FastISel.cpp revision 27bfb67d9ac01e9bf33a7b105c7fe842525b7582
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/DwarfWriter.h"
51#include "llvm/Analysis/DebugInfo.h"
52#include "llvm/Target/TargetData.h"
53#include "llvm/Target/TargetInstrInfo.h"
54#include "llvm/Target/TargetLowering.h"
55#include "llvm/Target/TargetMachine.h"
56#include "SelectionDAGBuild.h"
57using namespace llvm;
58
59unsigned FastISel::getRegForValue(Value *V) {
60  MVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
61  // Don't handle non-simple values in FastISel.
62  if (!RealVT.isSimple())
63    return 0;
64
65  // Ignore illegal types. We must do this before looking up the value
66  // in ValueMap because Arguments are given virtual registers regardless
67  // of whether FastISel can handle them.
68  MVT::SimpleValueType VT = RealVT.getSimpleVT();
69  if (!TLI.isTypeLegal(VT)) {
70    // Promote MVT::i1 to a legal type though, because it's common and easy.
71    if (VT == MVT::i1)
72      VT = TLI.getTypeToTransformTo(VT).getSimpleVT();
73    else
74      return 0;
75  }
76
77  // Look up the value to see if we already have a register for it. We
78  // cache values defined by Instructions across blocks, and other values
79  // only locally. This is because Instructions already have the SSA
80  // def-dominatess-use requirement enforced.
81  if (ValueMap.count(V))
82    return ValueMap[V];
83  unsigned Reg = LocalValueMap[V];
84  if (Reg != 0)
85    return Reg;
86
87  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
88    if (CI->getValue().getActiveBits() <= 64)
89      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
90  } else if (isa<AllocaInst>(V)) {
91    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
92  } else if (isa<ConstantPointerNull>(V)) {
93    // Translate this as an integer zero so that it can be
94    // local-CSE'd with actual integer zeros.
95    Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType()));
96  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
97    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
98
99    if (!Reg) {
100      const APFloat &Flt = CF->getValueAPF();
101      MVT IntVT = TLI.getPointerTy();
102
103      uint64_t x[2];
104      uint32_t IntBitWidth = IntVT.getSizeInBits();
105      bool isExact;
106      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
107                                APFloat::rmTowardZero, &isExact);
108      if (isExact) {
109        APInt IntVal(IntBitWidth, 2, x);
110
111        unsigned IntegerReg =
112          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
113        if (IntegerReg != 0)
114          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
115      }
116    }
117  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
118    if (!SelectOperator(CE, CE->getOpcode())) return 0;
119    Reg = LocalValueMap[CE];
120  } else if (isa<UndefValue>(V)) {
121    Reg = createResultReg(TLI.getRegClassFor(VT));
122    BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
123  }
124
125  // If target-independent code couldn't handle the value, give target-specific
126  // code a try.
127  if (!Reg && isa<Constant>(V))
128    Reg = TargetMaterializeConstant(cast<Constant>(V));
129
130  // Don't cache constant materializations in the general ValueMap.
131  // To do so would require tracking what uses they dominate.
132  if (Reg != 0)
133    LocalValueMap[V] = Reg;
134  return Reg;
135}
136
137unsigned FastISel::lookUpRegForValue(Value *V) {
138  // Look up the value to see if we already have a register for it. We
139  // cache values defined by Instructions across blocks, and other values
140  // only locally. This is because Instructions already have the SSA
141  // def-dominatess-use requirement enforced.
142  if (ValueMap.count(V))
143    return ValueMap[V];
144  return LocalValueMap[V];
145}
146
147/// UpdateValueMap - Update the value map to include the new mapping for this
148/// instruction, or insert an extra copy to get the result in a previous
149/// determined register.
150/// NOTE: This is only necessary because we might select a block that uses
151/// a value before we select the block that defines the value.  It might be
152/// possible to fix this by selecting blocks in reverse postorder.
153unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
154  if (!isa<Instruction>(I)) {
155    LocalValueMap[I] = Reg;
156    return Reg;
157  }
158
159  unsigned &AssignedReg = ValueMap[I];
160  if (AssignedReg == 0)
161    AssignedReg = Reg;
162  else if (Reg != AssignedReg) {
163    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
164    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
165                     Reg, RegClass, RegClass);
166  }
167  return AssignedReg;
168}
169
170unsigned FastISel::getRegForGEPIndex(Value *Idx) {
171  unsigned IdxN = getRegForValue(Idx);
172  if (IdxN == 0)
173    // Unhandled operand. Halt "fast" selection and bail.
174    return 0;
175
176  // If the index is smaller or larger than intptr_t, truncate or extend it.
177  MVT PtrVT = TLI.getPointerTy();
178  MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
179  if (IdxVT.bitsLT(PtrVT))
180    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
181                      ISD::SIGN_EXTEND, IdxN);
182  else if (IdxVT.bitsGT(PtrVT))
183    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
184                      ISD::TRUNCATE, IdxN);
185  return IdxN;
186}
187
188/// SelectBinaryOp - Select and emit code for a binary operator instruction,
189/// which has an opcode which directly corresponds to the given ISD opcode.
190///
191bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
192  MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
193  if (VT == MVT::Other || !VT.isSimple())
194    // Unhandled type. Halt "fast" selection and bail.
195    return false;
196
197  // We only handle legal types. For example, on x86-32 the instruction
198  // selector contains all of the 64-bit instructions from x86-64,
199  // under the assumption that i64 won't be used if the target doesn't
200  // support it.
201  if (!TLI.isTypeLegal(VT)) {
202    // MVT::i1 is special. Allow AND, OR, or XOR because they
203    // don't require additional zeroing, which makes them easy.
204    if (VT == MVT::i1 &&
205        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
206         ISDOpcode == ISD::XOR))
207      VT = TLI.getTypeToTransformTo(VT);
208    else
209      return false;
210  }
211
212  unsigned Op0 = getRegForValue(I->getOperand(0));
213  if (Op0 == 0)
214    // Unhandled operand. Halt "fast" selection and bail.
215    return false;
216
217  // Check if the second operand is a constant and handle it appropriately.
218  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
219    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
220                                     ISDOpcode, Op0, CI->getZExtValue());
221    if (ResultReg != 0) {
222      // We successfully emitted code for the given LLVM Instruction.
223      UpdateValueMap(I, ResultReg);
224      return true;
225    }
226  }
227
228  // Check if the second operand is a constant float.
229  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
230    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
231                                     ISDOpcode, Op0, CF);
232    if (ResultReg != 0) {
233      // We successfully emitted code for the given LLVM Instruction.
234      UpdateValueMap(I, ResultReg);
235      return true;
236    }
237  }
238
239  unsigned Op1 = getRegForValue(I->getOperand(1));
240  if (Op1 == 0)
241    // Unhandled operand. Halt "fast" selection and bail.
242    return false;
243
244  // Now we have both operands in registers. Emit the instruction.
245  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
246                                   ISDOpcode, Op0, Op1);
247  if (ResultReg == 0)
248    // Target-specific code wasn't able to find a machine opcode for
249    // the given ISD opcode and type. Halt "fast" selection and bail.
250    return false;
251
252  // We successfully emitted code for the given LLVM Instruction.
253  UpdateValueMap(I, ResultReg);
254  return true;
255}
256
257bool FastISel::SelectGetElementPtr(User *I) {
258  unsigned N = getRegForValue(I->getOperand(0));
259  if (N == 0)
260    // Unhandled operand. Halt "fast" selection and bail.
261    return false;
262
263  const Type *Ty = I->getOperand(0)->getType();
264  MVT::SimpleValueType VT = TLI.getPointerTy();
265  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
266       OI != E; ++OI) {
267    Value *Idx = *OI;
268    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
269      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
270      if (Field) {
271        // N = N + Offset
272        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
273        // FIXME: This can be optimized by combining the add with a
274        // subsequent one.
275        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
276        if (N == 0)
277          // Unhandled operand. Halt "fast" selection and bail.
278          return false;
279      }
280      Ty = StTy->getElementType(Field);
281    } else {
282      Ty = cast<SequentialType>(Ty)->getElementType();
283
284      // If this is a constant subscript, handle it quickly.
285      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
286        if (CI->getZExtValue() == 0) continue;
287        uint64_t Offs =
288          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
289        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
290        if (N == 0)
291          // Unhandled operand. Halt "fast" selection and bail.
292          return false;
293        continue;
294      }
295
296      // N = N + Idx * ElementSize;
297      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
298      unsigned IdxN = getRegForGEPIndex(Idx);
299      if (IdxN == 0)
300        // Unhandled operand. Halt "fast" selection and bail.
301        return false;
302
303      if (ElementSize != 1) {
304        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
305        if (IdxN == 0)
306          // Unhandled operand. Halt "fast" selection and bail.
307          return false;
308      }
309      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
310      if (N == 0)
311        // Unhandled operand. Halt "fast" selection and bail.
312        return false;
313    }
314  }
315
316  // We successfully emitted code for the given LLVM Instruction.
317  UpdateValueMap(I, N);
318  return true;
319}
320
321bool FastISel::SelectCall(User *I) {
322  Function *F = cast<CallInst>(I)->getCalledFunction();
323  if (!F) return false;
324
325  unsigned IID = F->getIntrinsicID();
326  switch (IID) {
327  default: break;
328  case Intrinsic::dbg_stoppoint: {
329    DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
330    if (isValidDebugInfoIntrinsic(*SPI, CodeGenOpt::None))
331      setCurDebugLoc(ExtractDebugLocation(*SPI, MF.getDebugLocInfo()));
332    return true;
333  }
334  case Intrinsic::dbg_region_start: {
335    DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
336    if (isValidDebugInfoIntrinsic(*RSI, CodeGenOpt::None) && DW
337        && DW->ShouldEmitDwarfDebug()) {
338      unsigned ID =
339        DW->RecordRegionStart(cast<GlobalVariable>(RSI->getContext()));
340      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
341      BuildMI(MBB, DL, II).addImm(ID);
342    }
343    return true;
344  }
345  case Intrinsic::dbg_region_end: {
346    DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
347    if (isValidDebugInfoIntrinsic(*REI, CodeGenOpt::None) && DW
348        && DW->ShouldEmitDwarfDebug()) {
349     unsigned ID = 0;
350     DISubprogram Subprogram(cast<GlobalVariable>(REI->getContext()));
351     if (isInlinedFnEnd(*REI, MF.getFunction())) {
352        // This is end of an inlined function.
353        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
354        ID = DW->RecordInlinedFnEnd(Subprogram);
355        if (ID)
356          // Returned ID is 0 if this is unbalanced "end of inlined
357          // scope". This could happen if optimizer eats dbg intrinsics
358          // or "beginning of inlined scope" is not recoginized due to
359          // missing location info. In such cases, ignore this region.end.
360          BuildMI(MBB, DL, II).addImm(ID);
361      } else {
362        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
363        ID =  DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext()));
364        BuildMI(MBB, DL, II).addImm(ID);
365      }
366    }
367    return true;
368  }
369  case Intrinsic::dbg_func_start: {
370    DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
371    if (!isValidDebugInfoIntrinsic(*FSI, CodeGenOpt::None) || !DW
372        || !DW->ShouldEmitDwarfDebug())
373      return true;
374
375    if (isInlinedFnStart(*FSI, MF.getFunction())) {
376      // This is a beginning of an inlined function.
377
378      // If llvm.dbg.func.start is seen in a new block before any
379      // llvm.dbg.stoppoint intrinsic then the location info is unknown.
380      // FIXME : Why DebugLoc is reset at the beginning of each block ?
381      DebugLoc PrevLoc = DL;
382      if (PrevLoc.isUnknown())
383        return true;
384      // Record the source line.
385      setCurDebugLoc(ExtractDebugLocation(*FSI, MF.getDebugLocInfo()));
386
387      DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
388      DISubprogram SP(cast<GlobalVariable>(FSI->getSubprogram()));
389      unsigned LabelID = DW->RecordInlinedFnStart(SP,
390                                                  DICompileUnit(PrevLocTpl.CompileUnit),
391                                                  PrevLocTpl.Line,
392                                                  PrevLocTpl.Col);
393      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
394      BuildMI(MBB, DL, II).addImm(LabelID);
395      return true;
396    }
397
398    // This is a beginning of a new function.
399    MF.setDefaultDebugLoc(ExtractDebugLocation(*FSI, MF.getDebugLocInfo()));
400
401    // llvm.dbg.func_start also defines beginning of function scope.
402    DW->RecordRegionStart(cast<GlobalVariable>(FSI->getSubprogram()));
403    return true;
404  }
405  case Intrinsic::dbg_declare: {
406    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
407    if (!isValidDebugInfoIntrinsic(*DI, CodeGenOpt::None) || !DW
408        || !DW->ShouldEmitDwarfDebug())
409      return true;
410
411    Value *Variable = DI->getVariable();
412    Value *Address = DI->getAddress();
413    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
414      Address = BCI->getOperand(0);
415    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
416    // Don't handle byval struct arguments or VLAs, for example.
417    if (!AI) break;
418    DenseMap<const AllocaInst*, int>::iterator SI =
419      StaticAllocaMap.find(AI);
420    if (SI == StaticAllocaMap.end()) break; // VLAs.
421    int FI = SI->second;
422
423    // Determine the debug globalvariable.
424    GlobalValue *GV = cast<GlobalVariable>(Variable);
425
426    // Build the DECLARE instruction.
427    const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
428    MachineInstr *DeclareMI
429      = BuildMI(MBB, DL, II).addFrameIndex(FI).addGlobalAddress(GV);
430    DIVariable DV(cast<GlobalVariable>(GV));
431    DW->RecordVariableScope(DV, DeclareMI);
432    return true;
433  }
434  case Intrinsic::eh_exception: {
435    MVT VT = TLI.getValueType(I->getType());
436    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
437    default: break;
438    case TargetLowering::Expand: {
439      assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
440      unsigned Reg = TLI.getExceptionAddressRegister();
441      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
442      unsigned ResultReg = createResultReg(RC);
443      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
444                                           Reg, RC, RC);
445      assert(InsertedCopy && "Can't copy address registers!");
446      InsertedCopy = InsertedCopy;
447      UpdateValueMap(I, ResultReg);
448      return true;
449    }
450    }
451    break;
452  }
453  case Intrinsic::eh_selector_i32:
454  case Intrinsic::eh_selector_i64: {
455    MVT VT = TLI.getValueType(I->getType());
456    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
457    default: break;
458    case TargetLowering::Expand: {
459      MVT VT = (IID == Intrinsic::eh_selector_i32 ?
460                           MVT::i32 : MVT::i64);
461
462      if (MMI) {
463        if (MBB->isLandingPad())
464          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
465        else {
466#ifndef NDEBUG
467          CatchInfoLost.insert(cast<CallInst>(I));
468#endif
469          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
470          unsigned Reg = TLI.getExceptionSelectorRegister();
471          if (Reg) MBB->addLiveIn(Reg);
472        }
473
474        unsigned Reg = TLI.getExceptionSelectorRegister();
475        const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
476        unsigned ResultReg = createResultReg(RC);
477        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
478                                             Reg, RC, RC);
479        assert(InsertedCopy && "Can't copy address registers!");
480        InsertedCopy = InsertedCopy;
481        UpdateValueMap(I, ResultReg);
482      } else {
483        unsigned ResultReg =
484          getRegForValue(Constant::getNullValue(I->getType()));
485        UpdateValueMap(I, ResultReg);
486      }
487      return true;
488    }
489    }
490    break;
491  }
492  }
493  return false;
494}
495
496bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
497  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
498  MVT DstVT = TLI.getValueType(I->getType());
499
500  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
501      DstVT == MVT::Other || !DstVT.isSimple())
502    // Unhandled type. Halt "fast" selection and bail.
503    return false;
504
505  // Check if the destination type is legal. Or as a special case,
506  // it may be i1 if we're doing a truncate because that's
507  // easy and somewhat common.
508  if (!TLI.isTypeLegal(DstVT))
509    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
510      // Unhandled type. Halt "fast" selection and bail.
511      return false;
512
513  // Check if the source operand is legal. Or as a special case,
514  // it may be i1 if we're doing zero-extension because that's
515  // easy and somewhat common.
516  if (!TLI.isTypeLegal(SrcVT))
517    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
518      // Unhandled type. Halt "fast" selection and bail.
519      return false;
520
521  unsigned InputReg = getRegForValue(I->getOperand(0));
522  if (!InputReg)
523    // Unhandled operand.  Halt "fast" selection and bail.
524    return false;
525
526  // If the operand is i1, arrange for the high bits in the register to be zero.
527  if (SrcVT == MVT::i1) {
528   SrcVT = TLI.getTypeToTransformTo(SrcVT);
529   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
530   if (!InputReg)
531     return false;
532  }
533  // If the result is i1, truncate to the target's type for i1 first.
534  if (DstVT == MVT::i1)
535    DstVT = TLI.getTypeToTransformTo(DstVT);
536
537  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
538                                  DstVT.getSimpleVT(),
539                                  Opcode,
540                                  InputReg);
541  if (!ResultReg)
542    return false;
543
544  UpdateValueMap(I, ResultReg);
545  return true;
546}
547
548bool FastISel::SelectBitCast(User *I) {
549  // If the bitcast doesn't change the type, just use the operand value.
550  if (I->getType() == I->getOperand(0)->getType()) {
551    unsigned Reg = getRegForValue(I->getOperand(0));
552    if (Reg == 0)
553      return false;
554    UpdateValueMap(I, Reg);
555    return true;
556  }
557
558  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
559  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
560  MVT DstVT = TLI.getValueType(I->getType());
561
562  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
563      DstVT == MVT::Other || !DstVT.isSimple() ||
564      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
565    // Unhandled type. Halt "fast" selection and bail.
566    return false;
567
568  unsigned Op0 = getRegForValue(I->getOperand(0));
569  if (Op0 == 0)
570    // Unhandled operand. Halt "fast" selection and bail.
571    return false;
572
573  // First, try to perform the bitcast by inserting a reg-reg copy.
574  unsigned ResultReg = 0;
575  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
576    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
577    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
578    ResultReg = createResultReg(DstClass);
579
580    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
581                                         Op0, DstClass, SrcClass);
582    if (!InsertedCopy)
583      ResultReg = 0;
584  }
585
586  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
587  if (!ResultReg)
588    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
589                           ISD::BIT_CONVERT, Op0);
590
591  if (!ResultReg)
592    return false;
593
594  UpdateValueMap(I, ResultReg);
595  return true;
596}
597
598bool
599FastISel::SelectInstruction(Instruction *I) {
600  return SelectOperator(I, I->getOpcode());
601}
602
603/// FastEmitBranch - Emit an unconditional branch to the given block,
604/// unless it is the immediate (fall-through) successor, and update
605/// the CFG.
606void
607FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
608  MachineFunction::iterator NextMBB =
609     next(MachineFunction::iterator(MBB));
610
611  if (MBB->isLayoutSuccessor(MSucc)) {
612    // The unconditional fall-through case, which needs no instructions.
613  } else {
614    // The unconditional branch case.
615    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
616  }
617  MBB->addSuccessor(MSucc);
618}
619
620bool
621FastISel::SelectOperator(User *I, unsigned Opcode) {
622  switch (Opcode) {
623  case Instruction::Add:
624    return SelectBinaryOp(I, ISD::ADD);
625  case Instruction::FAdd:
626    return SelectBinaryOp(I, ISD::FADD);
627  case Instruction::Sub:
628    return SelectBinaryOp(I, ISD::SUB);
629  case Instruction::FSub:
630    return SelectBinaryOp(I, ISD::FSUB);
631  case Instruction::Mul:
632    return SelectBinaryOp(I, ISD::MUL);
633  case Instruction::FMul:
634    return SelectBinaryOp(I, ISD::FMUL);
635  case Instruction::SDiv:
636    return SelectBinaryOp(I, ISD::SDIV);
637  case Instruction::UDiv:
638    return SelectBinaryOp(I, ISD::UDIV);
639  case Instruction::FDiv:
640    return SelectBinaryOp(I, ISD::FDIV);
641  case Instruction::SRem:
642    return SelectBinaryOp(I, ISD::SREM);
643  case Instruction::URem:
644    return SelectBinaryOp(I, ISD::UREM);
645  case Instruction::FRem:
646    return SelectBinaryOp(I, ISD::FREM);
647  case Instruction::Shl:
648    return SelectBinaryOp(I, ISD::SHL);
649  case Instruction::LShr:
650    return SelectBinaryOp(I, ISD::SRL);
651  case Instruction::AShr:
652    return SelectBinaryOp(I, ISD::SRA);
653  case Instruction::And:
654    return SelectBinaryOp(I, ISD::AND);
655  case Instruction::Or:
656    return SelectBinaryOp(I, ISD::OR);
657  case Instruction::Xor:
658    return SelectBinaryOp(I, ISD::XOR);
659
660  case Instruction::GetElementPtr:
661    return SelectGetElementPtr(I);
662
663  case Instruction::Br: {
664    BranchInst *BI = cast<BranchInst>(I);
665
666    if (BI->isUnconditional()) {
667      BasicBlock *LLVMSucc = BI->getSuccessor(0);
668      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
669      FastEmitBranch(MSucc);
670      return true;
671    }
672
673    // Conditional branches are not handed yet.
674    // Halt "fast" selection and bail.
675    return false;
676  }
677
678  case Instruction::Unreachable:
679    // Nothing to emit.
680    return true;
681
682  case Instruction::PHI:
683    // PHI nodes are already emitted.
684    return true;
685
686  case Instruction::Alloca:
687    // FunctionLowering has the static-sized case covered.
688    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
689      return true;
690
691    // Dynamic-sized alloca is not handled yet.
692    return false;
693
694  case Instruction::Call:
695    return SelectCall(I);
696
697  case Instruction::BitCast:
698    return SelectBitCast(I);
699
700  case Instruction::FPToSI:
701    return SelectCast(I, ISD::FP_TO_SINT);
702  case Instruction::ZExt:
703    return SelectCast(I, ISD::ZERO_EXTEND);
704  case Instruction::SExt:
705    return SelectCast(I, ISD::SIGN_EXTEND);
706  case Instruction::Trunc:
707    return SelectCast(I, ISD::TRUNCATE);
708  case Instruction::SIToFP:
709    return SelectCast(I, ISD::SINT_TO_FP);
710
711  case Instruction::IntToPtr: // Deliberate fall-through.
712  case Instruction::PtrToInt: {
713    MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
714    MVT DstVT = TLI.getValueType(I->getType());
715    if (DstVT.bitsGT(SrcVT))
716      return SelectCast(I, ISD::ZERO_EXTEND);
717    if (DstVT.bitsLT(SrcVT))
718      return SelectCast(I, ISD::TRUNCATE);
719    unsigned Reg = getRegForValue(I->getOperand(0));
720    if (Reg == 0) return false;
721    UpdateValueMap(I, Reg);
722    return true;
723  }
724
725  default:
726    // Unhandled instruction. Halt "fast" selection and bail.
727    return false;
728  }
729}
730
731FastISel::FastISel(MachineFunction &mf,
732                   MachineModuleInfo *mmi,
733                   DwarfWriter *dw,
734                   DenseMap<const Value *, unsigned> &vm,
735                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
736                   DenseMap<const AllocaInst *, int> &am
737#ifndef NDEBUG
738                   , SmallSet<Instruction*, 8> &cil
739#endif
740                   )
741  : MBB(0),
742    ValueMap(vm),
743    MBBMap(bm),
744    StaticAllocaMap(am),
745#ifndef NDEBUG
746    CatchInfoLost(cil),
747#endif
748    MF(mf),
749    MMI(mmi),
750    DW(dw),
751    MRI(MF.getRegInfo()),
752    MFI(*MF.getFrameInfo()),
753    MCP(*MF.getConstantPool()),
754    TM(MF.getTarget()),
755    TD(*TM.getTargetData()),
756    TII(*TM.getInstrInfo()),
757    TLI(*TM.getTargetLowering()) {
758}
759
760FastISel::~FastISel() {}
761
762unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
763                             ISD::NodeType) {
764  return 0;
765}
766
767unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
768                              ISD::NodeType, unsigned /*Op0*/) {
769  return 0;
770}
771
772unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
773                               ISD::NodeType, unsigned /*Op0*/,
774                               unsigned /*Op0*/) {
775  return 0;
776}
777
778unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
779                              ISD::NodeType, uint64_t /*Imm*/) {
780  return 0;
781}
782
783unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
784                              ISD::NodeType, ConstantFP * /*FPImm*/) {
785  return 0;
786}
787
788unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
789                               ISD::NodeType, unsigned /*Op0*/,
790                               uint64_t /*Imm*/) {
791  return 0;
792}
793
794unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
795                               ISD::NodeType, unsigned /*Op0*/,
796                               ConstantFP * /*FPImm*/) {
797  return 0;
798}
799
800unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
801                                ISD::NodeType,
802                                unsigned /*Op0*/, unsigned /*Op1*/,
803                                uint64_t /*Imm*/) {
804  return 0;
805}
806
807/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
808/// to emit an instruction with an immediate operand using FastEmit_ri.
809/// If that fails, it materializes the immediate into a register and try
810/// FastEmit_rr instead.
811unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
812                                unsigned Op0, uint64_t Imm,
813                                MVT::SimpleValueType ImmType) {
814  // First check if immediate type is legal. If not, we can't use the ri form.
815  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
816  if (ResultReg != 0)
817    return ResultReg;
818  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
819  if (MaterialReg == 0)
820    return 0;
821  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
822}
823
824/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
825/// to emit an instruction with a floating-point immediate operand using
826/// FastEmit_rf. If that fails, it materializes the immediate into a register
827/// and try FastEmit_rr instead.
828unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
829                                unsigned Op0, ConstantFP *FPImm,
830                                MVT::SimpleValueType ImmType) {
831  // First check if immediate type is legal. If not, we can't use the rf form.
832  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
833  if (ResultReg != 0)
834    return ResultReg;
835
836  // Materialize the constant in a register.
837  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
838  if (MaterialReg == 0) {
839    // If the target doesn't have a way to directly enter a floating-point
840    // value into a register, use an alternate approach.
841    // TODO: The current approach only supports floating-point constants
842    // that can be constructed by conversion from integer values. This should
843    // be replaced by code that creates a load from a constant-pool entry,
844    // which will require some target-specific work.
845    const APFloat &Flt = FPImm->getValueAPF();
846    MVT IntVT = TLI.getPointerTy();
847
848    uint64_t x[2];
849    uint32_t IntBitWidth = IntVT.getSizeInBits();
850    bool isExact;
851    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
852                             APFloat::rmTowardZero, &isExact);
853    if (!isExact)
854      return 0;
855    APInt IntVal(IntBitWidth, 2, x);
856
857    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
858                                     ISD::Constant, IntVal.getZExtValue());
859    if (IntegerReg == 0)
860      return 0;
861    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
862                             ISD::SINT_TO_FP, IntegerReg);
863    if (MaterialReg == 0)
864      return 0;
865  }
866  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
867}
868
869unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
870  return MRI.createVirtualRegister(RC);
871}
872
873unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
874                                 const TargetRegisterClass* RC) {
875  unsigned ResultReg = createResultReg(RC);
876  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
877
878  BuildMI(MBB, DL, II, ResultReg);
879  return ResultReg;
880}
881
882unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
883                                  const TargetRegisterClass *RC,
884                                  unsigned Op0) {
885  unsigned ResultReg = createResultReg(RC);
886  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
887
888  if (II.getNumDefs() >= 1)
889    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
890  else {
891    BuildMI(MBB, DL, II).addReg(Op0);
892    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
893                                         II.ImplicitDefs[0], RC, RC);
894    if (!InsertedCopy)
895      ResultReg = 0;
896  }
897
898  return ResultReg;
899}
900
901unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
902                                   const TargetRegisterClass *RC,
903                                   unsigned Op0, unsigned Op1) {
904  unsigned ResultReg = createResultReg(RC);
905  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
906
907  if (II.getNumDefs() >= 1)
908    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
909  else {
910    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
911    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
912                                         II.ImplicitDefs[0], RC, RC);
913    if (!InsertedCopy)
914      ResultReg = 0;
915  }
916  return ResultReg;
917}
918
919unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
920                                   const TargetRegisterClass *RC,
921                                   unsigned Op0, uint64_t Imm) {
922  unsigned ResultReg = createResultReg(RC);
923  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
924
925  if (II.getNumDefs() >= 1)
926    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
927  else {
928    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
929    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
930                                         II.ImplicitDefs[0], RC, RC);
931    if (!InsertedCopy)
932      ResultReg = 0;
933  }
934  return ResultReg;
935}
936
937unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
938                                   const TargetRegisterClass *RC,
939                                   unsigned Op0, ConstantFP *FPImm) {
940  unsigned ResultReg = createResultReg(RC);
941  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
942
943  if (II.getNumDefs() >= 1)
944    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
945  else {
946    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
947    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
948                                         II.ImplicitDefs[0], RC, RC);
949    if (!InsertedCopy)
950      ResultReg = 0;
951  }
952  return ResultReg;
953}
954
955unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
956                                    const TargetRegisterClass *RC,
957                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
958  unsigned ResultReg = createResultReg(RC);
959  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
960
961  if (II.getNumDefs() >= 1)
962    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
963  else {
964    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
965    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
966                                         II.ImplicitDefs[0], RC, RC);
967    if (!InsertedCopy)
968      ResultReg = 0;
969  }
970  return ResultReg;
971}
972
973unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
974                                  const TargetRegisterClass *RC,
975                                  uint64_t Imm) {
976  unsigned ResultReg = createResultReg(RC);
977  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
978
979  if (II.getNumDefs() >= 1)
980    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
981  else {
982    BuildMI(MBB, DL, II).addImm(Imm);
983    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
984                                         II.ImplicitDefs[0], RC, RC);
985    if (!InsertedCopy)
986      ResultReg = 0;
987  }
988  return ResultReg;
989}
990
991unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT,
992                                              unsigned Op0, uint32_t Idx) {
993  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
994
995  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
996  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
997
998  if (II.getNumDefs() >= 1)
999    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
1000  else {
1001    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
1002    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1003                                         II.ImplicitDefs[0], RC, RC);
1004    if (!InsertedCopy)
1005      ResultReg = 0;
1006  }
1007  return ResultReg;
1008}
1009
1010/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1011/// with all but the least significant bit set to zero.
1012unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT, unsigned Op) {
1013  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
1014}
1015