FastISel.cpp revision 2565734a60b19b69d83ca44e4a07d14e9ecb59b7
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/DebugLoc.h"
51#include "llvm/CodeGen/DwarfWriter.h"
52#include "llvm/Analysis/DebugInfo.h"
53#include "llvm/Target/TargetData.h"
54#include "llvm/Target/TargetInstrInfo.h"
55#include "llvm/Target/TargetLowering.h"
56#include "llvm/Target/TargetMachine.h"
57#include "SelectionDAGBuild.h"
58using namespace llvm;
59
60unsigned FastISel::getRegForValue(Value *V) {
61  MVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
62  // Don't handle non-simple values in FastISel.
63  if (!RealVT.isSimple())
64    return 0;
65
66  // Ignore illegal types. We must do this before looking up the value
67  // in ValueMap because Arguments are given virtual registers regardless
68  // of whether FastISel can handle them.
69  MVT::SimpleValueType VT = RealVT.getSimpleVT();
70  if (!TLI.isTypeLegal(VT)) {
71    // Promote MVT::i1 to a legal type though, because it's common and easy.
72    if (VT == MVT::i1)
73      VT = TLI.getTypeToTransformTo(VT).getSimpleVT();
74    else
75      return 0;
76  }
77
78  // Look up the value to see if we already have a register for it. We
79  // cache values defined by Instructions across blocks, and other values
80  // only locally. This is because Instructions already have the SSA
81  // def-dominatess-use requirement enforced.
82  if (ValueMap.count(V))
83    return ValueMap[V];
84  unsigned Reg = LocalValueMap[V];
85  if (Reg != 0)
86    return Reg;
87
88  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
89    if (CI->getValue().getActiveBits() <= 64)
90      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
91  } else if (isa<AllocaInst>(V)) {
92    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
93  } else if (isa<ConstantPointerNull>(V)) {
94    // Translate this as an integer zero so that it can be
95    // local-CSE'd with actual integer zeros.
96    Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType()));
97  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
98    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
99
100    if (!Reg) {
101      const APFloat &Flt = CF->getValueAPF();
102      MVT IntVT = TLI.getPointerTy();
103
104      uint64_t x[2];
105      uint32_t IntBitWidth = IntVT.getSizeInBits();
106      bool isExact;
107      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
108                                APFloat::rmTowardZero, &isExact);
109      if (isExact) {
110        APInt IntVal(IntBitWidth, 2, x);
111
112        unsigned IntegerReg = getRegForValue(ConstantInt::get(IntVal));
113        if (IntegerReg != 0)
114          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
115      }
116    }
117  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
118    if (!SelectOperator(CE, CE->getOpcode())) return 0;
119    Reg = LocalValueMap[CE];
120  } else if (isa<UndefValue>(V)) {
121    Reg = createResultReg(TLI.getRegClassFor(VT));
122    BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
123  }
124
125  // If target-independent code couldn't handle the value, give target-specific
126  // code a try.
127  if (!Reg && isa<Constant>(V))
128    Reg = TargetMaterializeConstant(cast<Constant>(V));
129
130  // Don't cache constant materializations in the general ValueMap.
131  // To do so would require tracking what uses they dominate.
132  if (Reg != 0)
133    LocalValueMap[V] = Reg;
134  return Reg;
135}
136
137unsigned FastISel::lookUpRegForValue(Value *V) {
138  // Look up the value to see if we already have a register for it. We
139  // cache values defined by Instructions across blocks, and other values
140  // only locally. This is because Instructions already have the SSA
141  // def-dominatess-use requirement enforced.
142  if (ValueMap.count(V))
143    return ValueMap[V];
144  return LocalValueMap[V];
145}
146
147/// UpdateValueMap - Update the value map to include the new mapping for this
148/// instruction, or insert an extra copy to get the result in a previous
149/// determined register.
150/// NOTE: This is only necessary because we might select a block that uses
151/// a value before we select the block that defines the value.  It might be
152/// possible to fix this by selecting blocks in reverse postorder.
153unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
154  if (!isa<Instruction>(I)) {
155    LocalValueMap[I] = Reg;
156    return Reg;
157  }
158
159  unsigned &AssignedReg = ValueMap[I];
160  if (AssignedReg == 0)
161    AssignedReg = Reg;
162  else if (Reg != AssignedReg) {
163    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
164    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
165                     Reg, RegClass, RegClass);
166  }
167  return AssignedReg;
168}
169
170unsigned FastISel::getRegForGEPIndex(Value *Idx) {
171  unsigned IdxN = getRegForValue(Idx);
172  if (IdxN == 0)
173    // Unhandled operand. Halt "fast" selection and bail.
174    return 0;
175
176  // If the index is smaller or larger than intptr_t, truncate or extend it.
177  MVT PtrVT = TLI.getPointerTy();
178  MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
179  if (IdxVT.bitsLT(PtrVT))
180    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
181                      ISD::SIGN_EXTEND, IdxN);
182  else if (IdxVT.bitsGT(PtrVT))
183    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
184                      ISD::TRUNCATE, IdxN);
185  return IdxN;
186}
187
188/// SelectBinaryOp - Select and emit code for a binary operator instruction,
189/// which has an opcode which directly corresponds to the given ISD opcode.
190///
191bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
192  MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
193  if (VT == MVT::Other || !VT.isSimple())
194    // Unhandled type. Halt "fast" selection and bail.
195    return false;
196
197  // We only handle legal types. For example, on x86-32 the instruction
198  // selector contains all of the 64-bit instructions from x86-64,
199  // under the assumption that i64 won't be used if the target doesn't
200  // support it.
201  if (!TLI.isTypeLegal(VT)) {
202    // MVT::i1 is special. Allow AND, OR, or XOR because they
203    // don't require additional zeroing, which makes them easy.
204    if (VT == MVT::i1 &&
205        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
206         ISDOpcode == ISD::XOR))
207      VT = TLI.getTypeToTransformTo(VT);
208    else
209      return false;
210  }
211
212  unsigned Op0 = getRegForValue(I->getOperand(0));
213  if (Op0 == 0)
214    // Unhandled operand. Halt "fast" selection and bail.
215    return false;
216
217  // Check if the second operand is a constant and handle it appropriately.
218  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
219    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
220                                     ISDOpcode, Op0, CI->getZExtValue());
221    if (ResultReg != 0) {
222      // We successfully emitted code for the given LLVM Instruction.
223      UpdateValueMap(I, ResultReg);
224      return true;
225    }
226  }
227
228  // Check if the second operand is a constant float.
229  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
230    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
231                                     ISDOpcode, Op0, CF);
232    if (ResultReg != 0) {
233      // We successfully emitted code for the given LLVM Instruction.
234      UpdateValueMap(I, ResultReg);
235      return true;
236    }
237  }
238
239  unsigned Op1 = getRegForValue(I->getOperand(1));
240  if (Op1 == 0)
241    // Unhandled operand. Halt "fast" selection and bail.
242    return false;
243
244  // Now we have both operands in registers. Emit the instruction.
245  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
246                                   ISDOpcode, Op0, Op1);
247  if (ResultReg == 0)
248    // Target-specific code wasn't able to find a machine opcode for
249    // the given ISD opcode and type. Halt "fast" selection and bail.
250    return false;
251
252  // We successfully emitted code for the given LLVM Instruction.
253  UpdateValueMap(I, ResultReg);
254  return true;
255}
256
257bool FastISel::SelectGetElementPtr(User *I) {
258  unsigned N = getRegForValue(I->getOperand(0));
259  if (N == 0)
260    // Unhandled operand. Halt "fast" selection and bail.
261    return false;
262
263  const Type *Ty = I->getOperand(0)->getType();
264  MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
265  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
266       OI != E; ++OI) {
267    Value *Idx = *OI;
268    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
269      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
270      if (Field) {
271        // N = N + Offset
272        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
273        // FIXME: This can be optimized by combining the add with a
274        // subsequent one.
275        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
276        if (N == 0)
277          // Unhandled operand. Halt "fast" selection and bail.
278          return false;
279      }
280      Ty = StTy->getElementType(Field);
281    } else {
282      Ty = cast<SequentialType>(Ty)->getElementType();
283
284      // If this is a constant subscript, handle it quickly.
285      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
286        if (CI->getZExtValue() == 0) continue;
287        uint64_t Offs =
288          TD.getTypePaddedSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
289        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
290        if (N == 0)
291          // Unhandled operand. Halt "fast" selection and bail.
292          return false;
293        continue;
294      }
295
296      // N = N + Idx * ElementSize;
297      uint64_t ElementSize = TD.getTypePaddedSize(Ty);
298      unsigned IdxN = getRegForGEPIndex(Idx);
299      if (IdxN == 0)
300        // Unhandled operand. Halt "fast" selection and bail.
301        return false;
302
303      if (ElementSize != 1) {
304        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
305        if (IdxN == 0)
306          // Unhandled operand. Halt "fast" selection and bail.
307          return false;
308      }
309      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
310      if (N == 0)
311        // Unhandled operand. Halt "fast" selection and bail.
312        return false;
313    }
314  }
315
316  // We successfully emitted code for the given LLVM Instruction.
317  UpdateValueMap(I, N);
318  return true;
319}
320
321bool FastISel::SelectCall(User *I) {
322  Function *F = cast<CallInst>(I)->getCalledFunction();
323  if (!F) return false;
324
325  unsigned IID = F->getIntrinsicID();
326  switch (IID) {
327  default: break;
328  case Intrinsic::dbg_stoppoint: {
329    DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
330    if (DIDescriptor::ValidDebugInfo(SPI->getContext(), CodeGenOpt::None)) {
331      DICompileUnit CU(cast<GlobalVariable>(SPI->getContext()));
332      unsigned Line = SPI->getLine();
333      unsigned Col = SPI->getColumn();
334      unsigned Idx = MF.getOrCreateDebugLocID(CU.getGV(), Line, Col);
335      setCurDebugLoc(DebugLoc::get(Idx));
336      if (DW && DW->ShouldEmitDwarfDebug()) {
337        unsigned ID = DW->RecordSourceLine(Line, Col, CU);
338        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
339        BuildMI(MBB, DL, II).addImm(ID);
340      }
341    }
342    return true;
343  }
344  case Intrinsic::dbg_region_start: {
345    DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
346    if (DIDescriptor::ValidDebugInfo(RSI->getContext(), CodeGenOpt::None) &&
347        DW && DW->ShouldEmitDwarfDebug()) {
348      unsigned ID =
349        DW->RecordRegionStart(cast<GlobalVariable>(RSI->getContext()));
350      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
351      BuildMI(MBB, DL, II).addImm(ID);
352    }
353    return true;
354  }
355  case Intrinsic::dbg_region_end: {
356    DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
357    if (DIDescriptor::ValidDebugInfo(REI->getContext(), CodeGenOpt::None) &&
358        DW && DW->ShouldEmitDwarfDebug()) {
359     unsigned ID = 0;
360     DISubprogram Subprogram(cast<GlobalVariable>(REI->getContext()));
361     if (!Subprogram.isNull() && !Subprogram.describes(MF.getFunction())) {
362        // This is end of an inlined function.
363        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
364        ID = DW->RecordInlinedFnEnd(Subprogram);
365        if (ID)
366          // Returned ID is 0 if this is unbalanced "end of inlined
367          // scope". This could happen if optimizer eats dbg intrinsics
368          // or "beginning of inlined scope" is not recoginized due to
369          // missing location info. In such cases, do ignore this region.end.
370          BuildMI(MBB, DL, II).addImm(ID);
371      } else {
372        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
373        ID =  DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext()));
374        BuildMI(MBB, DL, II).addImm(ID);
375      }
376    }
377    return true;
378  }
379  case Intrinsic::dbg_func_start: {
380    DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
381    Value *SP = FSI->getSubprogram();
382    if (!DIDescriptor::ValidDebugInfo(SP, CodeGenOpt::None))
383      return true;
384
385    // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what
386    // (most?) gdb expects.
387    DebugLoc PrevLoc = DL;
388    DISubprogram Subprogram(cast<GlobalVariable>(SP));
389    DICompileUnit CompileUnit = Subprogram.getCompileUnit();
390
391    if (!Subprogram.describes(MF.getFunction())) {
392      // This is a beginning of an inlined function.
393
394      // If llvm.dbg.func.start is seen in a new block before any
395      // llvm.dbg.stoppoint intrinsic then the location info is unknown.
396      // FIXME : Why DebugLoc is reset at the beginning of each block ?
397      if (PrevLoc.isUnknown())
398        return true;
399      // Record the source line.
400      unsigned Line = Subprogram.getLineNumber();
401      setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(
402                                              CompileUnit.getGV(), Line, 0)));
403
404      if (DW && DW->ShouldEmitDwarfDebug()) {
405        unsigned LabelID = DW->RecordSourceLine(Line, 0, CompileUnit);
406        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
407        BuildMI(MBB, DL, II).addImm(LabelID);
408        DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
409        DW->RecordInlinedFnStart(FSI, Subprogram, LabelID,
410                                 DICompileUnit(PrevLocTpl.CompileUnit),
411                                 PrevLocTpl.Line,
412                                 PrevLocTpl.Col);
413      }
414    } else {
415      // Record the source line.
416      unsigned Line = Subprogram.getLineNumber();
417      setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(
418                                              CompileUnit.getGV(), Line, 0)));
419      if (DW && DW->ShouldEmitDwarfDebug()) {
420        DW->RecordSourceLine(Line, 0, CompileUnit);
421        // llvm.dbg.func_start also defines beginning of function scope.
422        DW->RecordRegionStart(cast<GlobalVariable>(FSI->getSubprogram()));
423      }
424    }
425
426    return true;
427  }
428  case Intrinsic::dbg_declare: {
429    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
430    Value *Variable = DI->getVariable();
431    if (DIDescriptor::ValidDebugInfo(Variable, CodeGenOpt::None) &&
432        DW && DW->ShouldEmitDwarfDebug()) {
433      // Determine the address of the declared object.
434      Value *Address = DI->getAddress();
435      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
436        Address = BCI->getOperand(0);
437      AllocaInst *AI = dyn_cast<AllocaInst>(Address);
438      // Don't handle byval struct arguments or VLAs, for example.
439      if (!AI) break;
440      DenseMap<const AllocaInst*, int>::iterator SI =
441        StaticAllocaMap.find(AI);
442      if (SI == StaticAllocaMap.end()) break; // VLAs.
443      int FI = SI->second;
444
445      // Determine the debug globalvariable.
446      GlobalValue *GV = cast<GlobalVariable>(Variable);
447
448      // Build the DECLARE instruction.
449      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
450      MachineInstr *DeclareMI
451        = BuildMI(MBB, DL, II).addFrameIndex(FI).addGlobalAddress(GV);
452      DIVariable DV(cast<GlobalVariable>(GV));
453      if (!DV.isNull()) {
454        // This is a local variable
455        DW->RecordVariableScope(DV, DeclareMI);
456      }
457    }
458    return true;
459  }
460  case Intrinsic::eh_exception: {
461    MVT VT = TLI.getValueType(I->getType());
462    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
463    default: break;
464    case TargetLowering::Expand: {
465      if (!MBB->isLandingPad()) {
466        // FIXME: Mark exception register as live in.  Hack for PR1508.
467        unsigned Reg = TLI.getExceptionAddressRegister();
468        if (Reg) MBB->addLiveIn(Reg);
469      }
470      unsigned Reg = TLI.getExceptionAddressRegister();
471      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
472      unsigned ResultReg = createResultReg(RC);
473      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
474                                           Reg, RC, RC);
475      assert(InsertedCopy && "Can't copy address registers!");
476      InsertedCopy = InsertedCopy;
477      UpdateValueMap(I, ResultReg);
478      return true;
479    }
480    }
481    break;
482  }
483  case Intrinsic::eh_selector_i32:
484  case Intrinsic::eh_selector_i64: {
485    MVT VT = TLI.getValueType(I->getType());
486    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
487    default: break;
488    case TargetLowering::Expand: {
489      MVT VT = (IID == Intrinsic::eh_selector_i32 ?
490                           MVT::i32 : MVT::i64);
491
492      if (MMI) {
493        if (MBB->isLandingPad())
494          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
495        else {
496#ifndef NDEBUG
497          CatchInfoLost.insert(cast<CallInst>(I));
498#endif
499          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
500          unsigned Reg = TLI.getExceptionSelectorRegister();
501          if (Reg) MBB->addLiveIn(Reg);
502        }
503
504        unsigned Reg = TLI.getExceptionSelectorRegister();
505        const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
506        unsigned ResultReg = createResultReg(RC);
507        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
508                                             Reg, RC, RC);
509        assert(InsertedCopy && "Can't copy address registers!");
510        InsertedCopy = InsertedCopy;
511        UpdateValueMap(I, ResultReg);
512      } else {
513        unsigned ResultReg =
514          getRegForValue(Constant::getNullValue(I->getType()));
515        UpdateValueMap(I, ResultReg);
516      }
517      return true;
518    }
519    }
520    break;
521  }
522  }
523  return false;
524}
525
526bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
527  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
528  MVT DstVT = TLI.getValueType(I->getType());
529
530  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
531      DstVT == MVT::Other || !DstVT.isSimple())
532    // Unhandled type. Halt "fast" selection and bail.
533    return false;
534
535  // Check if the destination type is legal. Or as a special case,
536  // it may be i1 if we're doing a truncate because that's
537  // easy and somewhat common.
538  if (!TLI.isTypeLegal(DstVT))
539    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
540      // Unhandled type. Halt "fast" selection and bail.
541      return false;
542
543  // Check if the source operand is legal. Or as a special case,
544  // it may be i1 if we're doing zero-extension because that's
545  // easy and somewhat common.
546  if (!TLI.isTypeLegal(SrcVT))
547    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
548      // Unhandled type. Halt "fast" selection and bail.
549      return false;
550
551  unsigned InputReg = getRegForValue(I->getOperand(0));
552  if (!InputReg)
553    // Unhandled operand.  Halt "fast" selection and bail.
554    return false;
555
556  // If the operand is i1, arrange for the high bits in the register to be zero.
557  if (SrcVT == MVT::i1) {
558   SrcVT = TLI.getTypeToTransformTo(SrcVT);
559   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
560   if (!InputReg)
561     return false;
562  }
563  // If the result is i1, truncate to the target's type for i1 first.
564  if (DstVT == MVT::i1)
565    DstVT = TLI.getTypeToTransformTo(DstVT);
566
567  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
568                                  DstVT.getSimpleVT(),
569                                  Opcode,
570                                  InputReg);
571  if (!ResultReg)
572    return false;
573
574  UpdateValueMap(I, ResultReg);
575  return true;
576}
577
578bool FastISel::SelectBitCast(User *I) {
579  // If the bitcast doesn't change the type, just use the operand value.
580  if (I->getType() == I->getOperand(0)->getType()) {
581    unsigned Reg = getRegForValue(I->getOperand(0));
582    if (Reg == 0)
583      return false;
584    UpdateValueMap(I, Reg);
585    return true;
586  }
587
588  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
589  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
590  MVT DstVT = TLI.getValueType(I->getType());
591
592  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
593      DstVT == MVT::Other || !DstVT.isSimple() ||
594      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
595    // Unhandled type. Halt "fast" selection and bail.
596    return false;
597
598  unsigned Op0 = getRegForValue(I->getOperand(0));
599  if (Op0 == 0)
600    // Unhandled operand. Halt "fast" selection and bail.
601    return false;
602
603  // First, try to perform the bitcast by inserting a reg-reg copy.
604  unsigned ResultReg = 0;
605  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
606    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
607    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
608    ResultReg = createResultReg(DstClass);
609
610    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
611                                         Op0, DstClass, SrcClass);
612    if (!InsertedCopy)
613      ResultReg = 0;
614  }
615
616  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
617  if (!ResultReg)
618    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
619                           ISD::BIT_CONVERT, Op0);
620
621  if (!ResultReg)
622    return false;
623
624  UpdateValueMap(I, ResultReg);
625  return true;
626}
627
628bool
629FastISel::SelectInstruction(Instruction *I) {
630  return SelectOperator(I, I->getOpcode());
631}
632
633/// FastEmitBranch - Emit an unconditional branch to the given block,
634/// unless it is the immediate (fall-through) successor, and update
635/// the CFG.
636void
637FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
638  MachineFunction::iterator NextMBB =
639     next(MachineFunction::iterator(MBB));
640
641  if (MBB->isLayoutSuccessor(MSucc)) {
642    // The unconditional fall-through case, which needs no instructions.
643  } else {
644    // The unconditional branch case.
645    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
646  }
647  MBB->addSuccessor(MSucc);
648}
649
650bool
651FastISel::SelectOperator(User *I, unsigned Opcode) {
652  switch (Opcode) {
653  case Instruction::Add: {
654    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD;
655    return SelectBinaryOp(I, Opc);
656  }
657  case Instruction::Sub: {
658    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB;
659    return SelectBinaryOp(I, Opc);
660  }
661  case Instruction::Mul: {
662    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL;
663    return SelectBinaryOp(I, Opc);
664  }
665  case Instruction::SDiv:
666    return SelectBinaryOp(I, ISD::SDIV);
667  case Instruction::UDiv:
668    return SelectBinaryOp(I, ISD::UDIV);
669  case Instruction::FDiv:
670    return SelectBinaryOp(I, ISD::FDIV);
671  case Instruction::SRem:
672    return SelectBinaryOp(I, ISD::SREM);
673  case Instruction::URem:
674    return SelectBinaryOp(I, ISD::UREM);
675  case Instruction::FRem:
676    return SelectBinaryOp(I, ISD::FREM);
677  case Instruction::Shl:
678    return SelectBinaryOp(I, ISD::SHL);
679  case Instruction::LShr:
680    return SelectBinaryOp(I, ISD::SRL);
681  case Instruction::AShr:
682    return SelectBinaryOp(I, ISD::SRA);
683  case Instruction::And:
684    return SelectBinaryOp(I, ISD::AND);
685  case Instruction::Or:
686    return SelectBinaryOp(I, ISD::OR);
687  case Instruction::Xor:
688    return SelectBinaryOp(I, ISD::XOR);
689
690  case Instruction::GetElementPtr:
691    return SelectGetElementPtr(I);
692
693  case Instruction::Br: {
694    BranchInst *BI = cast<BranchInst>(I);
695
696    if (BI->isUnconditional()) {
697      BasicBlock *LLVMSucc = BI->getSuccessor(0);
698      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
699      FastEmitBranch(MSucc);
700      return true;
701    }
702
703    // Conditional branches are not handed yet.
704    // Halt "fast" selection and bail.
705    return false;
706  }
707
708  case Instruction::Unreachable:
709    // Nothing to emit.
710    return true;
711
712  case Instruction::PHI:
713    // PHI nodes are already emitted.
714    return true;
715
716  case Instruction::Alloca:
717    // FunctionLowering has the static-sized case covered.
718    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
719      return true;
720
721    // Dynamic-sized alloca is not handled yet.
722    return false;
723
724  case Instruction::Call:
725    return SelectCall(I);
726
727  case Instruction::BitCast:
728    return SelectBitCast(I);
729
730  case Instruction::FPToSI:
731    return SelectCast(I, ISD::FP_TO_SINT);
732  case Instruction::ZExt:
733    return SelectCast(I, ISD::ZERO_EXTEND);
734  case Instruction::SExt:
735    return SelectCast(I, ISD::SIGN_EXTEND);
736  case Instruction::Trunc:
737    return SelectCast(I, ISD::TRUNCATE);
738  case Instruction::SIToFP:
739    return SelectCast(I, ISD::SINT_TO_FP);
740
741  case Instruction::IntToPtr: // Deliberate fall-through.
742  case Instruction::PtrToInt: {
743    MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
744    MVT DstVT = TLI.getValueType(I->getType());
745    if (DstVT.bitsGT(SrcVT))
746      return SelectCast(I, ISD::ZERO_EXTEND);
747    if (DstVT.bitsLT(SrcVT))
748      return SelectCast(I, ISD::TRUNCATE);
749    unsigned Reg = getRegForValue(I->getOperand(0));
750    if (Reg == 0) return false;
751    UpdateValueMap(I, Reg);
752    return true;
753  }
754
755  default:
756    // Unhandled instruction. Halt "fast" selection and bail.
757    return false;
758  }
759}
760
761FastISel::FastISel(MachineFunction &mf,
762                   MachineModuleInfo *mmi,
763                   DwarfWriter *dw,
764                   DenseMap<const Value *, unsigned> &vm,
765                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
766                   DenseMap<const AllocaInst *, int> &am
767#ifndef NDEBUG
768                   , SmallSet<Instruction*, 8> &cil
769#endif
770                   )
771  : MBB(0),
772    ValueMap(vm),
773    MBBMap(bm),
774    StaticAllocaMap(am),
775#ifndef NDEBUG
776    CatchInfoLost(cil),
777#endif
778    MF(mf),
779    MMI(mmi),
780    DW(dw),
781    MRI(MF.getRegInfo()),
782    MFI(*MF.getFrameInfo()),
783    MCP(*MF.getConstantPool()),
784    TM(MF.getTarget()),
785    TD(*TM.getTargetData()),
786    TII(*TM.getInstrInfo()),
787    TLI(*TM.getTargetLowering()) {
788}
789
790FastISel::~FastISel() {}
791
792unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
793                             ISD::NodeType) {
794  return 0;
795}
796
797unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
798                              ISD::NodeType, unsigned /*Op0*/) {
799  return 0;
800}
801
802unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
803                               ISD::NodeType, unsigned /*Op0*/,
804                               unsigned /*Op0*/) {
805  return 0;
806}
807
808unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
809                              ISD::NodeType, uint64_t /*Imm*/) {
810  return 0;
811}
812
813unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
814                              ISD::NodeType, ConstantFP * /*FPImm*/) {
815  return 0;
816}
817
818unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
819                               ISD::NodeType, unsigned /*Op0*/,
820                               uint64_t /*Imm*/) {
821  return 0;
822}
823
824unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
825                               ISD::NodeType, unsigned /*Op0*/,
826                               ConstantFP * /*FPImm*/) {
827  return 0;
828}
829
830unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
831                                ISD::NodeType,
832                                unsigned /*Op0*/, unsigned /*Op1*/,
833                                uint64_t /*Imm*/) {
834  return 0;
835}
836
837/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
838/// to emit an instruction with an immediate operand using FastEmit_ri.
839/// If that fails, it materializes the immediate into a register and try
840/// FastEmit_rr instead.
841unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
842                                unsigned Op0, uint64_t Imm,
843                                MVT::SimpleValueType ImmType) {
844  // First check if immediate type is legal. If not, we can't use the ri form.
845  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
846  if (ResultReg != 0)
847    return ResultReg;
848  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
849  if (MaterialReg == 0)
850    return 0;
851  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
852}
853
854/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
855/// to emit an instruction with a floating-point immediate operand using
856/// FastEmit_rf. If that fails, it materializes the immediate into a register
857/// and try FastEmit_rr instead.
858unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
859                                unsigned Op0, ConstantFP *FPImm,
860                                MVT::SimpleValueType ImmType) {
861  // First check if immediate type is legal. If not, we can't use the rf form.
862  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
863  if (ResultReg != 0)
864    return ResultReg;
865
866  // Materialize the constant in a register.
867  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
868  if (MaterialReg == 0) {
869    // If the target doesn't have a way to directly enter a floating-point
870    // value into a register, use an alternate approach.
871    // TODO: The current approach only supports floating-point constants
872    // that can be constructed by conversion from integer values. This should
873    // be replaced by code that creates a load from a constant-pool entry,
874    // which will require some target-specific work.
875    const APFloat &Flt = FPImm->getValueAPF();
876    MVT IntVT = TLI.getPointerTy();
877
878    uint64_t x[2];
879    uint32_t IntBitWidth = IntVT.getSizeInBits();
880    bool isExact;
881    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
882                             APFloat::rmTowardZero, &isExact);
883    if (!isExact)
884      return 0;
885    APInt IntVal(IntBitWidth, 2, x);
886
887    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
888                                     ISD::Constant, IntVal.getZExtValue());
889    if (IntegerReg == 0)
890      return 0;
891    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
892                             ISD::SINT_TO_FP, IntegerReg);
893    if (MaterialReg == 0)
894      return 0;
895  }
896  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
897}
898
899unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
900  return MRI.createVirtualRegister(RC);
901}
902
903unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
904                                 const TargetRegisterClass* RC) {
905  unsigned ResultReg = createResultReg(RC);
906  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
907
908  BuildMI(MBB, DL, II, ResultReg);
909  return ResultReg;
910}
911
912unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
913                                  const TargetRegisterClass *RC,
914                                  unsigned Op0) {
915  unsigned ResultReg = createResultReg(RC);
916  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
917
918  if (II.getNumDefs() >= 1)
919    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
920  else {
921    BuildMI(MBB, DL, II).addReg(Op0);
922    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
923                                         II.ImplicitDefs[0], RC, RC);
924    if (!InsertedCopy)
925      ResultReg = 0;
926  }
927
928  return ResultReg;
929}
930
931unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
932                                   const TargetRegisterClass *RC,
933                                   unsigned Op0, unsigned Op1) {
934  unsigned ResultReg = createResultReg(RC);
935  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
936
937  if (II.getNumDefs() >= 1)
938    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
939  else {
940    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
941    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
942                                         II.ImplicitDefs[0], RC, RC);
943    if (!InsertedCopy)
944      ResultReg = 0;
945  }
946  return ResultReg;
947}
948
949unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
950                                   const TargetRegisterClass *RC,
951                                   unsigned Op0, uint64_t Imm) {
952  unsigned ResultReg = createResultReg(RC);
953  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
954
955  if (II.getNumDefs() >= 1)
956    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
957  else {
958    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
959    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
960                                         II.ImplicitDefs[0], RC, RC);
961    if (!InsertedCopy)
962      ResultReg = 0;
963  }
964  return ResultReg;
965}
966
967unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
968                                   const TargetRegisterClass *RC,
969                                   unsigned Op0, ConstantFP *FPImm) {
970  unsigned ResultReg = createResultReg(RC);
971  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
972
973  if (II.getNumDefs() >= 1)
974    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
975  else {
976    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
977    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
978                                         II.ImplicitDefs[0], RC, RC);
979    if (!InsertedCopy)
980      ResultReg = 0;
981  }
982  return ResultReg;
983}
984
985unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
986                                    const TargetRegisterClass *RC,
987                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
988  unsigned ResultReg = createResultReg(RC);
989  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
990
991  if (II.getNumDefs() >= 1)
992    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
993  else {
994    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
995    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
996                                         II.ImplicitDefs[0], RC, RC);
997    if (!InsertedCopy)
998      ResultReg = 0;
999  }
1000  return ResultReg;
1001}
1002
1003unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1004                                  const TargetRegisterClass *RC,
1005                                  uint64_t Imm) {
1006  unsigned ResultReg = createResultReg(RC);
1007  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1008
1009  if (II.getNumDefs() >= 1)
1010    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
1011  else {
1012    BuildMI(MBB, DL, II).addImm(Imm);
1013    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1014                                         II.ImplicitDefs[0], RC, RC);
1015    if (!InsertedCopy)
1016      ResultReg = 0;
1017  }
1018  return ResultReg;
1019}
1020
1021unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT,
1022                                              unsigned Op0, uint32_t Idx) {
1023  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
1024
1025  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1026  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
1027
1028  if (II.getNumDefs() >= 1)
1029    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
1030  else {
1031    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
1032    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1033                                         II.ImplicitDefs[0], RC, RC);
1034    if (!InsertedCopy)
1035      ResultReg = 0;
1036  }
1037  return ResultReg;
1038}
1039
1040/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1041/// with all but the least significant bit set to zero.
1042unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT, unsigned Op) {
1043  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
1044}
1045