FastISel.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#define DEBUG_TYPE "isel"
43#include "llvm/CodeGen/FastISel.h"
44#include "llvm/ADT/Optional.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/Analysis/Loads.h"
47#include "llvm/CodeGen/Analysis.h"
48#include "llvm/CodeGen/FunctionLoweringInfo.h"
49#include "llvm/CodeGen/MachineInstrBuilder.h"
50#include "llvm/CodeGen/MachineModuleInfo.h"
51#include "llvm/CodeGen/MachineRegisterInfo.h"
52#include "llvm/IR/DataLayout.h"
53#include "llvm/IR/DebugInfo.h"
54#include "llvm/IR/Function.h"
55#include "llvm/IR/GlobalVariable.h"
56#include "llvm/IR/Instructions.h"
57#include "llvm/IR/IntrinsicInst.h"
58#include "llvm/IR/Operator.h"
59#include "llvm/Support/Debug.h"
60#include "llvm/Support/ErrorHandling.h"
61#include "llvm/Target/TargetInstrInfo.h"
62#include "llvm/Target/TargetLibraryInfo.h"
63#include "llvm/Target/TargetLowering.h"
64#include "llvm/Target/TargetMachine.h"
65using namespace llvm;
66
67STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
68          "target-independent selector");
69STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
70          "target-specific selector");
71STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
72
73/// startNewBlock - Set the current block to which generated machine
74/// instructions will be appended, and clear the local CSE map.
75///
76void FastISel::startNewBlock() {
77  LocalValueMap.clear();
78
79  // Instructions are appended to FuncInfo.MBB. If the basic block already
80  // contains labels or copies, use the last instruction as the last local
81  // value.
82  EmitStartPt = 0;
83  if (!FuncInfo.MBB->empty())
84    EmitStartPt = &FuncInfo.MBB->back();
85  LastLocalValue = EmitStartPt;
86}
87
88bool FastISel::LowerArguments() {
89  if (!FuncInfo.CanLowerReturn)
90    // Fallback to SDISel argument lowering code to deal with sret pointer
91    // parameter.
92    return false;
93
94  if (!FastLowerArguments())
95    return false;
96
97  // Enter arguments into ValueMap for uses in non-entry BBs.
98  for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(),
99         E = FuncInfo.Fn->arg_end(); I != E; ++I) {
100    DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I);
101    assert(VI != LocalValueMap.end() && "Missed an argument?");
102    FuncInfo.ValueMap[I] = VI->second;
103  }
104  return true;
105}
106
107void FastISel::flushLocalValueMap() {
108  LocalValueMap.clear();
109  LastLocalValue = EmitStartPt;
110  recomputeInsertPt();
111}
112
113bool FastISel::hasTrivialKill(const Value *V) const {
114  // Don't consider constants or arguments to have trivial kills.
115  const Instruction *I = dyn_cast<Instruction>(V);
116  if (!I)
117    return false;
118
119  // No-op casts are trivially coalesced by fast-isel.
120  if (const CastInst *Cast = dyn_cast<CastInst>(I))
121    if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) &&
122        !hasTrivialKill(Cast->getOperand(0)))
123      return false;
124
125  // GEPs with all zero indices are trivially coalesced by fast-isel.
126  if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
127    if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
128      return false;
129
130  // Only instructions with a single use in the same basic block are considered
131  // to have trivial kills.
132  return I->hasOneUse() &&
133         !(I->getOpcode() == Instruction::BitCast ||
134           I->getOpcode() == Instruction::PtrToInt ||
135           I->getOpcode() == Instruction::IntToPtr) &&
136         cast<Instruction>(*I->user_begin())->getParent() == I->getParent();
137}
138
139unsigned FastISel::getRegForValue(const Value *V) {
140  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
141  // Don't handle non-simple values in FastISel.
142  if (!RealVT.isSimple())
143    return 0;
144
145  // Ignore illegal types. We must do this before looking up the value
146  // in ValueMap because Arguments are given virtual registers regardless
147  // of whether FastISel can handle them.
148  MVT VT = RealVT.getSimpleVT();
149  if (!TLI.isTypeLegal(VT)) {
150    // Handle integer promotions, though, because they're common and easy.
151    if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
152      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
153    else
154      return 0;
155  }
156
157  // Look up the value to see if we already have a register for it.
158  unsigned Reg = lookUpRegForValue(V);
159  if (Reg != 0)
160    return Reg;
161
162  // In bottom-up mode, just create the virtual register which will be used
163  // to hold the value. It will be materialized later.
164  if (isa<Instruction>(V) &&
165      (!isa<AllocaInst>(V) ||
166       !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
167    return FuncInfo.InitializeRegForValue(V);
168
169  SavePoint SaveInsertPt = enterLocalValueArea();
170
171  // Materialize the value in a register. Emit any instructions in the
172  // local value area.
173  Reg = materializeRegForValue(V, VT);
174
175  leaveLocalValueArea(SaveInsertPt);
176
177  return Reg;
178}
179
180/// materializeRegForValue - Helper for getRegForValue. This function is
181/// called when the value isn't already available in a register and must
182/// be materialized with new instructions.
183unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
184  unsigned Reg = 0;
185
186  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
187    if (CI->getValue().getActiveBits() <= 64)
188      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
189  } else if (isa<AllocaInst>(V)) {
190    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
191  } else if (isa<ConstantPointerNull>(V)) {
192    // Translate this as an integer zero so that it can be
193    // local-CSE'd with actual integer zeros.
194    Reg =
195      getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getContext())));
196  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
197    if (CF->isNullValue()) {
198      Reg = TargetMaterializeFloatZero(CF);
199    } else {
200      // Try to emit the constant directly.
201      Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
202    }
203
204    if (!Reg) {
205      // Try to emit the constant by using an integer constant with a cast.
206      const APFloat &Flt = CF->getValueAPF();
207      EVT IntVT = TLI.getPointerTy();
208
209      uint64_t x[2];
210      uint32_t IntBitWidth = IntVT.getSizeInBits();
211      bool isExact;
212      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
213                                  APFloat::rmTowardZero, &isExact);
214      if (isExact) {
215        APInt IntVal(IntBitWidth, x);
216
217        unsigned IntegerReg =
218          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
219        if (IntegerReg != 0)
220          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
221                           IntegerReg, /*Kill=*/false);
222      }
223    }
224  } else if (const Operator *Op = dyn_cast<Operator>(V)) {
225    if (!SelectOperator(Op, Op->getOpcode()))
226      if (!isa<Instruction>(Op) ||
227          !TargetSelectInstruction(cast<Instruction>(Op)))
228        return 0;
229    Reg = lookUpRegForValue(Op);
230  } else if (isa<UndefValue>(V)) {
231    Reg = createResultReg(TLI.getRegClassFor(VT));
232    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
233            TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
234  }
235
236  // If target-independent code couldn't handle the value, give target-specific
237  // code a try.
238  if (!Reg && isa<Constant>(V))
239    Reg = TargetMaterializeConstant(cast<Constant>(V));
240
241  // Don't cache constant materializations in the general ValueMap.
242  // To do so would require tracking what uses they dominate.
243  if (Reg != 0) {
244    LocalValueMap[V] = Reg;
245    LastLocalValue = MRI.getVRegDef(Reg);
246  }
247  return Reg;
248}
249
250unsigned FastISel::lookUpRegForValue(const Value *V) {
251  // Look up the value to see if we already have a register for it. We
252  // cache values defined by Instructions across blocks, and other values
253  // only locally. This is because Instructions already have the SSA
254  // def-dominates-use requirement enforced.
255  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
256  if (I != FuncInfo.ValueMap.end())
257    return I->second;
258  return LocalValueMap[V];
259}
260
261/// UpdateValueMap - Update the value map to include the new mapping for this
262/// instruction, or insert an extra copy to get the result in a previous
263/// determined register.
264/// NOTE: This is only necessary because we might select a block that uses
265/// a value before we select the block that defines the value.  It might be
266/// possible to fix this by selecting blocks in reverse postorder.
267void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
268  if (!isa<Instruction>(I)) {
269    LocalValueMap[I] = Reg;
270    return;
271  }
272
273  unsigned &AssignedReg = FuncInfo.ValueMap[I];
274  if (AssignedReg == 0)
275    // Use the new register.
276    AssignedReg = Reg;
277  else if (Reg != AssignedReg) {
278    // Arrange for uses of AssignedReg to be replaced by uses of Reg.
279    for (unsigned i = 0; i < NumRegs; i++)
280      FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
281
282    AssignedReg = Reg;
283  }
284}
285
286std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
287  unsigned IdxN = getRegForValue(Idx);
288  if (IdxN == 0)
289    // Unhandled operand. Halt "fast" selection and bail.
290    return std::pair<unsigned, bool>(0, false);
291
292  bool IdxNIsKill = hasTrivialKill(Idx);
293
294  // If the index is smaller or larger than intptr_t, truncate or extend it.
295  MVT PtrVT = TLI.getPointerTy();
296  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
297  if (IdxVT.bitsLT(PtrVT)) {
298    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
299                      IdxN, IdxNIsKill);
300    IdxNIsKill = true;
301  }
302  else if (IdxVT.bitsGT(PtrVT)) {
303    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
304                      IdxN, IdxNIsKill);
305    IdxNIsKill = true;
306  }
307  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
308}
309
310void FastISel::recomputeInsertPt() {
311  if (getLastLocalValue()) {
312    FuncInfo.InsertPt = getLastLocalValue();
313    FuncInfo.MBB = FuncInfo.InsertPt->getParent();
314    ++FuncInfo.InsertPt;
315  } else
316    FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
317
318  // Now skip past any EH_LABELs, which must remain at the beginning.
319  while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
320         FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
321    ++FuncInfo.InsertPt;
322}
323
324void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
325                              MachineBasicBlock::iterator E) {
326  assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!");
327  while (I != E) {
328    MachineInstr *Dead = &*I;
329    ++I;
330    Dead->eraseFromParent();
331    ++NumFastIselDead;
332  }
333  recomputeInsertPt();
334}
335
336FastISel::SavePoint FastISel::enterLocalValueArea() {
337  MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
338  DebugLoc OldDL = DbgLoc;
339  recomputeInsertPt();
340  DbgLoc = DebugLoc();
341  SavePoint SP = { OldInsertPt, OldDL };
342  return SP;
343}
344
345void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
346  if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
347    LastLocalValue = std::prev(FuncInfo.InsertPt);
348
349  // Restore the previous insert position.
350  FuncInfo.InsertPt = OldInsertPt.InsertPt;
351  DbgLoc = OldInsertPt.DL;
352}
353
354/// SelectBinaryOp - Select and emit code for a binary operator instruction,
355/// which has an opcode which directly corresponds to the given ISD opcode.
356///
357bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
358  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
359  if (VT == MVT::Other || !VT.isSimple())
360    // Unhandled type. Halt "fast" selection and bail.
361    return false;
362
363  // We only handle legal types. For example, on x86-32 the instruction
364  // selector contains all of the 64-bit instructions from x86-64,
365  // under the assumption that i64 won't be used if the target doesn't
366  // support it.
367  if (!TLI.isTypeLegal(VT)) {
368    // MVT::i1 is special. Allow AND, OR, or XOR because they
369    // don't require additional zeroing, which makes them easy.
370    if (VT == MVT::i1 &&
371        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
372         ISDOpcode == ISD::XOR))
373      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
374    else
375      return false;
376  }
377
378  // Check if the first operand is a constant, and handle it as "ri".  At -O0,
379  // we don't have anything that canonicalizes operand order.
380  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
381    if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
382      unsigned Op1 = getRegForValue(I->getOperand(1));
383      if (Op1 == 0) return false;
384
385      bool Op1IsKill = hasTrivialKill(I->getOperand(1));
386
387      unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
388                                        Op1IsKill, CI->getZExtValue(),
389                                        VT.getSimpleVT());
390      if (ResultReg == 0) return false;
391
392      // We successfully emitted code for the given LLVM Instruction.
393      UpdateValueMap(I, ResultReg);
394      return true;
395    }
396
397
398  unsigned Op0 = getRegForValue(I->getOperand(0));
399  if (Op0 == 0)   // Unhandled operand. Halt "fast" selection and bail.
400    return false;
401
402  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
403
404  // Check if the second operand is a constant and handle it appropriately.
405  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
406    uint64_t Imm = CI->getZExtValue();
407
408    // Transform "sdiv exact X, 8" -> "sra X, 3".
409    if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
410        cast<BinaryOperator>(I)->isExact() &&
411        isPowerOf2_64(Imm)) {
412      Imm = Log2_64(Imm);
413      ISDOpcode = ISD::SRA;
414    }
415
416    // Transform "urem x, pow2" -> "and x, pow2-1".
417    if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
418        isPowerOf2_64(Imm)) {
419      --Imm;
420      ISDOpcode = ISD::AND;
421    }
422
423    unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
424                                      Op0IsKill, Imm, VT.getSimpleVT());
425    if (ResultReg == 0) return false;
426
427    // We successfully emitted code for the given LLVM Instruction.
428    UpdateValueMap(I, ResultReg);
429    return true;
430  }
431
432  // Check if the second operand is a constant float.
433  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
434    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
435                                     ISDOpcode, Op0, Op0IsKill, CF);
436    if (ResultReg != 0) {
437      // We successfully emitted code for the given LLVM Instruction.
438      UpdateValueMap(I, ResultReg);
439      return true;
440    }
441  }
442
443  unsigned Op1 = getRegForValue(I->getOperand(1));
444  if (Op1 == 0)
445    // Unhandled operand. Halt "fast" selection and bail.
446    return false;
447
448  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
449
450  // Now we have both operands in registers. Emit the instruction.
451  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
452                                   ISDOpcode,
453                                   Op0, Op0IsKill,
454                                   Op1, Op1IsKill);
455  if (ResultReg == 0)
456    // Target-specific code wasn't able to find a machine opcode for
457    // the given ISD opcode and type. Halt "fast" selection and bail.
458    return false;
459
460  // We successfully emitted code for the given LLVM Instruction.
461  UpdateValueMap(I, ResultReg);
462  return true;
463}
464
465bool FastISel::SelectGetElementPtr(const User *I) {
466  unsigned N = getRegForValue(I->getOperand(0));
467  if (N == 0)
468    // Unhandled operand. Halt "fast" selection and bail.
469    return false;
470
471  bool NIsKill = hasTrivialKill(I->getOperand(0));
472
473  // Keep a running tab of the total offset to coalesce multiple N = N + Offset
474  // into a single N = N + TotalOffset.
475  uint64_t TotalOffs = 0;
476  // FIXME: What's a good SWAG number for MaxOffs?
477  uint64_t MaxOffs = 2048;
478  Type *Ty = I->getOperand(0)->getType();
479  MVT VT = TLI.getPointerTy();
480  for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
481       E = I->op_end(); OI != E; ++OI) {
482    const Value *Idx = *OI;
483    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
484      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
485      if (Field) {
486        // N = N + Offset
487        TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field);
488        if (TotalOffs >= MaxOffs) {
489          N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
490          if (N == 0)
491            // Unhandled operand. Halt "fast" selection and bail.
492            return false;
493          NIsKill = true;
494          TotalOffs = 0;
495        }
496      }
497      Ty = StTy->getElementType(Field);
498    } else {
499      Ty = cast<SequentialType>(Ty)->getElementType();
500
501      // If this is a constant subscript, handle it quickly.
502      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
503        if (CI->isZero()) continue;
504        // N = N + Offset
505        TotalOffs +=
506          DL.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
507        if (TotalOffs >= MaxOffs) {
508          N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
509          if (N == 0)
510            // Unhandled operand. Halt "fast" selection and bail.
511            return false;
512          NIsKill = true;
513          TotalOffs = 0;
514        }
515        continue;
516      }
517      if (TotalOffs) {
518        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
519        if (N == 0)
520          // Unhandled operand. Halt "fast" selection and bail.
521          return false;
522        NIsKill = true;
523        TotalOffs = 0;
524      }
525
526      // N = N + Idx * ElementSize;
527      uint64_t ElementSize = DL.getTypeAllocSize(Ty);
528      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
529      unsigned IdxN = Pair.first;
530      bool IdxNIsKill = Pair.second;
531      if (IdxN == 0)
532        // Unhandled operand. Halt "fast" selection and bail.
533        return false;
534
535      if (ElementSize != 1) {
536        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
537        if (IdxN == 0)
538          // Unhandled operand. Halt "fast" selection and bail.
539          return false;
540        IdxNIsKill = true;
541      }
542      N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
543      if (N == 0)
544        // Unhandled operand. Halt "fast" selection and bail.
545        return false;
546    }
547  }
548  if (TotalOffs) {
549    N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
550    if (N == 0)
551      // Unhandled operand. Halt "fast" selection and bail.
552      return false;
553  }
554
555  // We successfully emitted code for the given LLVM Instruction.
556  UpdateValueMap(I, N);
557  return true;
558}
559
560bool FastISel::SelectCall(const User *I) {
561  const CallInst *Call = cast<CallInst>(I);
562
563  // Handle simple inline asms.
564  if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
565    // Don't attempt to handle constraints.
566    if (!IA->getConstraintString().empty())
567      return false;
568
569    unsigned ExtraInfo = 0;
570    if (IA->hasSideEffects())
571      ExtraInfo |= InlineAsm::Extra_HasSideEffects;
572    if (IA->isAlignStack())
573      ExtraInfo |= InlineAsm::Extra_IsAlignStack;
574
575    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
576            TII.get(TargetOpcode::INLINEASM))
577      .addExternalSymbol(IA->getAsmString().c_str())
578      .addImm(ExtraInfo);
579    return true;
580  }
581
582  MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
583  ComputeUsesVAFloatArgument(*Call, &MMI);
584
585  const Function *F = Call->getCalledFunction();
586  if (!F) return false;
587
588  // Handle selected intrinsic function calls.
589  switch (F->getIntrinsicID()) {
590  default: break;
591    // At -O0 we don't care about the lifetime intrinsics.
592  case Intrinsic::lifetime_start:
593  case Intrinsic::lifetime_end:
594    // The donothing intrinsic does, well, nothing.
595  case Intrinsic::donothing:
596    return true;
597
598  case Intrinsic::dbg_declare: {
599    const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
600    DIVariable DIVar(DI->getVariable());
601    assert((!DIVar || DIVar.isVariable()) &&
602      "Variable in DbgDeclareInst should be either null or a DIVariable.");
603    if (!DIVar ||
604        !FuncInfo.MF->getMMI().hasDebugInfo()) {
605      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
606      return true;
607    }
608
609    const Value *Address = DI->getAddress();
610    if (!Address || isa<UndefValue>(Address)) {
611      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
612      return true;
613    }
614
615    unsigned Offset = 0;
616    Optional<MachineOperand> Op;
617    if (const Argument *Arg = dyn_cast<Argument>(Address))
618      // Some arguments' frame index is recorded during argument lowering.
619      Offset = FuncInfo.getArgumentFrameIndex(Arg);
620    if (Offset)
621        Op = MachineOperand::CreateFI(Offset);
622    if (!Op)
623      if (unsigned Reg = lookUpRegForValue(Address))
624        Op = MachineOperand::CreateReg(Reg, false);
625
626    // If we have a VLA that has a "use" in a metadata node that's then used
627    // here but it has no other uses, then we have a problem. E.g.,
628    //
629    //   int foo (const int *x) {
630    //     char a[*x];
631    //     return 0;
632    //   }
633    //
634    // If we assign 'a' a vreg and fast isel later on has to use the selection
635    // DAG isel, it will want to copy the value to the vreg. However, there are
636    // no uses, which goes counter to what selection DAG isel expects.
637    if (!Op && !Address->use_empty() && isa<Instruction>(Address) &&
638        (!isa<AllocaInst>(Address) ||
639         !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
640      Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address),
641                                     false);
642
643    if (Op) {
644      if (Op->isReg()) {
645        Op->setIsDebug(true);
646        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
647                TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0,
648                DI->getVariable());
649      } else
650        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
651                TII.get(TargetOpcode::DBG_VALUE))
652            .addOperand(*Op)
653            .addImm(0)
654            .addMetadata(DI->getVariable());
655    } else {
656      // We can't yet handle anything else here because it would require
657      // generating code, thus altering codegen because of debug info.
658      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
659    }
660    return true;
661  }
662  case Intrinsic::dbg_value: {
663    // This form of DBG_VALUE is target-independent.
664    const DbgValueInst *DI = cast<DbgValueInst>(Call);
665    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
666    const Value *V = DI->getValue();
667    if (!V) {
668      // Currently the optimizer can produce this; insert an undef to
669      // help debugging.  Probably the optimizer should not do this.
670      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
671        .addReg(0U).addImm(DI->getOffset())
672        .addMetadata(DI->getVariable());
673    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
674      if (CI->getBitWidth() > 64)
675        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
676          .addCImm(CI).addImm(DI->getOffset())
677          .addMetadata(DI->getVariable());
678      else
679        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
680          .addImm(CI->getZExtValue()).addImm(DI->getOffset())
681          .addMetadata(DI->getVariable());
682    } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
683      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
684        .addFPImm(CF).addImm(DI->getOffset())
685        .addMetadata(DI->getVariable());
686    } else if (unsigned Reg = lookUpRegForValue(V)) {
687      // FIXME: This does not handle register-indirect values at offset 0.
688      bool IsIndirect = DI->getOffset() != 0;
689      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect,
690              Reg, DI->getOffset(), DI->getVariable());
691    } else {
692      // We can't yet handle anything else here because it would require
693      // generating code, thus altering codegen because of debug info.
694      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
695    }
696    return true;
697  }
698  case Intrinsic::objectsize: {
699    ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
700    unsigned long long Res = CI->isZero() ? -1ULL : 0;
701    Constant *ResCI = ConstantInt::get(Call->getType(), Res);
702    unsigned ResultReg = getRegForValue(ResCI);
703    if (ResultReg == 0)
704      return false;
705    UpdateValueMap(Call, ResultReg);
706    return true;
707  }
708  case Intrinsic::expect: {
709    unsigned ResultReg = getRegForValue(Call->getArgOperand(0));
710    if (ResultReg == 0)
711      return false;
712    UpdateValueMap(Call, ResultReg);
713    return true;
714  }
715  }
716
717  // Usually, it does not make sense to initialize a value,
718  // make an unrelated function call and use the value, because
719  // it tends to be spilled on the stack. So, we move the pointer
720  // to the last local value to the beginning of the block, so that
721  // all the values which have already been materialized,
722  // appear after the call. It also makes sense to skip intrinsics
723  // since they tend to be inlined.
724  if (!isa<IntrinsicInst>(Call))
725    flushLocalValueMap();
726
727  // An arbitrary call. Bail.
728  return false;
729}
730
731bool FastISel::SelectCast(const User *I, unsigned Opcode) {
732  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
733  EVT DstVT = TLI.getValueType(I->getType());
734
735  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
736      DstVT == MVT::Other || !DstVT.isSimple())
737    // Unhandled type. Halt "fast" selection and bail.
738    return false;
739
740  // Check if the destination type is legal.
741  if (!TLI.isTypeLegal(DstVT))
742    return false;
743
744  // Check if the source operand is legal.
745  if (!TLI.isTypeLegal(SrcVT))
746    return false;
747
748  unsigned InputReg = getRegForValue(I->getOperand(0));
749  if (!InputReg)
750    // Unhandled operand.  Halt "fast" selection and bail.
751    return false;
752
753  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
754
755  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
756                                  DstVT.getSimpleVT(),
757                                  Opcode,
758                                  InputReg, InputRegIsKill);
759  if (!ResultReg)
760    return false;
761
762  UpdateValueMap(I, ResultReg);
763  return true;
764}
765
766bool FastISel::SelectBitCast(const User *I) {
767  // If the bitcast doesn't change the type, just use the operand value.
768  if (I->getType() == I->getOperand(0)->getType()) {
769    unsigned Reg = getRegForValue(I->getOperand(0));
770    if (Reg == 0)
771      return false;
772    UpdateValueMap(I, Reg);
773    return true;
774  }
775
776  // Bitcasts of other values become reg-reg copies or BITCAST operators.
777  EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType());
778  EVT DstEVT = TLI.getValueType(I->getType());
779  if (SrcEVT == MVT::Other || DstEVT == MVT::Other ||
780      !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT))
781    // Unhandled type. Halt "fast" selection and bail.
782    return false;
783
784  MVT SrcVT = SrcEVT.getSimpleVT();
785  MVT DstVT = DstEVT.getSimpleVT();
786  unsigned Op0 = getRegForValue(I->getOperand(0));
787  if (Op0 == 0)
788    // Unhandled operand. Halt "fast" selection and bail.
789    return false;
790
791  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
792
793  // First, try to perform the bitcast by inserting a reg-reg copy.
794  unsigned ResultReg = 0;
795  if (SrcVT == DstVT) {
796    const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
797    const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
798    // Don't attempt a cross-class copy. It will likely fail.
799    if (SrcClass == DstClass) {
800      ResultReg = createResultReg(DstClass);
801      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
802              TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0);
803    }
804  }
805
806  // If the reg-reg copy failed, select a BITCAST opcode.
807  if (!ResultReg)
808    ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill);
809
810  if (!ResultReg)
811    return false;
812
813  UpdateValueMap(I, ResultReg);
814  return true;
815}
816
817bool
818FastISel::SelectInstruction(const Instruction *I) {
819  // Just before the terminator instruction, insert instructions to
820  // feed PHI nodes in successor blocks.
821  if (isa<TerminatorInst>(I))
822    if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
823      return false;
824
825  DbgLoc = I->getDebugLoc();
826
827  MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt;
828
829  // As a special case, don't handle calls to builtin library functions that
830  // may be translated directly to target instructions.
831  if (const CallInst *Call = dyn_cast<CallInst>(I)) {
832    const Function *F = Call->getCalledFunction();
833    LibFunc::Func Func;
834    if (F && !F->hasLocalLinkage() && F->hasName() &&
835        LibInfo->getLibFunc(F->getName(), Func) &&
836        LibInfo->hasOptimizedCodeGen(Func))
837      return false;
838  }
839
840  // First, try doing target-independent selection.
841  if (SelectOperator(I, I->getOpcode())) {
842    ++NumFastIselSuccessIndependent;
843    DbgLoc = DebugLoc();
844    return true;
845  }
846  // Remove dead code.  However, ignore call instructions since we've flushed
847  // the local value map and recomputed the insert point.
848  if (!isa<CallInst>(I)) {
849    recomputeInsertPt();
850    if (SavedInsertPt != FuncInfo.InsertPt)
851      removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
852  }
853
854  // Next, try calling the target to attempt to handle the instruction.
855  SavedInsertPt = FuncInfo.InsertPt;
856  if (TargetSelectInstruction(I)) {
857    ++NumFastIselSuccessTarget;
858    DbgLoc = DebugLoc();
859    return true;
860  }
861  // Check for dead code and remove as necessary.
862  recomputeInsertPt();
863  if (SavedInsertPt != FuncInfo.InsertPt)
864    removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
865
866  DbgLoc = DebugLoc();
867  return false;
868}
869
870/// FastEmitBranch - Emit an unconditional branch to the given block,
871/// unless it is the immediate (fall-through) successor, and update
872/// the CFG.
873void
874FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) {
875
876  if (FuncInfo.MBB->getBasicBlock()->size() > 1 &&
877      FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
878    // For more accurate line information if this is the only instruction
879    // in the block then emit it, otherwise we have the unconditional
880    // fall-through case, which needs no instructions.
881  } else {
882    // The unconditional branch case.
883    TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
884                     SmallVector<MachineOperand, 0>(), DbgLoc);
885  }
886  FuncInfo.MBB->addSuccessor(MSucc);
887}
888
889/// SelectFNeg - Emit an FNeg operation.
890///
891bool
892FastISel::SelectFNeg(const User *I) {
893  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
894  if (OpReg == 0) return false;
895
896  bool OpRegIsKill = hasTrivialKill(I);
897
898  // If the target has ISD::FNEG, use it.
899  EVT VT = TLI.getValueType(I->getType());
900  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
901                                  ISD::FNEG, OpReg, OpRegIsKill);
902  if (ResultReg != 0) {
903    UpdateValueMap(I, ResultReg);
904    return true;
905  }
906
907  // Bitcast the value to integer, twiddle the sign bit with xor,
908  // and then bitcast it back to floating-point.
909  if (VT.getSizeInBits() > 64) return false;
910  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
911  if (!TLI.isTypeLegal(IntVT))
912    return false;
913
914  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
915                               ISD::BITCAST, OpReg, OpRegIsKill);
916  if (IntReg == 0)
917    return false;
918
919  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
920                                       IntReg, /*Kill=*/true,
921                                       UINT64_C(1) << (VT.getSizeInBits()-1),
922                                       IntVT.getSimpleVT());
923  if (IntResultReg == 0)
924    return false;
925
926  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
927                         ISD::BITCAST, IntResultReg, /*Kill=*/true);
928  if (ResultReg == 0)
929    return false;
930
931  UpdateValueMap(I, ResultReg);
932  return true;
933}
934
935bool
936FastISel::SelectExtractValue(const User *U) {
937  const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
938  if (!EVI)
939    return false;
940
941  // Make sure we only try to handle extracts with a legal result.  But also
942  // allow i1 because it's easy.
943  EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
944  if (!RealVT.isSimple())
945    return false;
946  MVT VT = RealVT.getSimpleVT();
947  if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
948    return false;
949
950  const Value *Op0 = EVI->getOperand(0);
951  Type *AggTy = Op0->getType();
952
953  // Get the base result register.
954  unsigned ResultReg;
955  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
956  if (I != FuncInfo.ValueMap.end())
957    ResultReg = I->second;
958  else if (isa<Instruction>(Op0))
959    ResultReg = FuncInfo.InitializeRegForValue(Op0);
960  else
961    return false; // fast-isel can't handle aggregate constants at the moment
962
963  // Get the actual result register, which is an offset from the base register.
964  unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
965
966  SmallVector<EVT, 4> AggValueVTs;
967  ComputeValueVTs(TLI, AggTy, AggValueVTs);
968
969  for (unsigned i = 0; i < VTIndex; i++)
970    ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
971
972  UpdateValueMap(EVI, ResultReg);
973  return true;
974}
975
976bool
977FastISel::SelectOperator(const User *I, unsigned Opcode) {
978  switch (Opcode) {
979  case Instruction::Add:
980    return SelectBinaryOp(I, ISD::ADD);
981  case Instruction::FAdd:
982    return SelectBinaryOp(I, ISD::FADD);
983  case Instruction::Sub:
984    return SelectBinaryOp(I, ISD::SUB);
985  case Instruction::FSub:
986    // FNeg is currently represented in LLVM IR as a special case of FSub.
987    if (BinaryOperator::isFNeg(I))
988      return SelectFNeg(I);
989    return SelectBinaryOp(I, ISD::FSUB);
990  case Instruction::Mul:
991    return SelectBinaryOp(I, ISD::MUL);
992  case Instruction::FMul:
993    return SelectBinaryOp(I, ISD::FMUL);
994  case Instruction::SDiv:
995    return SelectBinaryOp(I, ISD::SDIV);
996  case Instruction::UDiv:
997    return SelectBinaryOp(I, ISD::UDIV);
998  case Instruction::FDiv:
999    return SelectBinaryOp(I, ISD::FDIV);
1000  case Instruction::SRem:
1001    return SelectBinaryOp(I, ISD::SREM);
1002  case Instruction::URem:
1003    return SelectBinaryOp(I, ISD::UREM);
1004  case Instruction::FRem:
1005    return SelectBinaryOp(I, ISD::FREM);
1006  case Instruction::Shl:
1007    return SelectBinaryOp(I, ISD::SHL);
1008  case Instruction::LShr:
1009    return SelectBinaryOp(I, ISD::SRL);
1010  case Instruction::AShr:
1011    return SelectBinaryOp(I, ISD::SRA);
1012  case Instruction::And:
1013    return SelectBinaryOp(I, ISD::AND);
1014  case Instruction::Or:
1015    return SelectBinaryOp(I, ISD::OR);
1016  case Instruction::Xor:
1017    return SelectBinaryOp(I, ISD::XOR);
1018
1019  case Instruction::GetElementPtr:
1020    return SelectGetElementPtr(I);
1021
1022  case Instruction::Br: {
1023    const BranchInst *BI = cast<BranchInst>(I);
1024
1025    if (BI->isUnconditional()) {
1026      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1027      MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1028      FastEmitBranch(MSucc, BI->getDebugLoc());
1029      return true;
1030    }
1031
1032    // Conditional branches are not handed yet.
1033    // Halt "fast" selection and bail.
1034    return false;
1035  }
1036
1037  case Instruction::Unreachable:
1038    // Nothing to emit.
1039    return true;
1040
1041  case Instruction::Alloca:
1042    // FunctionLowering has the static-sized case covered.
1043    if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1044      return true;
1045
1046    // Dynamic-sized alloca is not handled yet.
1047    return false;
1048
1049  case Instruction::Call:
1050    return SelectCall(I);
1051
1052  case Instruction::BitCast:
1053    return SelectBitCast(I);
1054
1055  case Instruction::FPToSI:
1056    return SelectCast(I, ISD::FP_TO_SINT);
1057  case Instruction::ZExt:
1058    return SelectCast(I, ISD::ZERO_EXTEND);
1059  case Instruction::SExt:
1060    return SelectCast(I, ISD::SIGN_EXTEND);
1061  case Instruction::Trunc:
1062    return SelectCast(I, ISD::TRUNCATE);
1063  case Instruction::SIToFP:
1064    return SelectCast(I, ISD::SINT_TO_FP);
1065
1066  case Instruction::IntToPtr: // Deliberate fall-through.
1067  case Instruction::PtrToInt: {
1068    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1069    EVT DstVT = TLI.getValueType(I->getType());
1070    if (DstVT.bitsGT(SrcVT))
1071      return SelectCast(I, ISD::ZERO_EXTEND);
1072    if (DstVT.bitsLT(SrcVT))
1073      return SelectCast(I, ISD::TRUNCATE);
1074    unsigned Reg = getRegForValue(I->getOperand(0));
1075    if (Reg == 0) return false;
1076    UpdateValueMap(I, Reg);
1077    return true;
1078  }
1079
1080  case Instruction::ExtractValue:
1081    return SelectExtractValue(I);
1082
1083  case Instruction::PHI:
1084    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1085
1086  default:
1087    // Unhandled instruction. Halt "fast" selection and bail.
1088    return false;
1089  }
1090}
1091
1092FastISel::FastISel(FunctionLoweringInfo &funcInfo,
1093                   const TargetLibraryInfo *libInfo)
1094  : FuncInfo(funcInfo),
1095    MRI(FuncInfo.MF->getRegInfo()),
1096    MFI(*FuncInfo.MF->getFrameInfo()),
1097    MCP(*FuncInfo.MF->getConstantPool()),
1098    TM(FuncInfo.MF->getTarget()),
1099    DL(*TM.getDataLayout()),
1100    TII(*TM.getInstrInfo()),
1101    TLI(*TM.getTargetLowering()),
1102    TRI(*TM.getRegisterInfo()),
1103    LibInfo(libInfo) {
1104}
1105
1106FastISel::~FastISel() {}
1107
1108bool FastISel::FastLowerArguments() {
1109  return false;
1110}
1111
1112unsigned FastISel::FastEmit_(MVT, MVT,
1113                             unsigned) {
1114  return 0;
1115}
1116
1117unsigned FastISel::FastEmit_r(MVT, MVT,
1118                              unsigned,
1119                              unsigned /*Op0*/, bool /*Op0IsKill*/) {
1120  return 0;
1121}
1122
1123unsigned FastISel::FastEmit_rr(MVT, MVT,
1124                               unsigned,
1125                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1126                               unsigned /*Op1*/, bool /*Op1IsKill*/) {
1127  return 0;
1128}
1129
1130unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1131  return 0;
1132}
1133
1134unsigned FastISel::FastEmit_f(MVT, MVT,
1135                              unsigned, const ConstantFP * /*FPImm*/) {
1136  return 0;
1137}
1138
1139unsigned FastISel::FastEmit_ri(MVT, MVT,
1140                               unsigned,
1141                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1142                               uint64_t /*Imm*/) {
1143  return 0;
1144}
1145
1146unsigned FastISel::FastEmit_rf(MVT, MVT,
1147                               unsigned,
1148                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1149                               const ConstantFP * /*FPImm*/) {
1150  return 0;
1151}
1152
1153unsigned FastISel::FastEmit_rri(MVT, MVT,
1154                                unsigned,
1155                                unsigned /*Op0*/, bool /*Op0IsKill*/,
1156                                unsigned /*Op1*/, bool /*Op1IsKill*/,
1157                                uint64_t /*Imm*/) {
1158  return 0;
1159}
1160
1161/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
1162/// to emit an instruction with an immediate operand using FastEmit_ri.
1163/// If that fails, it materializes the immediate into a register and try
1164/// FastEmit_rr instead.
1165unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
1166                                unsigned Op0, bool Op0IsKill,
1167                                uint64_t Imm, MVT ImmType) {
1168  // If this is a multiply by a power of two, emit this as a shift left.
1169  if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1170    Opcode = ISD::SHL;
1171    Imm = Log2_64(Imm);
1172  } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1173    // div x, 8 -> srl x, 3
1174    Opcode = ISD::SRL;
1175    Imm = Log2_64(Imm);
1176  }
1177
1178  // Horrible hack (to be removed), check to make sure shift amounts are
1179  // in-range.
1180  if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1181      Imm >= VT.getSizeInBits())
1182    return 0;
1183
1184  // First check if immediate type is legal. If not, we can't use the ri form.
1185  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1186  if (ResultReg != 0)
1187    return ResultReg;
1188  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1189  if (MaterialReg == 0) {
1190    // This is a bit ugly/slow, but failing here means falling out of
1191    // fast-isel, which would be very slow.
1192    IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
1193                                              VT.getSizeInBits());
1194    MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1195    assert (MaterialReg != 0 && "Unable to materialize imm.");
1196    if (MaterialReg == 0) return 0;
1197  }
1198  return FastEmit_rr(VT, VT, Opcode,
1199                     Op0, Op0IsKill,
1200                     MaterialReg, /*Kill=*/true);
1201}
1202
1203unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
1204  return MRI.createVirtualRegister(RC);
1205}
1206
1207unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1208                                 const TargetRegisterClass* RC) {
1209  unsigned ResultReg = createResultReg(RC);
1210  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1211
1212  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg);
1213  return ResultReg;
1214}
1215
1216unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1217                                  const TargetRegisterClass *RC,
1218                                  unsigned Op0, bool Op0IsKill) {
1219  unsigned ResultReg = createResultReg(RC);
1220  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1221
1222  if (II.getNumDefs() >= 1)
1223    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1224      .addReg(Op0, Op0IsKill * RegState::Kill);
1225  else {
1226    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1227      .addReg(Op0, Op0IsKill * RegState::Kill);
1228    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1229            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1230  }
1231
1232  return ResultReg;
1233}
1234
1235unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1236                                   const TargetRegisterClass *RC,
1237                                   unsigned Op0, bool Op0IsKill,
1238                                   unsigned Op1, bool Op1IsKill) {
1239  unsigned ResultReg = createResultReg(RC);
1240  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1241
1242  if (II.getNumDefs() >= 1)
1243    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1244      .addReg(Op0, Op0IsKill * RegState::Kill)
1245      .addReg(Op1, Op1IsKill * RegState::Kill);
1246  else {
1247    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1248      .addReg(Op0, Op0IsKill * RegState::Kill)
1249      .addReg(Op1, Op1IsKill * RegState::Kill);
1250    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1251            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1252  }
1253  return ResultReg;
1254}
1255
1256unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
1257                                   const TargetRegisterClass *RC,
1258                                   unsigned Op0, bool Op0IsKill,
1259                                   unsigned Op1, bool Op1IsKill,
1260                                   unsigned Op2, bool Op2IsKill) {
1261  unsigned ResultReg = createResultReg(RC);
1262  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1263
1264  if (II.getNumDefs() >= 1)
1265    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1266      .addReg(Op0, Op0IsKill * RegState::Kill)
1267      .addReg(Op1, Op1IsKill * RegState::Kill)
1268      .addReg(Op2, Op2IsKill * RegState::Kill);
1269  else {
1270    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1271      .addReg(Op0, Op0IsKill * RegState::Kill)
1272      .addReg(Op1, Op1IsKill * RegState::Kill)
1273      .addReg(Op2, Op2IsKill * RegState::Kill);
1274    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1275            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1276  }
1277  return ResultReg;
1278}
1279
1280unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1281                                   const TargetRegisterClass *RC,
1282                                   unsigned Op0, bool Op0IsKill,
1283                                   uint64_t Imm) {
1284  unsigned ResultReg = createResultReg(RC);
1285  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1286
1287  if (II.getNumDefs() >= 1)
1288    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1289      .addReg(Op0, Op0IsKill * RegState::Kill)
1290      .addImm(Imm);
1291  else {
1292    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1293      .addReg(Op0, Op0IsKill * RegState::Kill)
1294      .addImm(Imm);
1295    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1296            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1297  }
1298  return ResultReg;
1299}
1300
1301unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
1302                                   const TargetRegisterClass *RC,
1303                                   unsigned Op0, bool Op0IsKill,
1304                                   uint64_t Imm1, uint64_t Imm2) {
1305  unsigned ResultReg = createResultReg(RC);
1306  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1307
1308  if (II.getNumDefs() >= 1)
1309    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1310      .addReg(Op0, Op0IsKill * RegState::Kill)
1311      .addImm(Imm1)
1312      .addImm(Imm2);
1313  else {
1314    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1315      .addReg(Op0, Op0IsKill * RegState::Kill)
1316      .addImm(Imm1)
1317      .addImm(Imm2);
1318    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1319            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1320  }
1321  return ResultReg;
1322}
1323
1324unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1325                                   const TargetRegisterClass *RC,
1326                                   unsigned Op0, bool Op0IsKill,
1327                                   const ConstantFP *FPImm) {
1328  unsigned ResultReg = createResultReg(RC);
1329  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1330
1331  if (II.getNumDefs() >= 1)
1332    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1333      .addReg(Op0, Op0IsKill * RegState::Kill)
1334      .addFPImm(FPImm);
1335  else {
1336    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1337      .addReg(Op0, Op0IsKill * RegState::Kill)
1338      .addFPImm(FPImm);
1339    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1340            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1341  }
1342  return ResultReg;
1343}
1344
1345unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1346                                    const TargetRegisterClass *RC,
1347                                    unsigned Op0, bool Op0IsKill,
1348                                    unsigned Op1, bool Op1IsKill,
1349                                    uint64_t Imm) {
1350  unsigned ResultReg = createResultReg(RC);
1351  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1352
1353  if (II.getNumDefs() >= 1)
1354    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1355      .addReg(Op0, Op0IsKill * RegState::Kill)
1356      .addReg(Op1, Op1IsKill * RegState::Kill)
1357      .addImm(Imm);
1358  else {
1359    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1360      .addReg(Op0, Op0IsKill * RegState::Kill)
1361      .addReg(Op1, Op1IsKill * RegState::Kill)
1362      .addImm(Imm);
1363    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1364            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1365  }
1366  return ResultReg;
1367}
1368
1369unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode,
1370                                     const TargetRegisterClass *RC,
1371                                     unsigned Op0, bool Op0IsKill,
1372                                     unsigned Op1, bool Op1IsKill,
1373                                     uint64_t Imm1, uint64_t Imm2) {
1374  unsigned ResultReg = createResultReg(RC);
1375  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1376
1377  if (II.getNumDefs() >= 1)
1378    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1379      .addReg(Op0, Op0IsKill * RegState::Kill)
1380      .addReg(Op1, Op1IsKill * RegState::Kill)
1381      .addImm(Imm1).addImm(Imm2);
1382  else {
1383    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1384      .addReg(Op0, Op0IsKill * RegState::Kill)
1385      .addReg(Op1, Op1IsKill * RegState::Kill)
1386      .addImm(Imm1).addImm(Imm2);
1387    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1388            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1389  }
1390  return ResultReg;
1391}
1392
1393unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1394                                  const TargetRegisterClass *RC,
1395                                  uint64_t Imm) {
1396  unsigned ResultReg = createResultReg(RC);
1397  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1398
1399  if (II.getNumDefs() >= 1)
1400    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg).addImm(Imm);
1401  else {
1402    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm);
1403    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1404            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1405  }
1406  return ResultReg;
1407}
1408
1409unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
1410                                  const TargetRegisterClass *RC,
1411                                  uint64_t Imm1, uint64_t Imm2) {
1412  unsigned ResultReg = createResultReg(RC);
1413  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1414
1415  if (II.getNumDefs() >= 1)
1416    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
1417      .addImm(Imm1).addImm(Imm2);
1418  else {
1419    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1).addImm(Imm2);
1420    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1421            TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]);
1422  }
1423  return ResultReg;
1424}
1425
1426unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1427                                              unsigned Op0, bool Op0IsKill,
1428                                              uint32_t Idx) {
1429  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1430  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1431         "Cannot yet extract from physregs");
1432  const TargetRegisterClass *RC = MRI.getRegClass(Op0);
1433  MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx));
1434  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1435          DbgLoc, TII.get(TargetOpcode::COPY), ResultReg)
1436    .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1437  return ResultReg;
1438}
1439
1440/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1441/// with all but the least significant bit set to zero.
1442unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1443  return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1444}
1445
1446/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1447/// Emit code to ensure constants are copied into registers when needed.
1448/// Remember the virtual registers that need to be added to the Machine PHI
1449/// nodes as input.  We cannot just directly add them, because expansion
1450/// might result in multiple MBB's for one BB.  As such, the start of the
1451/// BB might correspond to a different MBB than the end.
1452bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1453  const TerminatorInst *TI = LLVMBB->getTerminator();
1454
1455  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1456  unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1457
1458  // Check successor nodes' PHI nodes that expect a constant to be available
1459  // from this block.
1460  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1461    const BasicBlock *SuccBB = TI->getSuccessor(succ);
1462    if (!isa<PHINode>(SuccBB->begin())) continue;
1463    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1464
1465    // If this terminator has multiple identical successors (common for
1466    // switches), only handle each succ once.
1467    if (!SuccsHandled.insert(SuccMBB)) continue;
1468
1469    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1470
1471    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1472    // nodes and Machine PHI nodes, but the incoming operands have not been
1473    // emitted yet.
1474    for (BasicBlock::const_iterator I = SuccBB->begin();
1475         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1476
1477      // Ignore dead phi's.
1478      if (PN->use_empty()) continue;
1479
1480      // Only handle legal types. Two interesting things to note here. First,
1481      // by bailing out early, we may leave behind some dead instructions,
1482      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1483      // own moves. Second, this check is necessary because FastISel doesn't
1484      // use CreateRegs to create registers, so it always creates
1485      // exactly one register for each non-void instruction.
1486      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1487      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1488        // Handle integer promotions, though, because they're common and easy.
1489        if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
1490          VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1491        else {
1492          FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1493          return false;
1494        }
1495      }
1496
1497      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1498
1499      // Set the DebugLoc for the copy. Prefer the location of the operand
1500      // if there is one; use the location of the PHI otherwise.
1501      DbgLoc = PN->getDebugLoc();
1502      if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1503        DbgLoc = Inst->getDebugLoc();
1504
1505      unsigned Reg = getRegForValue(PHIOp);
1506      if (Reg == 0) {
1507        FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1508        return false;
1509      }
1510      FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1511      DbgLoc = DebugLoc();
1512    }
1513  }
1514
1515  return true;
1516}
1517
1518bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) {
1519  assert(LI->hasOneUse() &&
1520      "tryToFoldLoad expected a LoadInst with a single use");
1521  // We know that the load has a single use, but don't know what it is.  If it
1522  // isn't one of the folded instructions, then we can't succeed here.  Handle
1523  // this by scanning the single-use users of the load until we get to FoldInst.
1524  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
1525
1526  const Instruction *TheUser = LI->user_back();
1527  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
1528         // Stay in the right block.
1529         TheUser->getParent() == FoldInst->getParent() &&
1530         --MaxUsers) {  // Don't scan too far.
1531    // If there are multiple or no uses of this instruction, then bail out.
1532    if (!TheUser->hasOneUse())
1533      return false;
1534
1535    TheUser = TheUser->user_back();
1536  }
1537
1538  // If we didn't find the fold instruction, then we failed to collapse the
1539  // sequence.
1540  if (TheUser != FoldInst)
1541    return false;
1542
1543  // Don't try to fold volatile loads.  Target has to deal with alignment
1544  // constraints.
1545  if (LI->isVolatile())
1546    return false;
1547
1548  // Figure out which vreg this is going into.  If there is no assigned vreg yet
1549  // then there actually was no reference to it.  Perhaps the load is referenced
1550  // by a dead instruction.
1551  unsigned LoadReg = getRegForValue(LI);
1552  if (LoadReg == 0)
1553    return false;
1554
1555  // We can't fold if this vreg has no uses or more than one use.  Multiple uses
1556  // may mean that the instruction got lowered to multiple MIs, or the use of
1557  // the loaded value ended up being multiple operands of the result.
1558  if (!MRI.hasOneUse(LoadReg))
1559    return false;
1560
1561  MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg);
1562  MachineInstr *User = RI->getParent();
1563
1564  // Set the insertion point properly.  Folding the load can cause generation of
1565  // other random instructions (like sign extends) for addressing modes; make
1566  // sure they get inserted in a logical place before the new instruction.
1567  FuncInfo.InsertPt = User;
1568  FuncInfo.MBB = User->getParent();
1569
1570  // Ask the target to try folding the load.
1571  return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI);
1572}
1573
1574bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) {
1575  // Must be an add.
1576  if (!isa<AddOperator>(Add))
1577    return false;
1578  // Type size needs to match.
1579  if (DL.getTypeSizeInBits(GEP->getType()) !=
1580      DL.getTypeSizeInBits(Add->getType()))
1581    return false;
1582  // Must be in the same basic block.
1583  if (isa<Instruction>(Add) &&
1584      FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB)
1585    return false;
1586  // Must have a constant operand.
1587  return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1));
1588}
1589
1590