FastISel.cpp revision 3193a689db3de8640d412ccd9482301647359a4e
1//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/Analysis/DebugInfo.h"
51#include "llvm/Target/TargetData.h"
52#include "llvm/Target/TargetInstrInfo.h"
53#include "llvm/Target/TargetLowering.h"
54#include "llvm/Target/TargetMachine.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "FunctionLoweringInfo.h"
57using namespace llvm;
58
59bool FastISel::hasTrivialKill(const Value *V) const {
60  // Don't consider constants or arguments to have trivial kills.
61  const Instruction *I = dyn_cast<Instruction>(V);
62  if (!I)
63    return false;
64
65  // No-op casts are trivially coalesced by fast-isel.
66  if (const CastInst *Cast = dyn_cast<CastInst>(I))
67    if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
68        !hasTrivialKill(Cast->getOperand(0)))
69      return false;
70
71  // Only instructions with a single use in the same basic block are considered
72  // to have trivial kills.
73  return I->hasOneUse() &&
74         !(I->getOpcode() == Instruction::BitCast ||
75           I->getOpcode() == Instruction::PtrToInt ||
76           I->getOpcode() == Instruction::IntToPtr) &&
77         cast<Instruction>(I->use_begin())->getParent() == I->getParent();
78}
79
80unsigned FastISel::getRegForValue(const Value *V) {
81  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
82  // Don't handle non-simple values in FastISel.
83  if (!RealVT.isSimple())
84    return 0;
85
86  // Ignore illegal types. We must do this before looking up the value
87  // in ValueMap because Arguments are given virtual registers regardless
88  // of whether FastISel can handle them.
89  MVT VT = RealVT.getSimpleVT();
90  if (!TLI.isTypeLegal(VT)) {
91    // Promote MVT::i1 to a legal type though, because it's common and easy.
92    if (VT == MVT::i1)
93      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
94    else
95      return 0;
96  }
97
98  // Look up the value to see if we already have a register for it. We
99  // cache values defined by Instructions across blocks, and other values
100  // only locally. This is because Instructions already have the SSA
101  // def-dominates-use requirement enforced.
102  DenseMap<const Value *, unsigned>::iterator I = ValueMap.find(V);
103  if (I != ValueMap.end())
104    return I->second;
105  unsigned Reg = LocalValueMap[V];
106  if (Reg != 0)
107    return Reg;
108
109  // In bottom-up mode, just create the virtual register which will be used
110  // to hold the value. It will be materialized later.
111  if (IsBottomUp) {
112    Reg = createResultReg(TLI.getRegClassFor(VT));
113    if (isa<Instruction>(V))
114      ValueMap[V] = Reg;
115    else
116      LocalValueMap[V] = Reg;
117    return Reg;
118  }
119
120  return materializeRegForValue(V, VT);
121}
122
123/// materializeRegForValue - Helper for getRegForVale. This function is
124/// called when the value isn't already available in a register and must
125/// be materialized with new instructions.
126unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
127  unsigned Reg = 0;
128
129  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
130    if (CI->getValue().getActiveBits() <= 64)
131      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
132  } else if (isa<AllocaInst>(V)) {
133    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
134  } else if (isa<ConstantPointerNull>(V)) {
135    // Translate this as an integer zero so that it can be
136    // local-CSE'd with actual integer zeros.
137    Reg =
138      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
139  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
140    // Try to emit the constant directly.
141    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
142
143    if (!Reg) {
144      // Try to emit the constant by using an integer constant with a cast.
145      const APFloat &Flt = CF->getValueAPF();
146      EVT IntVT = TLI.getPointerTy();
147
148      uint64_t x[2];
149      uint32_t IntBitWidth = IntVT.getSizeInBits();
150      bool isExact;
151      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
152                                APFloat::rmTowardZero, &isExact);
153      if (isExact) {
154        APInt IntVal(IntBitWidth, 2, x);
155
156        unsigned IntegerReg =
157          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
158        if (IntegerReg != 0)
159          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
160                           IntegerReg, /*Kill=*/false);
161      }
162    }
163  } else if (const Operator *Op = dyn_cast<Operator>(V)) {
164    if (!SelectOperator(Op, Op->getOpcode())) return 0;
165    Reg = lookUpRegForValue(Op);
166  } else if (isa<UndefValue>(V)) {
167    Reg = createResultReg(TLI.getRegClassFor(VT));
168    BuildMI(MBB, DL, TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
169  }
170
171  // If target-independent code couldn't handle the value, give target-specific
172  // code a try.
173  if (!Reg && isa<Constant>(V))
174    Reg = TargetMaterializeConstant(cast<Constant>(V));
175
176  // Don't cache constant materializations in the general ValueMap.
177  // To do so would require tracking what uses they dominate.
178  if (Reg != 0)
179    LocalValueMap[V] = Reg;
180  return Reg;
181}
182
183unsigned FastISel::lookUpRegForValue(const Value *V) {
184  // Look up the value to see if we already have a register for it. We
185  // cache values defined by Instructions across blocks, and other values
186  // only locally. This is because Instructions already have the SSA
187  // def-dominates-use requirement enforced.
188  DenseMap<const Value *, unsigned>::iterator I = ValueMap.find(V);
189  if (I != ValueMap.end())
190    return I->second;
191  return LocalValueMap[V];
192}
193
194/// UpdateValueMap - Update the value map to include the new mapping for this
195/// instruction, or insert an extra copy to get the result in a previous
196/// determined register.
197/// NOTE: This is only necessary because we might select a block that uses
198/// a value before we select the block that defines the value.  It might be
199/// possible to fix this by selecting blocks in reverse postorder.
200unsigned FastISel::UpdateValueMap(const Value *I, unsigned Reg) {
201  if (!isa<Instruction>(I)) {
202    LocalValueMap[I] = Reg;
203    return Reg;
204  }
205
206  unsigned &AssignedReg = ValueMap[I];
207  if (AssignedReg == 0)
208    AssignedReg = Reg;
209  else if (Reg != AssignedReg) {
210    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
211    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
212                     Reg, RegClass, RegClass, DL);
213  }
214  return AssignedReg;
215}
216
217std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
218  unsigned IdxN = getRegForValue(Idx);
219  if (IdxN == 0)
220    // Unhandled operand. Halt "fast" selection and bail.
221    return std::pair<unsigned, bool>(0, false);
222
223  bool IdxNIsKill = hasTrivialKill(Idx);
224
225  // If the index is smaller or larger than intptr_t, truncate or extend it.
226  MVT PtrVT = TLI.getPointerTy();
227  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
228  if (IdxVT.bitsLT(PtrVT)) {
229    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
230                      IdxN, IdxNIsKill);
231    IdxNIsKill = true;
232  }
233  else if (IdxVT.bitsGT(PtrVT)) {
234    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
235                      IdxN, IdxNIsKill);
236    IdxNIsKill = true;
237  }
238  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
239}
240
241/// SelectBinaryOp - Select and emit code for a binary operator instruction,
242/// which has an opcode which directly corresponds to the given ISD opcode.
243///
244bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
245  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
246  if (VT == MVT::Other || !VT.isSimple())
247    // Unhandled type. Halt "fast" selection and bail.
248    return false;
249
250  // We only handle legal types. For example, on x86-32 the instruction
251  // selector contains all of the 64-bit instructions from x86-64,
252  // under the assumption that i64 won't be used if the target doesn't
253  // support it.
254  if (!TLI.isTypeLegal(VT)) {
255    // MVT::i1 is special. Allow AND, OR, or XOR because they
256    // don't require additional zeroing, which makes them easy.
257    if (VT == MVT::i1 &&
258        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
259         ISDOpcode == ISD::XOR))
260      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
261    else
262      return false;
263  }
264
265  unsigned Op0 = getRegForValue(I->getOperand(0));
266  if (Op0 == 0)
267    // Unhandled operand. Halt "fast" selection and bail.
268    return false;
269
270  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
271
272  // Check if the second operand is a constant and handle it appropriately.
273  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
274    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
275                                     ISDOpcode, Op0, Op0IsKill,
276                                     CI->getZExtValue());
277    if (ResultReg != 0) {
278      // We successfully emitted code for the given LLVM Instruction.
279      UpdateValueMap(I, ResultReg);
280      return true;
281    }
282  }
283
284  // Check if the second operand is a constant float.
285  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
286    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
287                                     ISDOpcode, Op0, Op0IsKill, CF);
288    if (ResultReg != 0) {
289      // We successfully emitted code for the given LLVM Instruction.
290      UpdateValueMap(I, ResultReg);
291      return true;
292    }
293  }
294
295  unsigned Op1 = getRegForValue(I->getOperand(1));
296  if (Op1 == 0)
297    // Unhandled operand. Halt "fast" selection and bail.
298    return false;
299
300  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
301
302  // Now we have both operands in registers. Emit the instruction.
303  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
304                                   ISDOpcode,
305                                   Op0, Op0IsKill,
306                                   Op1, Op1IsKill);
307  if (ResultReg == 0)
308    // Target-specific code wasn't able to find a machine opcode for
309    // the given ISD opcode and type. Halt "fast" selection and bail.
310    return false;
311
312  // We successfully emitted code for the given LLVM Instruction.
313  UpdateValueMap(I, ResultReg);
314  return true;
315}
316
317bool FastISel::SelectGetElementPtr(const User *I) {
318  unsigned N = getRegForValue(I->getOperand(0));
319  if (N == 0)
320    // Unhandled operand. Halt "fast" selection and bail.
321    return false;
322
323  bool NIsKill = hasTrivialKill(I->getOperand(0));
324
325  const Type *Ty = I->getOperand(0)->getType();
326  MVT VT = TLI.getPointerTy();
327  for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
328       E = I->op_end(); OI != E; ++OI) {
329    const Value *Idx = *OI;
330    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
331      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
332      if (Field) {
333        // N = N + Offset
334        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
335        // FIXME: This can be optimized by combining the add with a
336        // subsequent one.
337        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
338        if (N == 0)
339          // Unhandled operand. Halt "fast" selection and bail.
340          return false;
341        NIsKill = true;
342      }
343      Ty = StTy->getElementType(Field);
344    } else {
345      Ty = cast<SequentialType>(Ty)->getElementType();
346
347      // If this is a constant subscript, handle it quickly.
348      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
349        if (CI->isZero()) continue;
350        uint64_t Offs =
351          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
352        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
353        if (N == 0)
354          // Unhandled operand. Halt "fast" selection and bail.
355          return false;
356        NIsKill = true;
357        continue;
358      }
359
360      // N = N + Idx * ElementSize;
361      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
362      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
363      unsigned IdxN = Pair.first;
364      bool IdxNIsKill = Pair.second;
365      if (IdxN == 0)
366        // Unhandled operand. Halt "fast" selection and bail.
367        return false;
368
369      if (ElementSize != 1) {
370        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
371        if (IdxN == 0)
372          // Unhandled operand. Halt "fast" selection and bail.
373          return false;
374        IdxNIsKill = true;
375      }
376      N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
377      if (N == 0)
378        // Unhandled operand. Halt "fast" selection and bail.
379        return false;
380    }
381  }
382
383  // We successfully emitted code for the given LLVM Instruction.
384  UpdateValueMap(I, N);
385  return true;
386}
387
388bool FastISel::SelectCall(const User *I) {
389  const Function *F = cast<CallInst>(I)->getCalledFunction();
390  if (!F) return false;
391
392  // Handle selected intrinsic function calls.
393  unsigned IID = F->getIntrinsicID();
394  switch (IID) {
395  default: break;
396  case Intrinsic::dbg_declare: {
397    const DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
398    if (!DIVariable(DI->getVariable()).Verify() ||
399        !MF.getMMI().hasDebugInfo())
400      return true;
401
402    const Value *Address = DI->getAddress();
403    if (!Address)
404      return true;
405    if (isa<UndefValue>(Address))
406      return true;
407    const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
408    // Don't handle byval struct arguments or VLAs, for example.
409    // Note that if we have a byval struct argument, fast ISel is turned off;
410    // those are handled in SelectionDAGBuilder.
411    if (AI) {
412      DenseMap<const AllocaInst*, int>::iterator SI =
413        StaticAllocaMap.find(AI);
414      if (SI == StaticAllocaMap.end()) break; // VLAs.
415      int FI = SI->second;
416      if (!DI->getDebugLoc().isUnknown())
417        MF.getMMI().setVariableDbgInfo(DI->getVariable(), FI, DI->getDebugLoc());
418    } else
419      // Building the map above is target independent.  Generating DBG_VALUE
420      // inline is target dependent; do this now.
421      (void)TargetSelectInstruction(cast<Instruction>(I));
422    return true;
423  }
424  case Intrinsic::dbg_value: {
425    // This form of DBG_VALUE is target-independent.
426    const DbgValueInst *DI = cast<DbgValueInst>(I);
427    const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
428    const Value *V = DI->getValue();
429    if (!V) {
430      // Currently the optimizer can produce this; insert an undef to
431      // help debugging.  Probably the optimizer should not do this.
432      BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()).
433                                     addMetadata(DI->getVariable());
434    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
435      BuildMI(MBB, DL, II).addImm(CI->getZExtValue()).addImm(DI->getOffset()).
436                                     addMetadata(DI->getVariable());
437    } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
438      BuildMI(MBB, DL, II).addFPImm(CF).addImm(DI->getOffset()).
439                                     addMetadata(DI->getVariable());
440    } else if (unsigned Reg = lookUpRegForValue(V)) {
441      BuildMI(MBB, DL, II).addReg(Reg, RegState::Debug).addImm(DI->getOffset()).
442                                     addMetadata(DI->getVariable());
443    } else {
444      // We can't yet handle anything else here because it would require
445      // generating code, thus altering codegen because of debug info.
446      // Insert an undef so we can see what we dropped.
447      BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()).
448                                     addMetadata(DI->getVariable());
449    }
450    return true;
451  }
452  case Intrinsic::eh_exception: {
453    EVT VT = TLI.getValueType(I->getType());
454    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
455    default: break;
456    case TargetLowering::Expand: {
457      assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
458      unsigned Reg = TLI.getExceptionAddressRegister();
459      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
460      unsigned ResultReg = createResultReg(RC);
461      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
462                                           Reg, RC, RC, DL);
463      assert(InsertedCopy && "Can't copy address registers!");
464      InsertedCopy = InsertedCopy;
465      UpdateValueMap(I, ResultReg);
466      return true;
467    }
468    }
469    break;
470  }
471  case Intrinsic::eh_selector: {
472    EVT VT = TLI.getValueType(I->getType());
473    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
474    default: break;
475    case TargetLowering::Expand: {
476      if (MBB->isLandingPad())
477        AddCatchInfo(*cast<CallInst>(I), &MF.getMMI(), MBB);
478      else {
479#ifndef NDEBUG
480        CatchInfoLost.insert(cast<CallInst>(I));
481#endif
482        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
483        unsigned Reg = TLI.getExceptionSelectorRegister();
484        if (Reg) MBB->addLiveIn(Reg);
485      }
486
487      unsigned Reg = TLI.getExceptionSelectorRegister();
488      EVT SrcVT = TLI.getPointerTy();
489      const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
490      unsigned ResultReg = createResultReg(RC);
491      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Reg,
492                                           RC, RC, DL);
493      assert(InsertedCopy && "Can't copy address registers!");
494      InsertedCopy = InsertedCopy;
495
496      bool ResultRegIsKill = hasTrivialKill(I);
497
498      // Cast the register to the type of the selector.
499      if (SrcVT.bitsGT(MVT::i32))
500        ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
501                               ResultReg, ResultRegIsKill);
502      else if (SrcVT.bitsLT(MVT::i32))
503        ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
504                               ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill);
505      if (ResultReg == 0)
506        // Unhandled operand. Halt "fast" selection and bail.
507        return false;
508
509      UpdateValueMap(I, ResultReg);
510
511      return true;
512    }
513    }
514    break;
515  }
516  }
517
518  // An arbitrary call. Bail.
519  return false;
520}
521
522bool FastISel::SelectCast(const User *I, unsigned Opcode) {
523  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
524  EVT DstVT = TLI.getValueType(I->getType());
525
526  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
527      DstVT == MVT::Other || !DstVT.isSimple())
528    // Unhandled type. Halt "fast" selection and bail.
529    return false;
530
531  // Check if the destination type is legal. Or as a special case,
532  // it may be i1 if we're doing a truncate because that's
533  // easy and somewhat common.
534  if (!TLI.isTypeLegal(DstVT))
535    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
536      // Unhandled type. Halt "fast" selection and bail.
537      return false;
538
539  // Check if the source operand is legal. Or as a special case,
540  // it may be i1 if we're doing zero-extension because that's
541  // easy and somewhat common.
542  if (!TLI.isTypeLegal(SrcVT))
543    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
544      // Unhandled type. Halt "fast" selection and bail.
545      return false;
546
547  unsigned InputReg = getRegForValue(I->getOperand(0));
548  if (!InputReg)
549    // Unhandled operand.  Halt "fast" selection and bail.
550    return false;
551
552  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
553
554  // If the operand is i1, arrange for the high bits in the register to be zero.
555  if (SrcVT == MVT::i1) {
556   SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
557   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg, InputRegIsKill);
558   if (!InputReg)
559     return false;
560   InputRegIsKill = true;
561  }
562  // If the result is i1, truncate to the target's type for i1 first.
563  if (DstVT == MVT::i1)
564    DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
565
566  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
567                                  DstVT.getSimpleVT(),
568                                  Opcode,
569                                  InputReg, InputRegIsKill);
570  if (!ResultReg)
571    return false;
572
573  UpdateValueMap(I, ResultReg);
574  return true;
575}
576
577bool FastISel::SelectBitCast(const User *I) {
578  // If the bitcast doesn't change the type, just use the operand value.
579  if (I->getType() == I->getOperand(0)->getType()) {
580    unsigned Reg = getRegForValue(I->getOperand(0));
581    if (Reg == 0)
582      return false;
583    UpdateValueMap(I, Reg);
584    return true;
585  }
586
587  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
588  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
589  EVT DstVT = TLI.getValueType(I->getType());
590
591  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
592      DstVT == MVT::Other || !DstVT.isSimple() ||
593      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
594    // Unhandled type. Halt "fast" selection and bail.
595    return false;
596
597  unsigned Op0 = getRegForValue(I->getOperand(0));
598  if (Op0 == 0)
599    // Unhandled operand. Halt "fast" selection and bail.
600    return false;
601
602  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
603
604  // First, try to perform the bitcast by inserting a reg-reg copy.
605  unsigned ResultReg = 0;
606  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
607    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
608    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
609    ResultReg = createResultReg(DstClass);
610
611    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
612                                         Op0, DstClass, SrcClass, DL);
613    if (!InsertedCopy)
614      ResultReg = 0;
615  }
616
617  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
618  if (!ResultReg)
619    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
620                           ISD::BIT_CONVERT, Op0, Op0IsKill);
621
622  if (!ResultReg)
623    return false;
624
625  UpdateValueMap(I, ResultReg);
626  return true;
627}
628
629bool
630FastISel::SelectInstruction(const Instruction *I) {
631  // Just before the terminator instruction, insert instructions to
632  // feed PHI nodes in successor blocks.
633  if (isa<TerminatorInst>(I))
634    if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
635      return false;
636
637  DL = I->getDebugLoc();
638
639  // First, try doing target-independent selection.
640  if (SelectOperator(I, I->getOpcode())) {
641    DL = DebugLoc();
642    return true;
643  }
644
645  // Next, try calling the target to attempt to handle the instruction.
646  if (TargetSelectInstruction(I)) {
647    DL = DebugLoc();
648    return true;
649  }
650
651  DL = DebugLoc();
652  return false;
653}
654
655/// FastEmitBranch - Emit an unconditional branch to the given block,
656/// unless it is the immediate (fall-through) successor, and update
657/// the CFG.
658void
659FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
660  if (MBB->isLayoutSuccessor(MSucc)) {
661    // The unconditional fall-through case, which needs no instructions.
662  } else {
663    // The unconditional branch case.
664    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>(), DL);
665  }
666  MBB->addSuccessor(MSucc);
667}
668
669/// SelectFNeg - Emit an FNeg operation.
670///
671bool
672FastISel::SelectFNeg(const User *I) {
673  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
674  if (OpReg == 0) return false;
675
676  bool OpRegIsKill = hasTrivialKill(I);
677
678  // If the target has ISD::FNEG, use it.
679  EVT VT = TLI.getValueType(I->getType());
680  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
681                                  ISD::FNEG, OpReg, OpRegIsKill);
682  if (ResultReg != 0) {
683    UpdateValueMap(I, ResultReg);
684    return true;
685  }
686
687  // Bitcast the value to integer, twiddle the sign bit with xor,
688  // and then bitcast it back to floating-point.
689  if (VT.getSizeInBits() > 64) return false;
690  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
691  if (!TLI.isTypeLegal(IntVT))
692    return false;
693
694  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
695                               ISD::BIT_CONVERT, OpReg, OpRegIsKill);
696  if (IntReg == 0)
697    return false;
698
699  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
700                                       IntReg, /*Kill=*/true,
701                                       UINT64_C(1) << (VT.getSizeInBits()-1),
702                                       IntVT.getSimpleVT());
703  if (IntResultReg == 0)
704    return false;
705
706  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
707                         ISD::BIT_CONVERT, IntResultReg, /*Kill=*/true);
708  if (ResultReg == 0)
709    return false;
710
711  UpdateValueMap(I, ResultReg);
712  return true;
713}
714
715bool
716FastISel::SelectOperator(const User *I, unsigned Opcode) {
717  switch (Opcode) {
718  case Instruction::Add:
719    return SelectBinaryOp(I, ISD::ADD);
720  case Instruction::FAdd:
721    return SelectBinaryOp(I, ISD::FADD);
722  case Instruction::Sub:
723    return SelectBinaryOp(I, ISD::SUB);
724  case Instruction::FSub:
725    // FNeg is currently represented in LLVM IR as a special case of FSub.
726    if (BinaryOperator::isFNeg(I))
727      return SelectFNeg(I);
728    return SelectBinaryOp(I, ISD::FSUB);
729  case Instruction::Mul:
730    return SelectBinaryOp(I, ISD::MUL);
731  case Instruction::FMul:
732    return SelectBinaryOp(I, ISD::FMUL);
733  case Instruction::SDiv:
734    return SelectBinaryOp(I, ISD::SDIV);
735  case Instruction::UDiv:
736    return SelectBinaryOp(I, ISD::UDIV);
737  case Instruction::FDiv:
738    return SelectBinaryOp(I, ISD::FDIV);
739  case Instruction::SRem:
740    return SelectBinaryOp(I, ISD::SREM);
741  case Instruction::URem:
742    return SelectBinaryOp(I, ISD::UREM);
743  case Instruction::FRem:
744    return SelectBinaryOp(I, ISD::FREM);
745  case Instruction::Shl:
746    return SelectBinaryOp(I, ISD::SHL);
747  case Instruction::LShr:
748    return SelectBinaryOp(I, ISD::SRL);
749  case Instruction::AShr:
750    return SelectBinaryOp(I, ISD::SRA);
751  case Instruction::And:
752    return SelectBinaryOp(I, ISD::AND);
753  case Instruction::Or:
754    return SelectBinaryOp(I, ISD::OR);
755  case Instruction::Xor:
756    return SelectBinaryOp(I, ISD::XOR);
757
758  case Instruction::GetElementPtr:
759    return SelectGetElementPtr(I);
760
761  case Instruction::Br: {
762    const BranchInst *BI = cast<BranchInst>(I);
763
764    if (BI->isUnconditional()) {
765      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
766      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
767      FastEmitBranch(MSucc, BI->getDebugLoc());
768      return true;
769    }
770
771    // Conditional branches are not handed yet.
772    // Halt "fast" selection and bail.
773    return false;
774  }
775
776  case Instruction::Unreachable:
777    // Nothing to emit.
778    return true;
779
780  case Instruction::Alloca:
781    // FunctionLowering has the static-sized case covered.
782    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
783      return true;
784
785    // Dynamic-sized alloca is not handled yet.
786    return false;
787
788  case Instruction::Call:
789    return SelectCall(I);
790
791  case Instruction::BitCast:
792    return SelectBitCast(I);
793
794  case Instruction::FPToSI:
795    return SelectCast(I, ISD::FP_TO_SINT);
796  case Instruction::ZExt:
797    return SelectCast(I, ISD::ZERO_EXTEND);
798  case Instruction::SExt:
799    return SelectCast(I, ISD::SIGN_EXTEND);
800  case Instruction::Trunc:
801    return SelectCast(I, ISD::TRUNCATE);
802  case Instruction::SIToFP:
803    return SelectCast(I, ISD::SINT_TO_FP);
804
805  case Instruction::IntToPtr: // Deliberate fall-through.
806  case Instruction::PtrToInt: {
807    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
808    EVT DstVT = TLI.getValueType(I->getType());
809    if (DstVT.bitsGT(SrcVT))
810      return SelectCast(I, ISD::ZERO_EXTEND);
811    if (DstVT.bitsLT(SrcVT))
812      return SelectCast(I, ISD::TRUNCATE);
813    unsigned Reg = getRegForValue(I->getOperand(0));
814    if (Reg == 0) return false;
815    UpdateValueMap(I, Reg);
816    return true;
817  }
818
819  case Instruction::PHI:
820    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
821
822  default:
823    // Unhandled instruction. Halt "fast" selection and bail.
824    return false;
825  }
826}
827
828FastISel::FastISel(MachineFunction &mf,
829                   DenseMap<const Value *, unsigned> &vm,
830                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
831                   DenseMap<const AllocaInst *, int> &am,
832                   std::vector<std::pair<MachineInstr*, unsigned> > &pn
833#ifndef NDEBUG
834                   , SmallSet<const Instruction *, 8> &cil
835#endif
836                   )
837  : MBB(0),
838    ValueMap(vm),
839    MBBMap(bm),
840    StaticAllocaMap(am),
841    PHINodesToUpdate(pn),
842#ifndef NDEBUG
843    CatchInfoLost(cil),
844#endif
845    MF(mf),
846    MRI(MF.getRegInfo()),
847    MFI(*MF.getFrameInfo()),
848    MCP(*MF.getConstantPool()),
849    TM(MF.getTarget()),
850    TD(*TM.getTargetData()),
851    TII(*TM.getInstrInfo()),
852    TLI(*TM.getTargetLowering()),
853    TRI(*TM.getRegisterInfo()),
854    IsBottomUp(false) {
855}
856
857FastISel::~FastISel() {}
858
859unsigned FastISel::FastEmit_(MVT, MVT,
860                             unsigned) {
861  return 0;
862}
863
864unsigned FastISel::FastEmit_r(MVT, MVT,
865                              unsigned,
866                              unsigned /*Op0*/, bool /*Op0IsKill*/) {
867  return 0;
868}
869
870unsigned FastISel::FastEmit_rr(MVT, MVT,
871                               unsigned,
872                               unsigned /*Op0*/, bool /*Op0IsKill*/,
873                               unsigned /*Op1*/, bool /*Op1IsKill*/) {
874  return 0;
875}
876
877unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
878  return 0;
879}
880
881unsigned FastISel::FastEmit_f(MVT, MVT,
882                              unsigned, const ConstantFP * /*FPImm*/) {
883  return 0;
884}
885
886unsigned FastISel::FastEmit_ri(MVT, MVT,
887                               unsigned,
888                               unsigned /*Op0*/, bool /*Op0IsKill*/,
889                               uint64_t /*Imm*/) {
890  return 0;
891}
892
893unsigned FastISel::FastEmit_rf(MVT, MVT,
894                               unsigned,
895                               unsigned /*Op0*/, bool /*Op0IsKill*/,
896                               const ConstantFP * /*FPImm*/) {
897  return 0;
898}
899
900unsigned FastISel::FastEmit_rri(MVT, MVT,
901                                unsigned,
902                                unsigned /*Op0*/, bool /*Op0IsKill*/,
903                                unsigned /*Op1*/, bool /*Op1IsKill*/,
904                                uint64_t /*Imm*/) {
905  return 0;
906}
907
908/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
909/// to emit an instruction with an immediate operand using FastEmit_ri.
910/// If that fails, it materializes the immediate into a register and try
911/// FastEmit_rr instead.
912unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
913                                unsigned Op0, bool Op0IsKill,
914                                uint64_t Imm, MVT ImmType) {
915  // First check if immediate type is legal. If not, we can't use the ri form.
916  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
917  if (ResultReg != 0)
918    return ResultReg;
919  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
920  if (MaterialReg == 0)
921    return 0;
922  return FastEmit_rr(VT, VT, Opcode,
923                     Op0, Op0IsKill,
924                     MaterialReg, /*Kill=*/true);
925}
926
927/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
928/// to emit an instruction with a floating-point immediate operand using
929/// FastEmit_rf. If that fails, it materializes the immediate into a register
930/// and try FastEmit_rr instead.
931unsigned FastISel::FastEmit_rf_(MVT VT, unsigned Opcode,
932                                unsigned Op0, bool Op0IsKill,
933                                const ConstantFP *FPImm, MVT ImmType) {
934  // First check if immediate type is legal. If not, we can't use the rf form.
935  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, Op0IsKill, FPImm);
936  if (ResultReg != 0)
937    return ResultReg;
938
939  // Materialize the constant in a register.
940  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
941  if (MaterialReg == 0) {
942    // If the target doesn't have a way to directly enter a floating-point
943    // value into a register, use an alternate approach.
944    // TODO: The current approach only supports floating-point constants
945    // that can be constructed by conversion from integer values. This should
946    // be replaced by code that creates a load from a constant-pool entry,
947    // which will require some target-specific work.
948    const APFloat &Flt = FPImm->getValueAPF();
949    EVT IntVT = TLI.getPointerTy();
950
951    uint64_t x[2];
952    uint32_t IntBitWidth = IntVT.getSizeInBits();
953    bool isExact;
954    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
955                             APFloat::rmTowardZero, &isExact);
956    if (!isExact)
957      return 0;
958    APInt IntVal(IntBitWidth, 2, x);
959
960    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
961                                     ISD::Constant, IntVal.getZExtValue());
962    if (IntegerReg == 0)
963      return 0;
964    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
965                             ISD::SINT_TO_FP, IntegerReg, /*Kill=*/true);
966    if (MaterialReg == 0)
967      return 0;
968  }
969  return FastEmit_rr(VT, VT, Opcode,
970                     Op0, Op0IsKill,
971                     MaterialReg, /*Kill=*/true);
972}
973
974unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
975  return MRI.createVirtualRegister(RC);
976}
977
978unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
979                                 const TargetRegisterClass* RC) {
980  unsigned ResultReg = createResultReg(RC);
981  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
982
983  BuildMI(MBB, DL, II, ResultReg);
984  return ResultReg;
985}
986
987unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
988                                  const TargetRegisterClass *RC,
989                                  unsigned Op0, bool Op0IsKill) {
990  unsigned ResultReg = createResultReg(RC);
991  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
992
993  if (II.getNumDefs() >= 1)
994    BuildMI(MBB, DL, II, ResultReg).addReg(Op0, Op0IsKill * RegState::Kill);
995  else {
996    BuildMI(MBB, DL, II).addReg(Op0, Op0IsKill * RegState::Kill);
997    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
998                                         II.ImplicitDefs[0], RC, RC, DL);
999    if (!InsertedCopy)
1000      ResultReg = 0;
1001  }
1002
1003  return ResultReg;
1004}
1005
1006unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1007                                   const TargetRegisterClass *RC,
1008                                   unsigned Op0, bool Op0IsKill,
1009                                   unsigned Op1, bool Op1IsKill) {
1010  unsigned ResultReg = createResultReg(RC);
1011  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1012
1013  if (II.getNumDefs() >= 1)
1014    BuildMI(MBB, DL, II, ResultReg)
1015      .addReg(Op0, Op0IsKill * RegState::Kill)
1016      .addReg(Op1, Op1IsKill * RegState::Kill);
1017  else {
1018    BuildMI(MBB, DL, II)
1019      .addReg(Op0, Op0IsKill * RegState::Kill)
1020      .addReg(Op1, Op1IsKill * RegState::Kill);
1021    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1022                                         II.ImplicitDefs[0], RC, RC, DL);
1023    if (!InsertedCopy)
1024      ResultReg = 0;
1025  }
1026  return ResultReg;
1027}
1028
1029unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1030                                   const TargetRegisterClass *RC,
1031                                   unsigned Op0, bool Op0IsKill,
1032                                   uint64_t Imm) {
1033  unsigned ResultReg = createResultReg(RC);
1034  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1035
1036  if (II.getNumDefs() >= 1)
1037    BuildMI(MBB, DL, II, ResultReg)
1038      .addReg(Op0, Op0IsKill * RegState::Kill)
1039      .addImm(Imm);
1040  else {
1041    BuildMI(MBB, DL, II)
1042      .addReg(Op0, Op0IsKill * RegState::Kill)
1043      .addImm(Imm);
1044    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1045                                         II.ImplicitDefs[0], RC, RC, DL);
1046    if (!InsertedCopy)
1047      ResultReg = 0;
1048  }
1049  return ResultReg;
1050}
1051
1052unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1053                                   const TargetRegisterClass *RC,
1054                                   unsigned Op0, bool Op0IsKill,
1055                                   const ConstantFP *FPImm) {
1056  unsigned ResultReg = createResultReg(RC);
1057  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1058
1059  if (II.getNumDefs() >= 1)
1060    BuildMI(MBB, DL, II, ResultReg)
1061      .addReg(Op0, Op0IsKill * RegState::Kill)
1062      .addFPImm(FPImm);
1063  else {
1064    BuildMI(MBB, DL, II)
1065      .addReg(Op0, Op0IsKill * RegState::Kill)
1066      .addFPImm(FPImm);
1067    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1068                                         II.ImplicitDefs[0], RC, RC, DL);
1069    if (!InsertedCopy)
1070      ResultReg = 0;
1071  }
1072  return ResultReg;
1073}
1074
1075unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1076                                    const TargetRegisterClass *RC,
1077                                    unsigned Op0, bool Op0IsKill,
1078                                    unsigned Op1, bool Op1IsKill,
1079                                    uint64_t Imm) {
1080  unsigned ResultReg = createResultReg(RC);
1081  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1082
1083  if (II.getNumDefs() >= 1)
1084    BuildMI(MBB, DL, II, ResultReg)
1085      .addReg(Op0, Op0IsKill * RegState::Kill)
1086      .addReg(Op1, Op1IsKill * RegState::Kill)
1087      .addImm(Imm);
1088  else {
1089    BuildMI(MBB, DL, II)
1090      .addReg(Op0, Op0IsKill * RegState::Kill)
1091      .addReg(Op1, Op1IsKill * RegState::Kill)
1092      .addImm(Imm);
1093    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1094                                         II.ImplicitDefs[0], RC, RC, DL);
1095    if (!InsertedCopy)
1096      ResultReg = 0;
1097  }
1098  return ResultReg;
1099}
1100
1101unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1102                                  const TargetRegisterClass *RC,
1103                                  uint64_t Imm) {
1104  unsigned ResultReg = createResultReg(RC);
1105  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1106
1107  if (II.getNumDefs() >= 1)
1108    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
1109  else {
1110    BuildMI(MBB, DL, II).addImm(Imm);
1111    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1112                                         II.ImplicitDefs[0], RC, RC, DL);
1113    if (!InsertedCopy)
1114      ResultReg = 0;
1115  }
1116  return ResultReg;
1117}
1118
1119unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1120                                              unsigned Op0, bool Op0IsKill,
1121                                              uint32_t Idx) {
1122  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
1123
1124  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1125  const TargetInstrDesc &II = TII.get(TargetOpcode::EXTRACT_SUBREG);
1126
1127  if (II.getNumDefs() >= 1)
1128    BuildMI(MBB, DL, II, ResultReg)
1129      .addReg(Op0, Op0IsKill * RegState::Kill)
1130      .addImm(Idx);
1131  else {
1132    BuildMI(MBB, DL, II)
1133      .addReg(Op0, Op0IsKill * RegState::Kill)
1134      .addImm(Idx);
1135    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1136                                         II.ImplicitDefs[0], RC, RC, DL);
1137    if (!InsertedCopy)
1138      ResultReg = 0;
1139  }
1140  return ResultReg;
1141}
1142
1143/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1144/// with all but the least significant bit set to zero.
1145unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1146  return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1147}
1148
1149/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1150/// Emit code to ensure constants are copied into registers when needed.
1151/// Remember the virtual registers that need to be added to the Machine PHI
1152/// nodes as input.  We cannot just directly add them, because expansion
1153/// might result in multiple MBB's for one BB.  As such, the start of the
1154/// BB might correspond to a different MBB than the end.
1155bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1156  const TerminatorInst *TI = LLVMBB->getTerminator();
1157
1158  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1159  unsigned OrigNumPHINodesToUpdate = PHINodesToUpdate.size();
1160
1161  // Check successor nodes' PHI nodes that expect a constant to be available
1162  // from this block.
1163  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1164    const BasicBlock *SuccBB = TI->getSuccessor(succ);
1165    if (!isa<PHINode>(SuccBB->begin())) continue;
1166    MachineBasicBlock *SuccMBB = MBBMap[SuccBB];
1167
1168    // If this terminator has multiple identical successors (common for
1169    // switches), only handle each succ once.
1170    if (!SuccsHandled.insert(SuccMBB)) continue;
1171
1172    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1173
1174    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1175    // nodes and Machine PHI nodes, but the incoming operands have not been
1176    // emitted yet.
1177    for (BasicBlock::const_iterator I = SuccBB->begin();
1178         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1179
1180      // Ignore dead phi's.
1181      if (PN->use_empty()) continue;
1182
1183      // Only handle legal types. Two interesting things to note here. First,
1184      // by bailing out early, we may leave behind some dead instructions,
1185      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1186      // own moves. Second, this check is necessary becuase FastISel doesn't
1187      // use CreateRegForValue to create registers, so it always creates
1188      // exactly one register for each non-void instruction.
1189      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1190      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1191        // Promote MVT::i1.
1192        if (VT == MVT::i1)
1193          VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1194        else {
1195          PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1196          return false;
1197        }
1198      }
1199
1200      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1201
1202      // Set the DebugLoc for the copy. Prefer the location of the operand
1203      // if there is one; use the location of the PHI otherwise.
1204      DL = PN->getDebugLoc();
1205      if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1206        DL = Inst->getDebugLoc();
1207
1208      unsigned Reg = getRegForValue(PHIOp);
1209      if (Reg == 0) {
1210        PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1211        return false;
1212      }
1213      PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1214      DL = DebugLoc();
1215    }
1216  }
1217
1218  return true;
1219}
1220