FastISel.cpp revision 39bd365ee957d1ebb886dc77c4a251610bf3b83d
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/DwarfWriter.h"
51#include "llvm/Analysis/DebugInfo.h"
52#include "llvm/Target/TargetData.h"
53#include "llvm/Target/TargetInstrInfo.h"
54#include "llvm/Target/TargetLowering.h"
55#include "llvm/Target/TargetMachine.h"
56#include "SelectionDAGBuild.h"
57using namespace llvm;
58
59unsigned FastISel::getRegForValue(Value *V) {
60  MVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
61  // Don't handle non-simple values in FastISel.
62  if (!RealVT.isSimple())
63    return 0;
64
65  // Ignore illegal types. We must do this before looking up the value
66  // in ValueMap because Arguments are given virtual registers regardless
67  // of whether FastISel can handle them.
68  MVT::SimpleValueType VT = RealVT.getSimpleVT();
69  if (!TLI.isTypeLegal(VT)) {
70    // Promote MVT::i1 to a legal type though, because it's common and easy.
71    if (VT == MVT::i1)
72      VT = TLI.getTypeToTransformTo(VT).getSimpleVT();
73    else
74      return 0;
75  }
76
77  // Look up the value to see if we already have a register for it. We
78  // cache values defined by Instructions across blocks, and other values
79  // only locally. This is because Instructions already have the SSA
80  // def-dominatess-use requirement enforced.
81  if (ValueMap.count(V))
82    return ValueMap[V];
83  unsigned Reg = LocalValueMap[V];
84  if (Reg != 0)
85    return Reg;
86
87  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
88    if (CI->getValue().getActiveBits() <= 64)
89      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
90  } else if (isa<AllocaInst>(V)) {
91    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
92  } else if (isa<ConstantPointerNull>(V)) {
93    // Translate this as an integer zero so that it can be
94    // local-CSE'd with actual integer zeros.
95    Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType()));
96  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
97    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
98
99    if (!Reg) {
100      const APFloat &Flt = CF->getValueAPF();
101      MVT IntVT = TLI.getPointerTy();
102
103      uint64_t x[2];
104      uint32_t IntBitWidth = IntVT.getSizeInBits();
105      bool isExact;
106      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
107                                APFloat::rmTowardZero, &isExact);
108      if (isExact) {
109        APInt IntVal(IntBitWidth, 2, x);
110
111        unsigned IntegerReg = getRegForValue(ConstantInt::get(IntVal));
112        if (IntegerReg != 0)
113          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
114      }
115    }
116  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
117    if (!SelectOperator(CE, CE->getOpcode())) return 0;
118    Reg = LocalValueMap[CE];
119  } else if (isa<UndefValue>(V)) {
120    Reg = createResultReg(TLI.getRegClassFor(VT));
121    BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
122  }
123
124  // If target-independent code couldn't handle the value, give target-specific
125  // code a try.
126  if (!Reg && isa<Constant>(V))
127    Reg = TargetMaterializeConstant(cast<Constant>(V));
128
129  // Don't cache constant materializations in the general ValueMap.
130  // To do so would require tracking what uses they dominate.
131  if (Reg != 0)
132    LocalValueMap[V] = Reg;
133  return Reg;
134}
135
136unsigned FastISel::lookUpRegForValue(Value *V) {
137  // Look up the value to see if we already have a register for it. We
138  // cache values defined by Instructions across blocks, and other values
139  // only locally. This is because Instructions already have the SSA
140  // def-dominatess-use requirement enforced.
141  if (ValueMap.count(V))
142    return ValueMap[V];
143  return LocalValueMap[V];
144}
145
146/// UpdateValueMap - Update the value map to include the new mapping for this
147/// instruction, or insert an extra copy to get the result in a previous
148/// determined register.
149/// NOTE: This is only necessary because we might select a block that uses
150/// a value before we select the block that defines the value.  It might be
151/// possible to fix this by selecting blocks in reverse postorder.
152unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
153  if (!isa<Instruction>(I)) {
154    LocalValueMap[I] = Reg;
155    return Reg;
156  }
157
158  unsigned &AssignedReg = ValueMap[I];
159  if (AssignedReg == 0)
160    AssignedReg = Reg;
161  else if (Reg != AssignedReg) {
162    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
163    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
164                     Reg, RegClass, RegClass);
165  }
166  return AssignedReg;
167}
168
169unsigned FastISel::getRegForGEPIndex(Value *Idx) {
170  unsigned IdxN = getRegForValue(Idx);
171  if (IdxN == 0)
172    // Unhandled operand. Halt "fast" selection and bail.
173    return 0;
174
175  // If the index is smaller or larger than intptr_t, truncate or extend it.
176  MVT PtrVT = TLI.getPointerTy();
177  MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
178  if (IdxVT.bitsLT(PtrVT))
179    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
180                      ISD::SIGN_EXTEND, IdxN);
181  else if (IdxVT.bitsGT(PtrVT))
182    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
183                      ISD::TRUNCATE, IdxN);
184  return IdxN;
185}
186
187/// SelectBinaryOp - Select and emit code for a binary operator instruction,
188/// which has an opcode which directly corresponds to the given ISD opcode.
189///
190bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
191  MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
192  if (VT == MVT::Other || !VT.isSimple())
193    // Unhandled type. Halt "fast" selection and bail.
194    return false;
195
196  // We only handle legal types. For example, on x86-32 the instruction
197  // selector contains all of the 64-bit instructions from x86-64,
198  // under the assumption that i64 won't be used if the target doesn't
199  // support it.
200  if (!TLI.isTypeLegal(VT)) {
201    // MVT::i1 is special. Allow AND, OR, or XOR because they
202    // don't require additional zeroing, which makes them easy.
203    if (VT == MVT::i1 &&
204        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
205         ISDOpcode == ISD::XOR))
206      VT = TLI.getTypeToTransformTo(VT);
207    else
208      return false;
209  }
210
211  unsigned Op0 = getRegForValue(I->getOperand(0));
212  if (Op0 == 0)
213    // Unhandled operand. Halt "fast" selection and bail.
214    return false;
215
216  // Check if the second operand is a constant and handle it appropriately.
217  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
218    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
219                                     ISDOpcode, Op0, CI->getZExtValue());
220    if (ResultReg != 0) {
221      // We successfully emitted code for the given LLVM Instruction.
222      UpdateValueMap(I, ResultReg);
223      return true;
224    }
225  }
226
227  // Check if the second operand is a constant float.
228  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
229    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
230                                     ISDOpcode, Op0, CF);
231    if (ResultReg != 0) {
232      // We successfully emitted code for the given LLVM Instruction.
233      UpdateValueMap(I, ResultReg);
234      return true;
235    }
236  }
237
238  unsigned Op1 = getRegForValue(I->getOperand(1));
239  if (Op1 == 0)
240    // Unhandled operand. Halt "fast" selection and bail.
241    return false;
242
243  // Now we have both operands in registers. Emit the instruction.
244  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
245                                   ISDOpcode, Op0, Op1);
246  if (ResultReg == 0)
247    // Target-specific code wasn't able to find a machine opcode for
248    // the given ISD opcode and type. Halt "fast" selection and bail.
249    return false;
250
251  // We successfully emitted code for the given LLVM Instruction.
252  UpdateValueMap(I, ResultReg);
253  return true;
254}
255
256bool FastISel::SelectGetElementPtr(User *I) {
257  unsigned N = getRegForValue(I->getOperand(0));
258  if (N == 0)
259    // Unhandled operand. Halt "fast" selection and bail.
260    return false;
261
262  const Type *Ty = I->getOperand(0)->getType();
263  MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
264  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
265       OI != E; ++OI) {
266    Value *Idx = *OI;
267    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
268      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
269      if (Field) {
270        // N = N + Offset
271        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
272        // FIXME: This can be optimized by combining the add with a
273        // subsequent one.
274        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
275        if (N == 0)
276          // Unhandled operand. Halt "fast" selection and bail.
277          return false;
278      }
279      Ty = StTy->getElementType(Field);
280    } else {
281      Ty = cast<SequentialType>(Ty)->getElementType();
282
283      // If this is a constant subscript, handle it quickly.
284      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
285        if (CI->getZExtValue() == 0) continue;
286        uint64_t Offs =
287          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
288        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
289        if (N == 0)
290          // Unhandled operand. Halt "fast" selection and bail.
291          return false;
292        continue;
293      }
294
295      // N = N + Idx * ElementSize;
296      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
297      unsigned IdxN = getRegForGEPIndex(Idx);
298      if (IdxN == 0)
299        // Unhandled operand. Halt "fast" selection and bail.
300        return false;
301
302      if (ElementSize != 1) {
303        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
304        if (IdxN == 0)
305          // Unhandled operand. Halt "fast" selection and bail.
306          return false;
307      }
308      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
309      if (N == 0)
310        // Unhandled operand. Halt "fast" selection and bail.
311        return false;
312    }
313  }
314
315  // We successfully emitted code for the given LLVM Instruction.
316  UpdateValueMap(I, N);
317  return true;
318}
319
320bool FastISel::SelectCall(User *I) {
321  Function *F = cast<CallInst>(I)->getCalledFunction();
322  if (!F) return false;
323
324  unsigned IID = F->getIntrinsicID();
325  switch (IID) {
326  default: break;
327  case Intrinsic::dbg_stoppoint: {
328    DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
329    if (DIDescriptor::ValidDebugInfo(SPI->getContext(), CodeGenOpt::None)) {
330      DICompileUnit CU(cast<GlobalVariable>(SPI->getContext()));
331      unsigned Line = SPI->getLine();
332      unsigned Col = SPI->getColumn();
333      unsigned Idx = MF.getOrCreateDebugLocID(CU.getGV(), Line, Col);
334      setCurDebugLoc(DebugLoc::get(Idx));
335    }
336    return true;
337  }
338  case Intrinsic::dbg_region_start: {
339    DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
340    if (DIDescriptor::ValidDebugInfo(RSI->getContext(), CodeGenOpt::None) &&
341        DW && DW->ShouldEmitDwarfDebug()) {
342      unsigned ID =
343        DW->RecordRegionStart(cast<GlobalVariable>(RSI->getContext()));
344      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
345      BuildMI(MBB, DL, II).addImm(ID);
346    }
347    return true;
348  }
349  case Intrinsic::dbg_region_end: {
350    DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
351    if (DIDescriptor::ValidDebugInfo(REI->getContext(), CodeGenOpt::None) &&
352        DW && DW->ShouldEmitDwarfDebug()) {
353     unsigned ID = 0;
354     DISubprogram Subprogram(cast<GlobalVariable>(REI->getContext()));
355     if (!Subprogram.isNull() && !Subprogram.describes(MF.getFunction())) {
356        // This is end of an inlined function.
357        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
358        ID = DW->RecordInlinedFnEnd(Subprogram);
359        if (ID)
360          // Returned ID is 0 if this is unbalanced "end of inlined
361          // scope". This could happen if optimizer eats dbg intrinsics
362          // or "beginning of inlined scope" is not recoginized due to
363          // missing location info. In such cases, ignore this region.end.
364          BuildMI(MBB, DL, II).addImm(ID);
365      } else {
366        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
367        ID =  DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext()));
368        BuildMI(MBB, DL, II).addImm(ID);
369      }
370    }
371    return true;
372  }
373  case Intrinsic::dbg_func_start: {
374    DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
375    Value *SP = FSI->getSubprogram();
376    if (!DIDescriptor::ValidDebugInfo(SP, CodeGenOpt::None))
377      return true;
378
379    // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what
380    // (most?) gdb expects.
381    DebugLoc PrevLoc = DL;
382    DISubprogram Subprogram(cast<GlobalVariable>(SP));
383    DICompileUnit CompileUnit = Subprogram.getCompileUnit();
384
385    if (!Subprogram.describes(MF.getFunction())) {
386      // This is a beginning of an inlined function.
387
388      // If llvm.dbg.func.start is seen in a new block before any
389      // llvm.dbg.stoppoint intrinsic then the location info is unknown.
390      // FIXME : Why DebugLoc is reset at the beginning of each block ?
391      if (PrevLoc.isUnknown())
392        return true;
393      // Record the source line.
394      unsigned Line = Subprogram.getLineNumber();
395      setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(
396                                              CompileUnit.getGV(), Line, 0)));
397
398      if (DW && DW->ShouldEmitDwarfDebug()) {
399        DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
400        unsigned LabelID = DW->RecordInlinedFnStart(Subprogram,
401                                          DICompileUnit(PrevLocTpl.CompileUnit),
402                                          PrevLocTpl.Line,
403                                          PrevLocTpl.Col);
404        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
405        BuildMI(MBB, DL, II).addImm(LabelID);
406      }
407    } else {
408      // Record the source line.
409      unsigned Line = Subprogram.getLineNumber();
410      MF.setDefaultDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(
411                                              CompileUnit.getGV(), Line, 0)));
412      if (DW && DW->ShouldEmitDwarfDebug()) {
413        // llvm.dbg.func_start also defines beginning of function scope.
414        DW->RecordRegionStart(cast<GlobalVariable>(FSI->getSubprogram()));
415      }
416    }
417
418    return true;
419  }
420  case Intrinsic::dbg_declare: {
421    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
422    Value *Variable = DI->getVariable();
423    if (DIDescriptor::ValidDebugInfo(Variable, CodeGenOpt::None) &&
424        DW && DW->ShouldEmitDwarfDebug()) {
425      // Determine the address of the declared object.
426      Value *Address = DI->getAddress();
427      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
428        Address = BCI->getOperand(0);
429      AllocaInst *AI = dyn_cast<AllocaInst>(Address);
430      // Don't handle byval struct arguments or VLAs, for example.
431      if (!AI) break;
432      DenseMap<const AllocaInst*, int>::iterator SI =
433        StaticAllocaMap.find(AI);
434      if (SI == StaticAllocaMap.end()) break; // VLAs.
435      int FI = SI->second;
436
437      // Determine the debug globalvariable.
438      GlobalValue *GV = cast<GlobalVariable>(Variable);
439
440      // Build the DECLARE instruction.
441      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
442      MachineInstr *DeclareMI
443        = BuildMI(MBB, DL, II).addFrameIndex(FI).addGlobalAddress(GV);
444      DIVariable DV(cast<GlobalVariable>(GV));
445      DW->RecordVariableScope(DV, DeclareMI);
446    }
447    return true;
448  }
449  case Intrinsic::eh_exception: {
450    MVT VT = TLI.getValueType(I->getType());
451    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
452    default: break;
453    case TargetLowering::Expand: {
454      assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
455      unsigned Reg = TLI.getExceptionAddressRegister();
456      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
457      unsigned ResultReg = createResultReg(RC);
458      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
459                                           Reg, RC, RC);
460      assert(InsertedCopy && "Can't copy address registers!");
461      InsertedCopy = InsertedCopy;
462      UpdateValueMap(I, ResultReg);
463      return true;
464    }
465    }
466    break;
467  }
468  case Intrinsic::eh_selector_i32:
469  case Intrinsic::eh_selector_i64: {
470    MVT VT = TLI.getValueType(I->getType());
471    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
472    default: break;
473    case TargetLowering::Expand: {
474      MVT VT = (IID == Intrinsic::eh_selector_i32 ?
475                           MVT::i32 : MVT::i64);
476
477      if (MMI) {
478        if (MBB->isLandingPad())
479          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
480        else {
481#ifndef NDEBUG
482          CatchInfoLost.insert(cast<CallInst>(I));
483#endif
484          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
485          unsigned Reg = TLI.getExceptionSelectorRegister();
486          if (Reg) MBB->addLiveIn(Reg);
487        }
488
489        unsigned Reg = TLI.getExceptionSelectorRegister();
490        const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
491        unsigned ResultReg = createResultReg(RC);
492        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
493                                             Reg, RC, RC);
494        assert(InsertedCopy && "Can't copy address registers!");
495        InsertedCopy = InsertedCopy;
496        UpdateValueMap(I, ResultReg);
497      } else {
498        unsigned ResultReg =
499          getRegForValue(Constant::getNullValue(I->getType()));
500        UpdateValueMap(I, ResultReg);
501      }
502      return true;
503    }
504    }
505    break;
506  }
507  }
508  return false;
509}
510
511bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
512  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
513  MVT DstVT = TLI.getValueType(I->getType());
514
515  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
516      DstVT == MVT::Other || !DstVT.isSimple())
517    // Unhandled type. Halt "fast" selection and bail.
518    return false;
519
520  // Check if the destination type is legal. Or as a special case,
521  // it may be i1 if we're doing a truncate because that's
522  // easy and somewhat common.
523  if (!TLI.isTypeLegal(DstVT))
524    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
525      // Unhandled type. Halt "fast" selection and bail.
526      return false;
527
528  // Check if the source operand is legal. Or as a special case,
529  // it may be i1 if we're doing zero-extension because that's
530  // easy and somewhat common.
531  if (!TLI.isTypeLegal(SrcVT))
532    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
533      // Unhandled type. Halt "fast" selection and bail.
534      return false;
535
536  unsigned InputReg = getRegForValue(I->getOperand(0));
537  if (!InputReg)
538    // Unhandled operand.  Halt "fast" selection and bail.
539    return false;
540
541  // If the operand is i1, arrange for the high bits in the register to be zero.
542  if (SrcVT == MVT::i1) {
543   SrcVT = TLI.getTypeToTransformTo(SrcVT);
544   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
545   if (!InputReg)
546     return false;
547  }
548  // If the result is i1, truncate to the target's type for i1 first.
549  if (DstVT == MVT::i1)
550    DstVT = TLI.getTypeToTransformTo(DstVT);
551
552  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
553                                  DstVT.getSimpleVT(),
554                                  Opcode,
555                                  InputReg);
556  if (!ResultReg)
557    return false;
558
559  UpdateValueMap(I, ResultReg);
560  return true;
561}
562
563bool FastISel::SelectBitCast(User *I) {
564  // If the bitcast doesn't change the type, just use the operand value.
565  if (I->getType() == I->getOperand(0)->getType()) {
566    unsigned Reg = getRegForValue(I->getOperand(0));
567    if (Reg == 0)
568      return false;
569    UpdateValueMap(I, Reg);
570    return true;
571  }
572
573  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
574  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
575  MVT DstVT = TLI.getValueType(I->getType());
576
577  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
578      DstVT == MVT::Other || !DstVT.isSimple() ||
579      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
580    // Unhandled type. Halt "fast" selection and bail.
581    return false;
582
583  unsigned Op0 = getRegForValue(I->getOperand(0));
584  if (Op0 == 0)
585    // Unhandled operand. Halt "fast" selection and bail.
586    return false;
587
588  // First, try to perform the bitcast by inserting a reg-reg copy.
589  unsigned ResultReg = 0;
590  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
591    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
592    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
593    ResultReg = createResultReg(DstClass);
594
595    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
596                                         Op0, DstClass, SrcClass);
597    if (!InsertedCopy)
598      ResultReg = 0;
599  }
600
601  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
602  if (!ResultReg)
603    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
604                           ISD::BIT_CONVERT, Op0);
605
606  if (!ResultReg)
607    return false;
608
609  UpdateValueMap(I, ResultReg);
610  return true;
611}
612
613bool
614FastISel::SelectInstruction(Instruction *I) {
615  return SelectOperator(I, I->getOpcode());
616}
617
618/// FastEmitBranch - Emit an unconditional branch to the given block,
619/// unless it is the immediate (fall-through) successor, and update
620/// the CFG.
621void
622FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
623  MachineFunction::iterator NextMBB =
624     next(MachineFunction::iterator(MBB));
625
626  if (MBB->isLayoutSuccessor(MSucc)) {
627    // The unconditional fall-through case, which needs no instructions.
628  } else {
629    // The unconditional branch case.
630    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
631  }
632  MBB->addSuccessor(MSucc);
633}
634
635bool
636FastISel::SelectOperator(User *I, unsigned Opcode) {
637  switch (Opcode) {
638  case Instruction::Add:
639    return SelectBinaryOp(I, ISD::ADD);
640  case Instruction::FAdd:
641    return SelectBinaryOp(I, ISD::FADD);
642  case Instruction::Sub:
643    return SelectBinaryOp(I, ISD::SUB);
644  case Instruction::FSub:
645    return SelectBinaryOp(I, ISD::FSUB);
646  case Instruction::Mul:
647    return SelectBinaryOp(I, ISD::MUL);
648  case Instruction::FMul:
649    return SelectBinaryOp(I, ISD::FMUL);
650  case Instruction::SDiv:
651    return SelectBinaryOp(I, ISD::SDIV);
652  case Instruction::UDiv:
653    return SelectBinaryOp(I, ISD::UDIV);
654  case Instruction::FDiv:
655    return SelectBinaryOp(I, ISD::FDIV);
656  case Instruction::SRem:
657    return SelectBinaryOp(I, ISD::SREM);
658  case Instruction::URem:
659    return SelectBinaryOp(I, ISD::UREM);
660  case Instruction::FRem:
661    return SelectBinaryOp(I, ISD::FREM);
662  case Instruction::Shl:
663    return SelectBinaryOp(I, ISD::SHL);
664  case Instruction::LShr:
665    return SelectBinaryOp(I, ISD::SRL);
666  case Instruction::AShr:
667    return SelectBinaryOp(I, ISD::SRA);
668  case Instruction::And:
669    return SelectBinaryOp(I, ISD::AND);
670  case Instruction::Or:
671    return SelectBinaryOp(I, ISD::OR);
672  case Instruction::Xor:
673    return SelectBinaryOp(I, ISD::XOR);
674
675  case Instruction::GetElementPtr:
676    return SelectGetElementPtr(I);
677
678  case Instruction::Br: {
679    BranchInst *BI = cast<BranchInst>(I);
680
681    if (BI->isUnconditional()) {
682      BasicBlock *LLVMSucc = BI->getSuccessor(0);
683      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
684      FastEmitBranch(MSucc);
685      return true;
686    }
687
688    // Conditional branches are not handed yet.
689    // Halt "fast" selection and bail.
690    return false;
691  }
692
693  case Instruction::Unreachable:
694    // Nothing to emit.
695    return true;
696
697  case Instruction::PHI:
698    // PHI nodes are already emitted.
699    return true;
700
701  case Instruction::Alloca:
702    // FunctionLowering has the static-sized case covered.
703    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
704      return true;
705
706    // Dynamic-sized alloca is not handled yet.
707    return false;
708
709  case Instruction::Call:
710    return SelectCall(I);
711
712  case Instruction::BitCast:
713    return SelectBitCast(I);
714
715  case Instruction::FPToSI:
716    return SelectCast(I, ISD::FP_TO_SINT);
717  case Instruction::ZExt:
718    return SelectCast(I, ISD::ZERO_EXTEND);
719  case Instruction::SExt:
720    return SelectCast(I, ISD::SIGN_EXTEND);
721  case Instruction::Trunc:
722    return SelectCast(I, ISD::TRUNCATE);
723  case Instruction::SIToFP:
724    return SelectCast(I, ISD::SINT_TO_FP);
725
726  case Instruction::IntToPtr: // Deliberate fall-through.
727  case Instruction::PtrToInt: {
728    MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
729    MVT DstVT = TLI.getValueType(I->getType());
730    if (DstVT.bitsGT(SrcVT))
731      return SelectCast(I, ISD::ZERO_EXTEND);
732    if (DstVT.bitsLT(SrcVT))
733      return SelectCast(I, ISD::TRUNCATE);
734    unsigned Reg = getRegForValue(I->getOperand(0));
735    if (Reg == 0) return false;
736    UpdateValueMap(I, Reg);
737    return true;
738  }
739
740  default:
741    // Unhandled instruction. Halt "fast" selection and bail.
742    return false;
743  }
744}
745
746FastISel::FastISel(MachineFunction &mf,
747                   MachineModuleInfo *mmi,
748                   DwarfWriter *dw,
749                   DenseMap<const Value *, unsigned> &vm,
750                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
751                   DenseMap<const AllocaInst *, int> &am
752#ifndef NDEBUG
753                   , SmallSet<Instruction*, 8> &cil
754#endif
755                   )
756  : MBB(0),
757    ValueMap(vm),
758    MBBMap(bm),
759    StaticAllocaMap(am),
760#ifndef NDEBUG
761    CatchInfoLost(cil),
762#endif
763    MF(mf),
764    MMI(mmi),
765    DW(dw),
766    MRI(MF.getRegInfo()),
767    MFI(*MF.getFrameInfo()),
768    MCP(*MF.getConstantPool()),
769    TM(MF.getTarget()),
770    TD(*TM.getTargetData()),
771    TII(*TM.getInstrInfo()),
772    TLI(*TM.getTargetLowering()) {
773}
774
775FastISel::~FastISel() {}
776
777unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
778                             ISD::NodeType) {
779  return 0;
780}
781
782unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
783                              ISD::NodeType, unsigned /*Op0*/) {
784  return 0;
785}
786
787unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
788                               ISD::NodeType, unsigned /*Op0*/,
789                               unsigned /*Op0*/) {
790  return 0;
791}
792
793unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
794                              ISD::NodeType, uint64_t /*Imm*/) {
795  return 0;
796}
797
798unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
799                              ISD::NodeType, ConstantFP * /*FPImm*/) {
800  return 0;
801}
802
803unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
804                               ISD::NodeType, unsigned /*Op0*/,
805                               uint64_t /*Imm*/) {
806  return 0;
807}
808
809unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
810                               ISD::NodeType, unsigned /*Op0*/,
811                               ConstantFP * /*FPImm*/) {
812  return 0;
813}
814
815unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
816                                ISD::NodeType,
817                                unsigned /*Op0*/, unsigned /*Op1*/,
818                                uint64_t /*Imm*/) {
819  return 0;
820}
821
822/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
823/// to emit an instruction with an immediate operand using FastEmit_ri.
824/// If that fails, it materializes the immediate into a register and try
825/// FastEmit_rr instead.
826unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
827                                unsigned Op0, uint64_t Imm,
828                                MVT::SimpleValueType ImmType) {
829  // First check if immediate type is legal. If not, we can't use the ri form.
830  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
831  if (ResultReg != 0)
832    return ResultReg;
833  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
834  if (MaterialReg == 0)
835    return 0;
836  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
837}
838
839/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
840/// to emit an instruction with a floating-point immediate operand using
841/// FastEmit_rf. If that fails, it materializes the immediate into a register
842/// and try FastEmit_rr instead.
843unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
844                                unsigned Op0, ConstantFP *FPImm,
845                                MVT::SimpleValueType ImmType) {
846  // First check if immediate type is legal. If not, we can't use the rf form.
847  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
848  if (ResultReg != 0)
849    return ResultReg;
850
851  // Materialize the constant in a register.
852  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
853  if (MaterialReg == 0) {
854    // If the target doesn't have a way to directly enter a floating-point
855    // value into a register, use an alternate approach.
856    // TODO: The current approach only supports floating-point constants
857    // that can be constructed by conversion from integer values. This should
858    // be replaced by code that creates a load from a constant-pool entry,
859    // which will require some target-specific work.
860    const APFloat &Flt = FPImm->getValueAPF();
861    MVT IntVT = TLI.getPointerTy();
862
863    uint64_t x[2];
864    uint32_t IntBitWidth = IntVT.getSizeInBits();
865    bool isExact;
866    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
867                             APFloat::rmTowardZero, &isExact);
868    if (!isExact)
869      return 0;
870    APInt IntVal(IntBitWidth, 2, x);
871
872    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
873                                     ISD::Constant, IntVal.getZExtValue());
874    if (IntegerReg == 0)
875      return 0;
876    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
877                             ISD::SINT_TO_FP, IntegerReg);
878    if (MaterialReg == 0)
879      return 0;
880  }
881  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
882}
883
884unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
885  return MRI.createVirtualRegister(RC);
886}
887
888unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
889                                 const TargetRegisterClass* RC) {
890  unsigned ResultReg = createResultReg(RC);
891  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
892
893  BuildMI(MBB, DL, II, ResultReg);
894  return ResultReg;
895}
896
897unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
898                                  const TargetRegisterClass *RC,
899                                  unsigned Op0) {
900  unsigned ResultReg = createResultReg(RC);
901  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
902
903  if (II.getNumDefs() >= 1)
904    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
905  else {
906    BuildMI(MBB, DL, II).addReg(Op0);
907    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
908                                         II.ImplicitDefs[0], RC, RC);
909    if (!InsertedCopy)
910      ResultReg = 0;
911  }
912
913  return ResultReg;
914}
915
916unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
917                                   const TargetRegisterClass *RC,
918                                   unsigned Op0, unsigned Op1) {
919  unsigned ResultReg = createResultReg(RC);
920  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
921
922  if (II.getNumDefs() >= 1)
923    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
924  else {
925    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
926    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
927                                         II.ImplicitDefs[0], RC, RC);
928    if (!InsertedCopy)
929      ResultReg = 0;
930  }
931  return ResultReg;
932}
933
934unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
935                                   const TargetRegisterClass *RC,
936                                   unsigned Op0, uint64_t Imm) {
937  unsigned ResultReg = createResultReg(RC);
938  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
939
940  if (II.getNumDefs() >= 1)
941    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
942  else {
943    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
944    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
945                                         II.ImplicitDefs[0], RC, RC);
946    if (!InsertedCopy)
947      ResultReg = 0;
948  }
949  return ResultReg;
950}
951
952unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
953                                   const TargetRegisterClass *RC,
954                                   unsigned Op0, ConstantFP *FPImm) {
955  unsigned ResultReg = createResultReg(RC);
956  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
957
958  if (II.getNumDefs() >= 1)
959    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
960  else {
961    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
962    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
963                                         II.ImplicitDefs[0], RC, RC);
964    if (!InsertedCopy)
965      ResultReg = 0;
966  }
967  return ResultReg;
968}
969
970unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
971                                    const TargetRegisterClass *RC,
972                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
973  unsigned ResultReg = createResultReg(RC);
974  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
975
976  if (II.getNumDefs() >= 1)
977    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
978  else {
979    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
980    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
981                                         II.ImplicitDefs[0], RC, RC);
982    if (!InsertedCopy)
983      ResultReg = 0;
984  }
985  return ResultReg;
986}
987
988unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
989                                  const TargetRegisterClass *RC,
990                                  uint64_t Imm) {
991  unsigned ResultReg = createResultReg(RC);
992  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
993
994  if (II.getNumDefs() >= 1)
995    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
996  else {
997    BuildMI(MBB, DL, II).addImm(Imm);
998    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
999                                         II.ImplicitDefs[0], RC, RC);
1000    if (!InsertedCopy)
1001      ResultReg = 0;
1002  }
1003  return ResultReg;
1004}
1005
1006unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT,
1007                                              unsigned Op0, uint32_t Idx) {
1008  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
1009
1010  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1011  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
1012
1013  if (II.getNumDefs() >= 1)
1014    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
1015  else {
1016    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
1017    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1018                                         II.ImplicitDefs[0], RC, RC);
1019    if (!InsertedCopy)
1020      ResultReg = 0;
1021  }
1022  return ResultReg;
1023}
1024
1025/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1026/// with all but the least significant bit set to zero.
1027unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT, unsigned Op) {
1028  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
1029}
1030