case covered.
679    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
680      return true;
681
682    // Dynamic-sized alloca is not handled yet.
683    return false;
684
685  case Instruction::Call:
686    return SelectCall(I);
687
688  case Instruction::BitCast:
689    return SelectBitCast(I);
690
691  case Instruction::FPToSI:
692    return SelectCast(I, ISD::FP_TO_SINT);
693  case Instruction::ZExt:
694    return SelectCast(I, ISD::ZERO_EXTEND);
695  case Instruction::SExt:
696    return SelectCast(I, ISD::SIGN_EXTEND);
697  case Instruction::Trunc:
698    return SelectCast(I, ISD::TRUNCATE);
699  case Instruction::SIToFP:
700    return SelectCast(I, ISD::SINT_TO_FP);
701
702  case Instruction::IntToPtr: // Deliberate fall-through.
703  case Instruction::PtrToInt: {
704    MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
705    MVT DstVT = TLI.getValueType(I->getType());
706    if (DstVT.bitsGT(SrcVT))
707      return SelectCast(I, ISD::ZERO_EXTEND);
708    if (DstVT.bitsLT(SrcVT))
709      return SelectCast(I, ISD::TRUNCATE);
710    unsigned Reg = getRegForValue(I->getOperand(0));
711    if (Reg == 0) return false;
712    UpdateValueMap(I, Reg);
713    return true;
714  }
715
716  default:
717    // Unhandled instruction. Halt "fast" selection and bail.
718    return false;
719  }
720}
721
722FastISel::FastISel(MachineFunction &mf,
723                   MachineModuleInfo *mmi,
724                   DwarfWriter *dw,
725                   DenseMap<const Value *, unsigned> &vm,
726                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
727                   DenseMap<const AllocaInst *, int> &am
728#ifndef NDEBUG
729                   , SmallSet<Instruction*, 8> &cil
730#endif
731                   )
732  : MBB(0),
733    ValueMap(vm),
734    MBBMap(bm),
735    StaticAllocaMap(am),
736#ifndef NDEBUG
737    CatchInfoLost(cil),
738#endif
739    MF(mf),
740    MMI(mmi),
741    DW(dw),
742    MRI(MF.getRegInfo()),
743    MFI(*MF.getFrameInfo()),
744    MCP(*MF.getConstantPool()),
745    TM(MF.getTarget()),
746    TD(*TM.getTargetData()),
747    TII(*TM.getInstrInfo()),
748    TLI(*TM.getTargetLowering()) {
749}
750
751FastISel::~FastISel() {}
752
753unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
754                             ISD::NodeType) {
755  return 0;
756}
757
758unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
759                              ISD::NodeType, unsigned /*Op0*/) {
760  return 0;
761}
762
763unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
764                               ISD::NodeType, unsigned /*Op0*/,
765                               unsigned /*Op0*/) {
766  return 0;
767}
768
769unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
770                              ISD::NodeType, uint64_t /*Imm*/) {
771  return 0;
772}
773
774unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
775                              ISD::NodeType, ConstantFP * /*FPImm*/) {
776  return 0;
777}
778
779unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
780                               ISD::NodeType, unsigned /*Op0*/,
781                               uint64_t /*Imm*/) {
782  return 0;
783}
784
785unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
786                               ISD::NodeType, unsigned /*Op0*/,
787                               ConstantFP * /*FPImm*/) {
788  return 0;
789}
790
791unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
792                                ISD::NodeType,
793                                unsigned /*Op0*/, unsigned /*Op1*/,
794                                uint64_t /*Imm*/) {
795  return 0;
796}
797
798/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
799/// to emit an instruction with an immediate operand using FastEmit_ri.
800/// If that fails, it materializes the immediate into a register and try
801/// FastEmit_rr instead.
802unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
803                                unsigned Op0, uint64_t Imm,
804                                MVT::SimpleValueType ImmType) {
805  // First check if immediate type is legal. If not, we can't use the ri form.
806  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
807  if (ResultReg != 0)
808    return ResultReg;
809  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
810  if (MaterialReg == 0)
811    return 0;
812  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
813}
814
815/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
816/// to emit an instruction with a floating-point immediate operand using
817/// FastEmit_rf. If that fails, it materializes the immediate into a register
818/// and try FastEmit_rr instead.
819unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
820                                unsigned Op0, ConstantFP *FPImm,
821                                MVT::SimpleValueType ImmType) {
822  // First check if immediate type is legal. If not, we can't use the rf form.
823  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
824  if (ResultReg != 0)
825    return ResultReg;
826
827  // Materialize the constant in a register.
828  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
829  if (MaterialReg == 0) {
830    // If the target doesn't have a way to directly enter a floating-point
831    // value into a register, use an alternate approach.
832    // TODO: The current approach only supports floating-point constants
833    // that can be constructed by conversion from integer values. This should
834    // be replaced by code that creates a load from a constant-pool entry,
835    // which will require some target-specific work.
836    const APFloat &Flt = FPImm->getValueAPF();
837    MVT IntVT = TLI.getPointerTy();
838
839    uint64_t x[2];
840    uint32_t IntBitWidth = IntVT.getSizeInBits();
841    bool isExact;
842    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
843                             APFloat::rmTowardZero, &isExact);
844    if (!isExact)
845      return 0;
846    APInt IntVal(IntBitWidth, 2, x);
847
848    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
849                                     ISD::Constant, IntVal.getZExtValue());
850    if (IntegerReg == 0)
851      return 0;
852    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
853                             ISD::SINT_TO_FP, IntegerReg);
854    if (MaterialReg == 0)
855      return 0;
856  }
857  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
858}
859
860unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
861  return MRI.createVirtualRegister(RC);
862}
863
864unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
865                                 const TargetRegisterClass* RC) {
866  unsigned ResultReg = createResultReg(RC);
867  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
868
869  BuildMI(MBB, DL, II, ResultReg);
870  return ResultReg;
871}
872
873unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
874                                  const TargetRegisterClass *RC,
875                                  unsigned Op0) {
876  unsigned ResultReg = createResultReg(RC);
877  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
878
879  if (II.getNumDefs() >= 1)
880    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
881  else {
882    BuildMI(MBB, DL, II).addReg(Op0);
883    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
884                                         II.ImplicitDefs[0], RC, RC);
885    if (!InsertedCopy)
886      ResultReg = 0;
887  }
888
889  return ResultReg;
890}
891
892unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
893                                   const TargetRegisterClass *RC,
894                                   unsigned Op0, unsigned Op1) {
895  unsigned ResultReg = createResultReg(RC);
896  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
897
898  if (II.getNumDefs() >= 1)
899    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
900  else {
901    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
902    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
903                                         II.ImplicitDefs[0], RC, RC);
904    if (!InsertedCopy)
905      ResultReg = 0;
906  }
907  return ResultReg;
908}
909
910unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
911                                   const TargetRegisterClass *RC,
912                                   unsigned Op0, uint64_t Imm) {
913  unsigned ResultReg = createResultReg(RC);
914  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
915
916  if (II.getNumDefs() >= 1)
917    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
918  else {
919    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
920    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
921                                         II.ImplicitDefs[0], RC, RC);
922    if (!InsertedCopy)
923      ResultReg = 0;
924  }
925  return ResultReg;
926}
927
928unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
929                                   const TargetRegisterClass *RC,
930                                   unsigned Op0, ConstantFP *FPImm) {
931  unsigned ResultReg = createResultReg(RC);
932  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
933
934  if (II.getNumDefs() >= 1)
935    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
936  else {
937    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
938    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
939                                         II.ImplicitDefs[0], RC, RC);
940    if (!InsertedCopy)
941      ResultReg = 0;
942  }
943  return ResultReg;
944}
945
946unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
947                                    const TargetRegisterClass *RC,
948                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
949  unsigned ResultReg = createResultReg(RC);
950  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
951
952  if (II.getNumDefs() >= 1)
953    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
954  else {
955    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
956    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
957                                         II.ImplicitDefs[0], RC, RC);
958    if (!InsertedCopy)
959      ResultReg = 0;
960  }
961  return ResultReg;
962}
963
964unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
965                                  const TargetRegisterClass *RC,
966                                  uint64_t Imm) {
967  unsigned ResultReg = createResultReg(RC);
968  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
969
970  if (II.getNumDefs() >= 1)
971    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
972  else {
973    BuildMI(MBB, DL, II).addImm(Imm);
974    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
975                                         II.ImplicitDefs[0], RC, RC);
976    if (!InsertedCopy)
977      ResultReg = 0;
978  }
979  return ResultReg;
980}
981
982unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT,
983                                              unsigned Op0, uint32_t Idx) {
984  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
985
986  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
987  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
988
989  if (II.getNumDefs() >= 1)
990    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
991  else {
992    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
993    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
994                                         II.ImplicitDefs[0], RC, RC);
995    if (!InsertedCopy)
996      ResultReg = 0;
997  }
998  return ResultReg;
999}
1000
1001/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1002/// with all but the least significant bit set to zero.
1003unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT, unsigned Op) {
1004  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
1005}
1006