FastISel.cpp revision 2ce5bf188dfa4329eb246df6011dd1edde5a5979
1//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/FunctionLoweringInfo.h"
48#include "llvm/CodeGen/MachineInstrBuilder.h"
49#include "llvm/CodeGen/MachineModuleInfo.h"
50#include "llvm/CodeGen/MachineRegisterInfo.h"
51#include "llvm/Analysis/DebugInfo.h"
52#include "llvm/Analysis/Loads.h"
53#include "llvm/Target/TargetData.h"
54#include "llvm/Target/TargetInstrInfo.h"
55#include "llvm/Target/TargetLowering.h"
56#include "llvm/Target/TargetMachine.h"
57#include "llvm/Support/ErrorHandling.h"
58#include "llvm/Support/Debug.h"
59using namespace llvm;
60
61/// startNewBlock - Set the current block to which generated machine
62/// instructions will be appended, and clear the local CSE map.
63///
64void FastISel::startNewBlock() {
65  LocalValueMap.clear();
66
67  // Start out as null, meaining no local-value instructions have
68  // been emitted.
69  LastLocalValue = 0;
70
71  // Advance the last local value past any EH_LABEL instructions.
72  MachineBasicBlock::iterator
73    I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
74  while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
75    LastLocalValue = I;
76    ++I;
77  }
78}
79
80bool FastISel::hasTrivialKill(const Value *V) const {
81  // Don't consider constants or arguments to have trivial kills.
82  const Instruction *I = dyn_cast<Instruction>(V);
83  if (!I)
84    return false;
85
86  // No-op casts are trivially coalesced by fast-isel.
87  if (const CastInst *Cast = dyn_cast<CastInst>(I))
88    if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
89        !hasTrivialKill(Cast->getOperand(0)))
90      return false;
91
92  // Only instructions with a single use in the same basic block are considered
93  // to have trivial kills.
94  return I->hasOneUse() &&
95         !(I->getOpcode() == Instruction::BitCast ||
96           I->getOpcode() == Instruction::PtrToInt ||
97           I->getOpcode() == Instruction::IntToPtr) &&
98         cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
99}
100
101unsigned FastISel::getRegForValue(const Value *V) {
102  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
103  // Don't handle non-simple values in FastISel.
104  if (!RealVT.isSimple())
105    return 0;
106
107  // Ignore illegal types. We must do this before looking up the value
108  // in ValueMap because Arguments are given virtual registers regardless
109  // of whether FastISel can handle them.
110  MVT VT = RealVT.getSimpleVT();
111  if (!TLI.isTypeLegal(VT)) {
112    // Promote MVT::i1 to a legal type though, because it's common and easy.
113    if (VT == MVT::i1)
114      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
115    else
116      return 0;
117  }
118
119  // Look up the value to see if we already have a register for it. We
120  // cache values defined by Instructions across blocks, and other values
121  // only locally. This is because Instructions already have the SSA
122  // def-dominates-use requirement enforced.
123  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
124  if (I != FuncInfo.ValueMap.end()) {
125    unsigned Reg = I->second;
126    return Reg;
127  }
128  unsigned Reg = LocalValueMap[V];
129  if (Reg != 0)
130    return Reg;
131
132  // In bottom-up mode, just create the virtual register which will be used
133  // to hold the value. It will be materialized later.
134  if (isa<Instruction>(V) &&
135      (!isa<AllocaInst>(V) ||
136       !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
137    return FuncInfo.InitializeRegForValue(V);
138
139  SavePoint SaveInsertPt = enterLocalValueArea();
140
141  // Materialize the value in a register. Emit any instructions in the
142  // local value area.
143  Reg = materializeRegForValue(V, VT);
144
145  leaveLocalValueArea(SaveInsertPt);
146
147  return Reg;
148}
149
150/// materializeRegForValue - Helper for getRegForValue. This function is
151/// called when the value isn't already available in a register and must
152/// be materialized with new instructions.
153unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
154  unsigned Reg = 0;
155
156  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
157    if (CI->getValue().getActiveBits() <= 64)
158      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
159  } else if (isa<AllocaInst>(V)) {
160    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
161  } else if (isa<ConstantPointerNull>(V)) {
162    // Translate this as an integer zero so that it can be
163    // local-CSE'd with actual integer zeros.
164    Reg =
165      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
166  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
167    // Try to emit the constant directly.
168    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
169
170    if (!Reg) {
171      // Try to emit the constant by using an integer constant with a cast.
172      const APFloat &Flt = CF->getValueAPF();
173      EVT IntVT = TLI.getPointerTy();
174
175      uint64_t x[2];
176      uint32_t IntBitWidth = IntVT.getSizeInBits();
177      bool isExact;
178      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
179                                APFloat::rmTowardZero, &isExact);
180      if (isExact) {
181        APInt IntVal(IntBitWidth, 2, x);
182
183        unsigned IntegerReg =
184          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
185        if (IntegerReg != 0)
186          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
187                           IntegerReg, /*Kill=*/false);
188      }
189    }
190  } else if (const Operator *Op = dyn_cast<Operator>(V)) {
191    if (!SelectOperator(Op, Op->getOpcode()))
192      if (!isa<Instruction>(Op) ||
193          !TargetSelectInstruction(cast<Instruction>(Op)))
194        return 0;
195    Reg = lookUpRegForValue(Op);
196  } else if (isa<UndefValue>(V)) {
197    Reg = createResultReg(TLI.getRegClassFor(VT));
198    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
199            TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
200  }
201
202  // If target-independent code couldn't handle the value, give target-specific
203  // code a try.
204  if (!Reg && isa<Constant>(V))
205    Reg = TargetMaterializeConstant(cast<Constant>(V));
206
207  // Don't cache constant materializations in the general ValueMap.
208  // To do so would require tracking what uses they dominate.
209  if (Reg != 0) {
210    LocalValueMap[V] = Reg;
211    LastLocalValue = MRI.getVRegDef(Reg);
212  }
213  return Reg;
214}
215
216unsigned FastISel::lookUpRegForValue(const Value *V) {
217  // Look up the value to see if we already have a register for it. We
218  // cache values defined by Instructions across blocks, and other values
219  // only locally. This is because Instructions already have the SSA
220  // def-dominates-use requirement enforced.
221  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
222  if (I != FuncInfo.ValueMap.end())
223    return I->second;
224  return LocalValueMap[V];
225}
226
227/// UpdateValueMap - Update the value map to include the new mapping for this
228/// instruction, or insert an extra copy to get the result in a previous
229/// determined register.
230/// NOTE: This is only necessary because we might select a block that uses
231/// a value before we select the block that defines the value.  It might be
232/// possible to fix this by selecting blocks in reverse postorder.
233unsigned FastISel::UpdateValueMap(const Value *I, unsigned Reg) {
234  if (!isa<Instruction>(I)) {
235    LocalValueMap[I] = Reg;
236    return Reg;
237  }
238
239  unsigned &AssignedReg = FuncInfo.ValueMap[I];
240  if (AssignedReg == 0)
241    // Use the new register.
242    AssignedReg = Reg;
243  else if (Reg != AssignedReg) {
244    // Arrange for uses of AssignedReg to be replaced by uses of Reg.
245    FuncInfo.RegFixups[AssignedReg] = Reg;
246
247    AssignedReg = Reg;
248  }
249
250  return AssignedReg;
251}
252
253std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
254  unsigned IdxN = getRegForValue(Idx);
255  if (IdxN == 0)
256    // Unhandled operand. Halt "fast" selection and bail.
257    return std::pair<unsigned, bool>(0, false);
258
259  bool IdxNIsKill = hasTrivialKill(Idx);
260
261  // If the index is smaller or larger than intptr_t, truncate or extend it.
262  MVT PtrVT = TLI.getPointerTy();
263  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
264  if (IdxVT.bitsLT(PtrVT)) {
265    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
266                      IdxN, IdxNIsKill);
267    IdxNIsKill = true;
268  }
269  else if (IdxVT.bitsGT(PtrVT)) {
270    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
271                      IdxN, IdxNIsKill);
272    IdxNIsKill = true;
273  }
274  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
275}
276
277void FastISel::recomputeInsertPt() {
278  if (getLastLocalValue()) {
279    FuncInfo.InsertPt = getLastLocalValue();
280    FuncInfo.MBB = FuncInfo.InsertPt->getParent();
281    ++FuncInfo.InsertPt;
282  } else
283    FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
284
285  // Now skip past any EH_LABELs, which must remain at the beginning.
286  while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
287         FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
288    ++FuncInfo.InsertPt;
289}
290
291FastISel::SavePoint FastISel::enterLocalValueArea() {
292  MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
293  DebugLoc OldDL = DL;
294  recomputeInsertPt();
295  DL = DebugLoc();
296  SavePoint SP = { OldInsertPt, OldDL };
297  return SP;
298}
299
300void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
301  if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
302    LastLocalValue = llvm::prior(FuncInfo.InsertPt);
303
304  // Restore the previous insert position.
305  FuncInfo.InsertPt = OldInsertPt.InsertPt;
306  DL = OldInsertPt.DL;
307}
308
309/// SelectBinaryOp - Select and emit code for a binary operator instruction,
310/// which has an opcode which directly corresponds to the given ISD opcode.
311///
312bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
313  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
314  if (VT == MVT::Other || !VT.isSimple())
315    // Unhandled type. Halt "fast" selection and bail.
316    return false;
317
318  // We only handle legal types. For example, on x86-32 the instruction
319  // selector contains all of the 64-bit instructions from x86-64,
320  // under the assumption that i64 won't be used if the target doesn't
321  // support it.
322  if (!TLI.isTypeLegal(VT)) {
323    // MVT::i1 is special. Allow AND, OR, or XOR because they
324    // don't require additional zeroing, which makes them easy.
325    if (VT == MVT::i1 &&
326        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
327         ISDOpcode == ISD::XOR))
328      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
329    else
330      return false;
331  }
332
333  unsigned Op0 = getRegForValue(I->getOperand(0));
334  if (Op0 == 0)
335    // Unhandled operand. Halt "fast" selection and bail.
336    return false;
337
338  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
339
340  // Check if the second operand is a constant and handle it appropriately.
341  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
342    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
343                                     ISDOpcode, Op0, Op0IsKill,
344                                     CI->getZExtValue());
345    if (ResultReg != 0) {
346      // We successfully emitted code for the given LLVM Instruction.
347      UpdateValueMap(I, ResultReg);
348      return true;
349    }
350  }
351
352  // Check if the second operand is a constant float.
353  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
354    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
355                                     ISDOpcode, Op0, Op0IsKill, CF);
356    if (ResultReg != 0) {
357      // We successfully emitted code for the given LLVM Instruction.
358      UpdateValueMap(I, ResultReg);
359      return true;
360    }
361  }
362
363  unsigned Op1 = getRegForValue(I->getOperand(1));
364  if (Op1 == 0)
365    // Unhandled operand. Halt "fast" selection and bail.
366    return false;
367
368  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
369
370  // Now we have both operands in registers. Emit the instruction.
371  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
372                                   ISDOpcode,
373                                   Op0, Op0IsKill,
374                                   Op1, Op1IsKill);
375  if (ResultReg == 0)
376    // Target-specific code wasn't able to find a machine opcode for
377    // the given ISD opcode and type. Halt "fast" selection and bail.
378    return false;
379
380  // We successfully emitted code for the given LLVM Instruction.
381  UpdateValueMap(I, ResultReg);
382  return true;
383}
384
385bool FastISel::SelectGetElementPtr(const User *I) {
386  unsigned N = getRegForValue(I->getOperand(0));
387  if (N == 0)
388    // Unhandled operand. Halt "fast" selection and bail.
389    return false;
390
391  bool NIsKill = hasTrivialKill(I->getOperand(0));
392
393  const Type *Ty = I->getOperand(0)->getType();
394  MVT VT = TLI.getPointerTy();
395  for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
396       E = I->op_end(); OI != E; ++OI) {
397    const Value *Idx = *OI;
398    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
399      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
400      if (Field) {
401        // N = N + Offset
402        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
403        // FIXME: This can be optimized by combining the add with a
404        // subsequent one.
405        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
406        if (N == 0)
407          // Unhandled operand. Halt "fast" selection and bail.
408          return false;
409        NIsKill = true;
410      }
411      Ty = StTy->getElementType(Field);
412    } else {
413      Ty = cast<SequentialType>(Ty)->getElementType();
414
415      // If this is a constant subscript, handle it quickly.
416      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
417        if (CI->isZero()) continue;
418        uint64_t Offs =
419          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
420        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
421        if (N == 0)
422          // Unhandled operand. Halt "fast" selection and bail.
423          return false;
424        NIsKill = true;
425        continue;
426      }
427
428      // N = N + Idx * ElementSize;
429      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
430      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
431      unsigned IdxN = Pair.first;
432      bool IdxNIsKill = Pair.second;
433      if (IdxN == 0)
434        // Unhandled operand. Halt "fast" selection and bail.
435        return false;
436
437      if (ElementSize != 1) {
438        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
439        if (IdxN == 0)
440          // Unhandled operand. Halt "fast" selection and bail.
441          return false;
442        IdxNIsKill = true;
443      }
444      N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
445      if (N == 0)
446        // Unhandled operand. Halt "fast" selection and bail.
447        return false;
448    }
449  }
450
451  // We successfully emitted code for the given LLVM Instruction.
452  UpdateValueMap(I, N);
453  return true;
454}
455
456bool FastISel::SelectCall(const User *I) {
457  const Function *F = cast<CallInst>(I)->getCalledFunction();
458  if (!F) return false;
459
460  // Handle selected intrinsic function calls.
461  unsigned IID = F->getIntrinsicID();
462  switch (IID) {
463  default: break;
464  case Intrinsic::dbg_declare: {
465    const DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
466    if (!DIVariable(DI->getVariable()).Verify() ||
467        !FuncInfo.MF->getMMI().hasDebugInfo())
468      return true;
469
470    const Value *Address = DI->getAddress();
471    if (!Address || isa<UndefValue>(Address) || isa<AllocaInst>(Address))
472      return true;
473
474    unsigned Reg = 0;
475    unsigned Offset = 0;
476    if (const Argument *Arg = dyn_cast<Argument>(Address)) {
477      if (Arg->hasByValAttr()) {
478        // Byval arguments' frame index is recorded during argument lowering.
479        // Use this info directly.
480        Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
481        if (Offset)
482          Reg = TRI.getFrameRegister(*FuncInfo.MF);
483      }
484    }
485    if (!Reg)
486      Reg = getRegForValue(Address);
487
488    if (Reg)
489      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
490              TII.get(TargetOpcode::DBG_VALUE))
491        .addReg(Reg, RegState::Debug).addImm(Offset)
492        .addMetadata(DI->getVariable());
493    return true;
494  }
495  case Intrinsic::dbg_value: {
496    // This form of DBG_VALUE is target-independent.
497    const DbgValueInst *DI = cast<DbgValueInst>(I);
498    const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
499    const Value *V = DI->getValue();
500    if (!V) {
501      // Currently the optimizer can produce this; insert an undef to
502      // help debugging.  Probably the optimizer should not do this.
503      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
504        .addReg(0U).addImm(DI->getOffset())
505        .addMetadata(DI->getVariable());
506    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
507      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
508        .addImm(CI->getZExtValue()).addImm(DI->getOffset())
509        .addMetadata(DI->getVariable());
510    } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
511      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
512        .addFPImm(CF).addImm(DI->getOffset())
513        .addMetadata(DI->getVariable());
514    } else if (unsigned Reg = lookUpRegForValue(V)) {
515      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
516        .addReg(Reg, RegState::Debug).addImm(DI->getOffset())
517        .addMetadata(DI->getVariable());
518    } else {
519      // We can't yet handle anything else here because it would require
520      // generating code, thus altering codegen because of debug info.
521      DEBUG(dbgs() << "Dropping debug info for " << DI);
522    }
523    return true;
524  }
525  case Intrinsic::eh_exception: {
526    EVT VT = TLI.getValueType(I->getType());
527    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
528    default: break;
529    case TargetLowering::Expand: {
530      assert(FuncInfo.MBB->isLandingPad() &&
531             "Call to eh.exception not in landing pad!");
532      unsigned Reg = TLI.getExceptionAddressRegister();
533      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
534      unsigned ResultReg = createResultReg(RC);
535      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
536              ResultReg).addReg(Reg);
537      UpdateValueMap(I, ResultReg);
538      return true;
539    }
540    }
541    break;
542  }
543  case Intrinsic::eh_selector: {
544    EVT VT = TLI.getValueType(I->getType());
545    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
546    default: break;
547    case TargetLowering::Expand: {
548      if (FuncInfo.MBB->isLandingPad())
549        AddCatchInfo(*cast<CallInst>(I), &FuncInfo.MF->getMMI(), FuncInfo.MBB);
550      else {
551#ifndef NDEBUG
552        FuncInfo.CatchInfoLost.insert(cast<CallInst>(I));
553#endif
554        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
555        unsigned Reg = TLI.getExceptionSelectorRegister();
556        if (Reg) FuncInfo.MBB->addLiveIn(Reg);
557      }
558
559      unsigned Reg = TLI.getExceptionSelectorRegister();
560      EVT SrcVT = TLI.getPointerTy();
561      const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
562      unsigned ResultReg = createResultReg(RC);
563      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
564              ResultReg).addReg(Reg);
565
566      bool ResultRegIsKill = hasTrivialKill(I);
567
568      // Cast the register to the type of the selector.
569      if (SrcVT.bitsGT(MVT::i32))
570        ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
571                               ResultReg, ResultRegIsKill);
572      else if (SrcVT.bitsLT(MVT::i32))
573        ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
574                               ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill);
575      if (ResultReg == 0)
576        // Unhandled operand. Halt "fast" selection and bail.
577        return false;
578
579      UpdateValueMap(I, ResultReg);
580
581      return true;
582    }
583    }
584    break;
585  }
586  }
587
588  // An arbitrary call. Bail.
589  return false;
590}
591
592bool FastISel::SelectCast(const User *I, unsigned Opcode) {
593  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
594  EVT DstVT = TLI.getValueType(I->getType());
595
596  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
597      DstVT == MVT::Other || !DstVT.isSimple())
598    // Unhandled type. Halt "fast" selection and bail.
599    return false;
600
601  // Check if the destination type is legal. Or as a special case,
602  // it may be i1 if we're doing a truncate because that's
603  // easy and somewhat common.
604  if (!TLI.isTypeLegal(DstVT))
605    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
606      // Unhandled type. Halt "fast" selection and bail.
607      return false;
608
609  // Check if the source operand is legal. Or as a special case,
610  // it may be i1 if we're doing zero-extension because that's
611  // easy and somewhat common.
612  if (!TLI.isTypeLegal(SrcVT))
613    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
614      // Unhandled type. Halt "fast" selection and bail.
615      return false;
616
617  unsigned InputReg = getRegForValue(I->getOperand(0));
618  if (!InputReg)
619    // Unhandled operand.  Halt "fast" selection and bail.
620    return false;
621
622  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
623
624  // If the operand is i1, arrange for the high bits in the register to be zero.
625  if (SrcVT == MVT::i1) {
626   SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
627   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg, InputRegIsKill);
628   if (!InputReg)
629     return false;
630   InputRegIsKill = true;
631  }
632  // If the result is i1, truncate to the target's type for i1 first.
633  if (DstVT == MVT::i1)
634    DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
635
636  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
637                                  DstVT.getSimpleVT(),
638                                  Opcode,
639                                  InputReg, InputRegIsKill);
640  if (!ResultReg)
641    return false;
642
643  UpdateValueMap(I, ResultReg);
644  return true;
645}
646
647bool FastISel::SelectBitCast(const User *I) {
648  // If the bitcast doesn't change the type, just use the operand value.
649  if (I->getType() == I->getOperand(0)->getType()) {
650    unsigned Reg = getRegForValue(I->getOperand(0));
651    if (Reg == 0)
652      return false;
653    UpdateValueMap(I, Reg);
654    return true;
655  }
656
657  // Bitcasts of other values become reg-reg copies or BITCAST operators.
658  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
659  EVT DstVT = TLI.getValueType(I->getType());
660
661  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
662      DstVT == MVT::Other || !DstVT.isSimple() ||
663      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
664    // Unhandled type. Halt "fast" selection and bail.
665    return false;
666
667  unsigned Op0 = getRegForValue(I->getOperand(0));
668  if (Op0 == 0)
669    // Unhandled operand. Halt "fast" selection and bail.
670    return false;
671
672  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
673
674  // First, try to perform the bitcast by inserting a reg-reg copy.
675  unsigned ResultReg = 0;
676  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
677    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
678    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
679    // Don't attempt a cross-class copy. It will likely fail.
680    if (SrcClass == DstClass) {
681      ResultReg = createResultReg(DstClass);
682      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
683              ResultReg).addReg(Op0);
684    }
685  }
686
687  // If the reg-reg copy failed, select a BITCAST opcode.
688  if (!ResultReg)
689    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
690                           ISD::BITCAST, Op0, Op0IsKill);
691
692  if (!ResultReg)
693    return false;
694
695  UpdateValueMap(I, ResultReg);
696  return true;
697}
698
699bool
700FastISel::SelectInstruction(const Instruction *I) {
701  // Just before the terminator instruction, insert instructions to
702  // feed PHI nodes in successor blocks.
703  if (isa<TerminatorInst>(I))
704    if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
705      return false;
706
707  DL = I->getDebugLoc();
708
709  // First, try doing target-independent selection.
710  if (SelectOperator(I, I->getOpcode())) {
711    DL = DebugLoc();
712    return true;
713  }
714
715  // Next, try calling the target to attempt to handle the instruction.
716  if (TargetSelectInstruction(I)) {
717    DL = DebugLoc();
718    return true;
719  }
720
721  DL = DebugLoc();
722  return false;
723}
724
725/// FastEmitBranch - Emit an unconditional branch to the given block,
726/// unless it is the immediate (fall-through) successor, and update
727/// the CFG.
728void
729FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
730  if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
731    // The unconditional fall-through case, which needs no instructions.
732  } else {
733    // The unconditional branch case.
734    TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
735                     SmallVector<MachineOperand, 0>(), DL);
736  }
737  FuncInfo.MBB->addSuccessor(MSucc);
738}
739
740/// SelectFNeg - Emit an FNeg operation.
741///
742bool
743FastISel::SelectFNeg(const User *I) {
744  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
745  if (OpReg == 0) return false;
746
747  bool OpRegIsKill = hasTrivialKill(I);
748
749  // If the target has ISD::FNEG, use it.
750  EVT VT = TLI.getValueType(I->getType());
751  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
752                                  ISD::FNEG, OpReg, OpRegIsKill);
753  if (ResultReg != 0) {
754    UpdateValueMap(I, ResultReg);
755    return true;
756  }
757
758  // Bitcast the value to integer, twiddle the sign bit with xor,
759  // and then bitcast it back to floating-point.
760  if (VT.getSizeInBits() > 64) return false;
761  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
762  if (!TLI.isTypeLegal(IntVT))
763    return false;
764
765  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
766                               ISD::BITCAST, OpReg, OpRegIsKill);
767  if (IntReg == 0)
768    return false;
769
770  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
771                                       IntReg, /*Kill=*/true,
772                                       UINT64_C(1) << (VT.getSizeInBits()-1),
773                                       IntVT.getSimpleVT());
774  if (IntResultReg == 0)
775    return false;
776
777  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
778                         ISD::BITCAST, IntResultReg, /*Kill=*/true);
779  if (ResultReg == 0)
780    return false;
781
782  UpdateValueMap(I, ResultReg);
783  return true;
784}
785
786bool
787FastISel::SelectOperator(const User *I, unsigned Opcode) {
788  switch (Opcode) {
789  case Instruction::Add:
790    return SelectBinaryOp(I, ISD::ADD);
791  case Instruction::FAdd:
792    return SelectBinaryOp(I, ISD::FADD);
793  case Instruction::Sub:
794    return SelectBinaryOp(I, ISD::SUB);
795  case Instruction::FSub:
796    // FNeg is currently represented in LLVM IR as a special case of FSub.
797    if (BinaryOperator::isFNeg(I))
798      return SelectFNeg(I);
799    return SelectBinaryOp(I, ISD::FSUB);
800  case Instruction::Mul:
801    return SelectBinaryOp(I, ISD::MUL);
802  case Instruction::FMul:
803    return SelectBinaryOp(I, ISD::FMUL);
804  case Instruction::SDiv:
805    return SelectBinaryOp(I, ISD::SDIV);
806  case Instruction::UDiv:
807    return SelectBinaryOp(I, ISD::UDIV);
808  case Instruction::FDiv:
809    return SelectBinaryOp(I, ISD::FDIV);
810  case Instruction::SRem:
811    return SelectBinaryOp(I, ISD::SREM);
812  case Instruction::URem:
813    return SelectBinaryOp(I, ISD::UREM);
814  case Instruction::FRem:
815    return SelectBinaryOp(I, ISD::FREM);
816  case Instruction::Shl:
817    return SelectBinaryOp(I, ISD::SHL);
818  case Instruction::LShr:
819    return SelectBinaryOp(I, ISD::SRL);
820  case Instruction::AShr:
821    return SelectBinaryOp(I, ISD::SRA);
822  case Instruction::And:
823    return SelectBinaryOp(I, ISD::AND);
824  case Instruction::Or:
825    return SelectBinaryOp(I, ISD::OR);
826  case Instruction::Xor:
827    return SelectBinaryOp(I, ISD::XOR);
828
829  case Instruction::GetElementPtr:
830    return SelectGetElementPtr(I);
831
832  case Instruction::Br: {
833    const BranchInst *BI = cast<BranchInst>(I);
834
835    if (BI->isUnconditional()) {
836      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
837      MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
838      FastEmitBranch(MSucc, BI->getDebugLoc());
839      return true;
840    }
841
842    // Conditional branches are not handed yet.
843    // Halt "fast" selection and bail.
844    return false;
845  }
846
847  case Instruction::Unreachable:
848    // Nothing to emit.
849    return true;
850
851  case Instruction::Alloca:
852    // FunctionLowering has the static-sized case covered.
853    if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
854      return true;
855
856    // Dynamic-sized alloca is not handled yet.
857    return false;
858
859  case Instruction::Call:
860    return SelectCall(I);
861
862  case Instruction::BitCast:
863    return SelectBitCast(I);
864
865  case Instruction::FPToSI:
866    return SelectCast(I, ISD::FP_TO_SINT);
867  case Instruction::ZExt:
868    return SelectCast(I, ISD::ZERO_EXTEND);
869  case Instruction::SExt:
870    return SelectCast(I, ISD::SIGN_EXTEND);
871  case Instruction::Trunc:
872    return SelectCast(I, ISD::TRUNCATE);
873  case Instruction::SIToFP:
874    return SelectCast(I, ISD::SINT_TO_FP);
875
876  case Instruction::IntToPtr: // Deliberate fall-through.
877  case Instruction::PtrToInt: {
878    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
879    EVT DstVT = TLI.getValueType(I->getType());
880    if (DstVT.bitsGT(SrcVT))
881      return SelectCast(I, ISD::ZERO_EXTEND);
882    if (DstVT.bitsLT(SrcVT))
883      return SelectCast(I, ISD::TRUNCATE);
884    unsigned Reg = getRegForValue(I->getOperand(0));
885    if (Reg == 0) return false;
886    UpdateValueMap(I, Reg);
887    return true;
888  }
889
890  case Instruction::PHI:
891    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
892
893  default:
894    // Unhandled instruction. Halt "fast" selection and bail.
895    return false;
896  }
897}
898
899FastISel::FastISel(FunctionLoweringInfo &funcInfo)
900  : FuncInfo(funcInfo),
901    MRI(FuncInfo.MF->getRegInfo()),
902    MFI(*FuncInfo.MF->getFrameInfo()),
903    MCP(*FuncInfo.MF->getConstantPool()),
904    TM(FuncInfo.MF->getTarget()),
905    TD(*TM.getTargetData()),
906    TII(*TM.getInstrInfo()),
907    TLI(*TM.getTargetLowering()),
908    TRI(*TM.getRegisterInfo()) {
909}
910
911FastISel::~FastISel() {}
912
913unsigned FastISel::FastEmit_(MVT, MVT,
914                             unsigned) {
915  return 0;
916}
917
918unsigned FastISel::FastEmit_r(MVT, MVT,
919                              unsigned,
920                              unsigned /*Op0*/, bool /*Op0IsKill*/) {
921  return 0;
922}
923
924unsigned FastISel::FastEmit_rr(MVT, MVT,
925                               unsigned,
926                               unsigned /*Op0*/, bool /*Op0IsKill*/,
927                               unsigned /*Op1*/, bool /*Op1IsKill*/) {
928  return 0;
929}
930
931unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
932  return 0;
933}
934
935unsigned FastISel::FastEmit_f(MVT, MVT,
936                              unsigned, const ConstantFP * /*FPImm*/) {
937  return 0;
938}
939
940unsigned FastISel::FastEmit_ri(MVT, MVT,
941                               unsigned,
942                               unsigned /*Op0*/, bool /*Op0IsKill*/,
943                               uint64_t /*Imm*/) {
944  return 0;
945}
946
947unsigned FastISel::FastEmit_rf(MVT, MVT,
948                               unsigned,
949                               unsigned /*Op0*/, bool /*Op0IsKill*/,
950                               const ConstantFP * /*FPImm*/) {
951  return 0;
952}
953
954unsigned FastISel::FastEmit_rri(MVT, MVT,
955                                unsigned,
956                                unsigned /*Op0*/, bool /*Op0IsKill*/,
957                                unsigned /*Op1*/, bool /*Op1IsKill*/,
958                                uint64_t /*Imm*/) {
959  return 0;
960}
961
962/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
963/// to emit an instruction with an immediate operand using FastEmit_ri.
964/// If that fails, it materializes the immediate into a register and try
965/// FastEmit_rr instead.
966unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
967                                unsigned Op0, bool Op0IsKill,
968                                uint64_t Imm, MVT ImmType) {
969  // First check if immediate type is legal. If not, we can't use the ri form.
970  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
971  if (ResultReg != 0)
972    return ResultReg;
973  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
974  if (MaterialReg == 0)
975    return 0;
976  return FastEmit_rr(VT, VT, Opcode,
977                     Op0, Op0IsKill,
978                     MaterialReg, /*Kill=*/true);
979}
980
981/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
982/// to emit an instruction with a floating-point immediate operand using
983/// FastEmit_rf. If that fails, it materializes the immediate into a register
984/// and try FastEmit_rr instead.
985unsigned FastISel::FastEmit_rf_(MVT VT, unsigned Opcode,
986                                unsigned Op0, bool Op0IsKill,
987                                const ConstantFP *FPImm, MVT ImmType) {
988  // First check if immediate type is legal. If not, we can't use the rf form.
989  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, Op0IsKill, FPImm);
990  if (ResultReg != 0)
991    return ResultReg;
992
993  // Materialize the constant in a register.
994  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
995  if (MaterialReg == 0) {
996    // If the target doesn't have a way to directly enter a floating-point
997    // value into a register, use an alternate approach.
998    // TODO: The current approach only supports floating-point constants
999    // that can be constructed by conversion from integer values. This should
1000    // be replaced by code that creates a load from a constant-pool entry,
1001    // which will require some target-specific work.
1002    const APFloat &Flt = FPImm->getValueAPF();
1003    EVT IntVT = TLI.getPointerTy();
1004
1005    uint64_t x[2];
1006    uint32_t IntBitWidth = IntVT.getSizeInBits();
1007    bool isExact;
1008    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
1009                             APFloat::rmTowardZero, &isExact);
1010    if (!isExact)
1011      return 0;
1012    APInt IntVal(IntBitWidth, 2, x);
1013
1014    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
1015                                     ISD::Constant, IntVal.getZExtValue());
1016    if (IntegerReg == 0)
1017      return 0;
1018    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
1019                             ISD::SINT_TO_FP, IntegerReg, /*Kill=*/true);
1020    if (MaterialReg == 0)
1021      return 0;
1022  }
1023  return FastEmit_rr(VT, VT, Opcode,
1024                     Op0, Op0IsKill,
1025                     MaterialReg, /*Kill=*/true);
1026}
1027
1028unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
1029  return MRI.createVirtualRegister(RC);
1030}
1031
1032unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1033                                 const TargetRegisterClass* RC) {
1034  unsigned ResultReg = createResultReg(RC);
1035  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1036
1037  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
1038  return ResultReg;
1039}
1040
1041unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1042                                  const TargetRegisterClass *RC,
1043                                  unsigned Op0, bool Op0IsKill) {
1044  unsigned ResultReg = createResultReg(RC);
1045  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1046
1047  if (II.getNumDefs() >= 1)
1048    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1049      .addReg(Op0, Op0IsKill * RegState::Kill);
1050  else {
1051    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1052      .addReg(Op0, Op0IsKill * RegState::Kill);
1053    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1054            ResultReg).addReg(II.ImplicitDefs[0]);
1055  }
1056
1057  return ResultReg;
1058}
1059
1060unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1061                                   const TargetRegisterClass *RC,
1062                                   unsigned Op0, bool Op0IsKill,
1063                                   unsigned Op1, bool Op1IsKill) {
1064  unsigned ResultReg = createResultReg(RC);
1065  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1066
1067  if (II.getNumDefs() >= 1)
1068    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1069      .addReg(Op0, Op0IsKill * RegState::Kill)
1070      .addReg(Op1, Op1IsKill * RegState::Kill);
1071  else {
1072    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1073      .addReg(Op0, Op0IsKill * RegState::Kill)
1074      .addReg(Op1, Op1IsKill * RegState::Kill);
1075    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1076            ResultReg).addReg(II.ImplicitDefs[0]);
1077  }
1078  return ResultReg;
1079}
1080
1081unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1082                                   const TargetRegisterClass *RC,
1083                                   unsigned Op0, bool Op0IsKill,
1084                                   uint64_t Imm) {
1085  unsigned ResultReg = createResultReg(RC);
1086  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1087
1088  if (II.getNumDefs() >= 1)
1089    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1090      .addReg(Op0, Op0IsKill * RegState::Kill)
1091      .addImm(Imm);
1092  else {
1093    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1094      .addReg(Op0, Op0IsKill * RegState::Kill)
1095      .addImm(Imm);
1096    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1097            ResultReg).addReg(II.ImplicitDefs[0]);
1098  }
1099  return ResultReg;
1100}
1101
1102unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
1103                                   const TargetRegisterClass *RC,
1104                                   unsigned Op0, bool Op0IsKill,
1105                                   uint64_t Imm1, uint64_t Imm2) {
1106  unsigned ResultReg = createResultReg(RC);
1107  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1108
1109  if (II.getNumDefs() >= 1)
1110    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1111      .addReg(Op0, Op0IsKill * RegState::Kill)
1112      .addImm(Imm1)
1113      .addImm(Imm2);
1114  else {
1115    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1116      .addReg(Op0, Op0IsKill * RegState::Kill)
1117      .addImm(Imm1)
1118      .addImm(Imm2);
1119    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1120            ResultReg).addReg(II.ImplicitDefs[0]);
1121  }
1122  return ResultReg;
1123}
1124
1125unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1126                                   const TargetRegisterClass *RC,
1127                                   unsigned Op0, bool Op0IsKill,
1128                                   const ConstantFP *FPImm) {
1129  unsigned ResultReg = createResultReg(RC);
1130  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1131
1132  if (II.getNumDefs() >= 1)
1133    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1134      .addReg(Op0, Op0IsKill * RegState::Kill)
1135      .addFPImm(FPImm);
1136  else {
1137    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1138      .addReg(Op0, Op0IsKill * RegState::Kill)
1139      .addFPImm(FPImm);
1140    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1141            ResultReg).addReg(II.ImplicitDefs[0]);
1142  }
1143  return ResultReg;
1144}
1145
1146unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1147                                    const TargetRegisterClass *RC,
1148                                    unsigned Op0, bool Op0IsKill,
1149                                    unsigned Op1, bool Op1IsKill,
1150                                    uint64_t Imm) {
1151  unsigned ResultReg = createResultReg(RC);
1152  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1153
1154  if (II.getNumDefs() >= 1)
1155    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1156      .addReg(Op0, Op0IsKill * RegState::Kill)
1157      .addReg(Op1, Op1IsKill * RegState::Kill)
1158      .addImm(Imm);
1159  else {
1160    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1161      .addReg(Op0, Op0IsKill * RegState::Kill)
1162      .addReg(Op1, Op1IsKill * RegState::Kill)
1163      .addImm(Imm);
1164    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1165            ResultReg).addReg(II.ImplicitDefs[0]);
1166  }
1167  return ResultReg;
1168}
1169
1170unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1171                                  const TargetRegisterClass *RC,
1172                                  uint64_t Imm) {
1173  unsigned ResultReg = createResultReg(RC);
1174  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1175
1176  if (II.getNumDefs() >= 1)
1177    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
1178  else {
1179    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
1180    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1181            ResultReg).addReg(II.ImplicitDefs[0]);
1182  }
1183  return ResultReg;
1184}
1185
1186unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1187                                              unsigned Op0, bool Op0IsKill,
1188                                              uint32_t Idx) {
1189  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1190  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1191         "Cannot yet extract from physregs");
1192  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1193          DL, TII.get(TargetOpcode::COPY), ResultReg)
1194    .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1195  return ResultReg;
1196}
1197
1198/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1199/// with all but the least significant bit set to zero.
1200unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1201  return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1202}
1203
1204/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1205/// Emit code to ensure constants are copied into registers when needed.
1206/// Remember the virtual registers that need to be added to the Machine PHI
1207/// nodes as input.  We cannot just directly add them, because expansion
1208/// might result in multiple MBB's for one BB.  As such, the start of the
1209/// BB might correspond to a different MBB than the end.
1210bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1211  const TerminatorInst *TI = LLVMBB->getTerminator();
1212
1213  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1214  unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1215
1216  // Check successor nodes' PHI nodes that expect a constant to be available
1217  // from this block.
1218  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1219    const BasicBlock *SuccBB = TI->getSuccessor(succ);
1220    if (!isa<PHINode>(SuccBB->begin())) continue;
1221    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1222
1223    // If this terminator has multiple identical successors (common for
1224    // switches), only handle each succ once.
1225    if (!SuccsHandled.insert(SuccMBB)) continue;
1226
1227    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1228
1229    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1230    // nodes and Machine PHI nodes, but the incoming operands have not been
1231    // emitted yet.
1232    for (BasicBlock::const_iterator I = SuccBB->begin();
1233         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1234
1235      // Ignore dead phi's.
1236      if (PN->use_empty()) continue;
1237
1238      // Only handle legal types. Two interesting things to note here. First,
1239      // by bailing out early, we may leave behind some dead instructions,
1240      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1241      // own moves. Second, this check is necessary becuase FastISel doesn't
1242      // use CreateRegs to create registers, so it always creates
1243      // exactly one register for each non-void instruction.
1244      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1245      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1246        // Promote MVT::i1.
1247        if (VT == MVT::i1)
1248          VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1249        else {
1250          FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1251          return false;
1252        }
1253      }
1254
1255      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1256
1257      // Set the DebugLoc for the copy. Prefer the location of the operand
1258      // if there is one; use the location of the PHI otherwise.
1259      DL = PN->getDebugLoc();
1260      if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1261        DL = Inst->getDebugLoc();
1262
1263      unsigned Reg = getRegForValue(PHIOp);
1264      if (Reg == 0) {
1265        FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1266        return false;
1267      }
1268      FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1269      DL = DebugLoc();
1270    }
1271  }
1272
1273  return true;
1274}
1275