FastISel.cpp revision 4183e31978146ea529a87a2fc47b96aeb6cbe000
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/Analysis/DebugInfo.h"
51#include "llvm/Target/TargetData.h"
52#include "llvm/Target/TargetInstrInfo.h"
53#include "llvm/Target/TargetLowering.h"
54#include "llvm/Target/TargetMachine.h"
55#include "FunctionLoweringInfo.h"
56using namespace llvm;
57
58unsigned FastISel::getRegForValue(Value *V) {
59  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
60  // Don't handle non-simple values in FastISel.
61  if (!RealVT.isSimple())
62    return 0;
63
64  // Ignore illegal types. We must do this before looking up the value
65  // in ValueMap because Arguments are given virtual registers regardless
66  // of whether FastISel can handle them.
67  MVT VT = RealVT.getSimpleVT();
68  if (!TLI.isTypeLegal(VT)) {
69    // Promote MVT::i1 to a legal type though, because it's common and easy.
70    if (VT == MVT::i1)
71      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
72    else
73      return 0;
74  }
75
76  // Look up the value to see if we already have a register for it. We
77  // cache values defined by Instructions across blocks, and other values
78  // only locally. This is because Instructions already have the SSA
79  // def-dominates-use requirement enforced.
80  if (ValueMap.count(V))
81    return ValueMap[V];
82  unsigned Reg = LocalValueMap[V];
83  if (Reg != 0)
84    return Reg;
85
86  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
87    if (CI->getValue().getActiveBits() <= 64)
88      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
89  } else if (isa<AllocaInst>(V)) {
90    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
91  } else if (isa<ConstantPointerNull>(V)) {
92    // Translate this as an integer zero so that it can be
93    // local-CSE'd with actual integer zeros.
94    Reg =
95      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
96  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
97    // Try to emit the constant directly.
98    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
99
100    if (!Reg) {
101      // Try to emit the constant by using an integer constant with a cast.
102      const APFloat &Flt = CF->getValueAPF();
103      EVT IntVT = TLI.getPointerTy();
104
105      uint64_t x[2];
106      uint32_t IntBitWidth = IntVT.getSizeInBits();
107      bool isExact;
108      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
109                                APFloat::rmTowardZero, &isExact);
110      if (isExact) {
111        APInt IntVal(IntBitWidth, 2, x);
112
113        unsigned IntegerReg =
114          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
115        if (IntegerReg != 0)
116          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
117      }
118    }
119  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
120    if (!SelectOperator(CE, CE->getOpcode())) return 0;
121    Reg = LocalValueMap[CE];
122  } else if (isa<UndefValue>(V)) {
123    Reg = createResultReg(TLI.getRegClassFor(VT));
124    BuildMI(MBB, DL, TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
125  }
126
127  // If target-independent code couldn't handle the value, give target-specific
128  // code a try.
129  if (!Reg && isa<Constant>(V))
130    Reg = TargetMaterializeConstant(cast<Constant>(V));
131
132  // Don't cache constant materializations in the general ValueMap.
133  // To do so would require tracking what uses they dominate.
134  if (Reg != 0)
135    LocalValueMap[V] = Reg;
136  return Reg;
137}
138
139unsigned FastISel::lookUpRegForValue(Value *V) {
140  // Look up the value to see if we already have a register for it. We
141  // cache values defined by Instructions across blocks, and other values
142  // only locally. This is because Instructions already have the SSA
143  // def-dominatess-use requirement enforced.
144  if (ValueMap.count(V))
145    return ValueMap[V];
146  return LocalValueMap[V];
147}
148
149/// UpdateValueMap - Update the value map to include the new mapping for this
150/// instruction, or insert an extra copy to get the result in a previous
151/// determined register.
152/// NOTE: This is only necessary because we might select a block that uses
153/// a value before we select the block that defines the value.  It might be
154/// possible to fix this by selecting blocks in reverse postorder.
155unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
156  if (!isa<Instruction>(I)) {
157    LocalValueMap[I] = Reg;
158    return Reg;
159  }
160
161  unsigned &AssignedReg = ValueMap[I];
162  if (AssignedReg == 0)
163    AssignedReg = Reg;
164  else if (Reg != AssignedReg) {
165    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
166    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
167                     Reg, RegClass, RegClass);
168  }
169  return AssignedReg;
170}
171
172unsigned FastISel::getRegForGEPIndex(Value *Idx) {
173  unsigned IdxN = getRegForValue(Idx);
174  if (IdxN == 0)
175    // Unhandled operand. Halt "fast" selection and bail.
176    return 0;
177
178  // If the index is smaller or larger than intptr_t, truncate or extend it.
179  MVT PtrVT = TLI.getPointerTy();
180  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
181  if (IdxVT.bitsLT(PtrVT))
182    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
183  else if (IdxVT.bitsGT(PtrVT))
184    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
185  return IdxN;
186}
187
188/// SelectBinaryOp - Select and emit code for a binary operator instruction,
189/// which has an opcode which directly corresponds to the given ISD opcode.
190///
191bool FastISel::SelectBinaryOp(User *I, unsigned ISDOpcode) {
192  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
193  if (VT == MVT::Other || !VT.isSimple())
194    // Unhandled type. Halt "fast" selection and bail.
195    return false;
196
197  // We only handle legal types. For example, on x86-32 the instruction
198  // selector contains all of the 64-bit instructions from x86-64,
199  // under the assumption that i64 won't be used if the target doesn't
200  // support it.
201  if (!TLI.isTypeLegal(VT)) {
202    // MVT::i1 is special. Allow AND, OR, or XOR because they
203    // don't require additional zeroing, which makes them easy.
204    if (VT == MVT::i1 &&
205        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
206         ISDOpcode == ISD::XOR))
207      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
208    else
209      return false;
210  }
211
212  unsigned Op0 = getRegForValue(I->getOperand(0));
213  if (Op0 == 0)
214    // Unhandled operand. Halt "fast" selection and bail.
215    return false;
216
217  // Check if the second operand is a constant and handle it appropriately.
218  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
219    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
220                                     ISDOpcode, Op0, CI->getZExtValue());
221    if (ResultReg != 0) {
222      // We successfully emitted code for the given LLVM Instruction.
223      UpdateValueMap(I, ResultReg);
224      return true;
225    }
226  }
227
228  // Check if the second operand is a constant float.
229  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
230    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
231                                     ISDOpcode, Op0, CF);
232    if (ResultReg != 0) {
233      // We successfully emitted code for the given LLVM Instruction.
234      UpdateValueMap(I, ResultReg);
235      return true;
236    }
237  }
238
239  unsigned Op1 = getRegForValue(I->getOperand(1));
240  if (Op1 == 0)
241    // Unhandled operand. Halt "fast" selection and bail.
242    return false;
243
244  // Now we have both operands in registers. Emit the instruction.
245  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
246                                   ISDOpcode, Op0, Op1);
247  if (ResultReg == 0)
248    // Target-specific code wasn't able to find a machine opcode for
249    // the given ISD opcode and type. Halt "fast" selection and bail.
250    return false;
251
252  // We successfully emitted code for the given LLVM Instruction.
253  UpdateValueMap(I, ResultReg);
254  return true;
255}
256
257bool FastISel::SelectGetElementPtr(User *I) {
258  unsigned N = getRegForValue(I->getOperand(0));
259  if (N == 0)
260    // Unhandled operand. Halt "fast" selection and bail.
261    return false;
262
263  const Type *Ty = I->getOperand(0)->getType();
264  MVT VT = TLI.getPointerTy();
265  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
266       OI != E; ++OI) {
267    Value *Idx = *OI;
268    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
269      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
270      if (Field) {
271        // N = N + Offset
272        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
273        // FIXME: This can be optimized by combining the add with a
274        // subsequent one.
275        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
276        if (N == 0)
277          // Unhandled operand. Halt "fast" selection and bail.
278          return false;
279      }
280      Ty = StTy->getElementType(Field);
281    } else {
282      Ty = cast<SequentialType>(Ty)->getElementType();
283
284      // If this is a constant subscript, handle it quickly.
285      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
286        if (CI->getZExtValue() == 0) continue;
287        uint64_t Offs =
288          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
289        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
290        if (N == 0)
291          // Unhandled operand. Halt "fast" selection and bail.
292          return false;
293        continue;
294      }
295
296      // N = N + Idx * ElementSize;
297      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
298      unsigned IdxN = getRegForGEPIndex(Idx);
299      if (IdxN == 0)
300        // Unhandled operand. Halt "fast" selection and bail.
301        return false;
302
303      if (ElementSize != 1) {
304        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
305        if (IdxN == 0)
306          // Unhandled operand. Halt "fast" selection and bail.
307          return false;
308      }
309      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
310      if (N == 0)
311        // Unhandled operand. Halt "fast" selection and bail.
312        return false;
313    }
314  }
315
316  // We successfully emitted code for the given LLVM Instruction.
317  UpdateValueMap(I, N);
318  return true;
319}
320
321bool FastISel::SelectCall(User *I) {
322  Function *F = cast<CallInst>(I)->getCalledFunction();
323  if (!F) return false;
324
325  // Handle selected intrinsic function calls.
326  unsigned IID = F->getIntrinsicID();
327  switch (IID) {
328  default: break;
329  case Intrinsic::dbg_declare: {
330    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
331    if (!DIDescriptor::ValidDebugInfo(DI->getVariable(), CodeGenOpt::None) ||
332        !MF.getMMI().hasDebugInfo())
333      return true;
334
335    Value *Address = DI->getAddress();
336    if (!Address)
337      return true;
338    if (isa<UndefValue>(Address))
339      return true;
340    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
341    // Don't handle byval struct arguments or VLAs, for example.
342    if (!AI) break;
343    DenseMap<const AllocaInst*, int>::iterator SI =
344      StaticAllocaMap.find(AI);
345    if (SI == StaticAllocaMap.end()) break; // VLAs.
346    int FI = SI->second;
347    if (!DI->getDebugLoc().isUnknown())
348      MF.getMMI().setVariableDbgInfo(DI->getVariable(), FI, DI->getDebugLoc());
349
350    // Building the map above is target independent.  Generating DBG_VALUE
351    // inline is target dependent; do this now.
352    (void)TargetSelectInstruction(cast<Instruction>(I));
353    return true;
354  }
355  case Intrinsic::dbg_value: {
356    // This form of DBG_VALUE is target-independent.
357    DbgValueInst *DI = cast<DbgValueInst>(I);
358    const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
359    Value *V = DI->getValue();
360    if (!V) {
361      // Currently the optimizer can produce this; insert an undef to
362      // help debugging.  Probably the optimizer should not do this.
363      BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()).
364                                     addMetadata(DI->getVariable());
365    } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
366      BuildMI(MBB, DL, II).addImm(CI->getZExtValue()).addImm(DI->getOffset()).
367                                     addMetadata(DI->getVariable());
368    } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
369      BuildMI(MBB, DL, II).addFPImm(CF).addImm(DI->getOffset()).
370                                     addMetadata(DI->getVariable());
371    } else if (unsigned Reg = lookUpRegForValue(V)) {
372      BuildMI(MBB, DL, II).addReg(Reg, RegState::Debug).addImm(DI->getOffset()).
373                                     addMetadata(DI->getVariable());
374    } else {
375      // We can't yet handle anything else here because it would require
376      // generating code, thus altering codegen because of debug info.
377      // Insert an undef so we can see what we dropped.
378      BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()).
379                                     addMetadata(DI->getVariable());
380    }
381    return true;
382  }
383  case Intrinsic::eh_exception: {
384    EVT VT = TLI.getValueType(I->getType());
385    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
386    default: break;
387    case TargetLowering::Expand: {
388      assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
389      unsigned Reg = TLI.getExceptionAddressRegister();
390      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
391      unsigned ResultReg = createResultReg(RC);
392      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
393                                           Reg, RC, RC);
394      assert(InsertedCopy && "Can't copy address registers!");
395      InsertedCopy = InsertedCopy;
396      UpdateValueMap(I, ResultReg);
397      return true;
398    }
399    }
400    break;
401  }
402  case Intrinsic::eh_selector: {
403    EVT VT = TLI.getValueType(I->getType());
404    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
405    default: break;
406    case TargetLowering::Expand: {
407      if (MBB->isLandingPad())
408        AddCatchInfo(*cast<CallInst>(I), &MF.getMMI(), MBB);
409      else {
410#ifndef NDEBUG
411        CatchInfoLost.insert(cast<CallInst>(I));
412#endif
413        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
414        unsigned Reg = TLI.getExceptionSelectorRegister();
415        if (Reg) MBB->addLiveIn(Reg);
416      }
417
418      unsigned Reg = TLI.getExceptionSelectorRegister();
419      EVT SrcVT = TLI.getPointerTy();
420      const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
421      unsigned ResultReg = createResultReg(RC);
422      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Reg,
423                                           RC, RC);
424      assert(InsertedCopy && "Can't copy address registers!");
425      InsertedCopy = InsertedCopy;
426
427      // Cast the register to the type of the selector.
428      if (SrcVT.bitsGT(MVT::i32))
429        ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
430                               ResultReg);
431      else if (SrcVT.bitsLT(MVT::i32))
432        ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
433                               ISD::SIGN_EXTEND, ResultReg);
434      if (ResultReg == 0)
435        // Unhandled operand. Halt "fast" selection and bail.
436        return false;
437
438      UpdateValueMap(I, ResultReg);
439
440      return true;
441    }
442    }
443    break;
444  }
445  }
446
447  // An arbitrary call. Bail.
448  return false;
449}
450
451bool FastISel::SelectCast(User *I, unsigned Opcode) {
452  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
453  EVT DstVT = TLI.getValueType(I->getType());
454
455  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
456      DstVT == MVT::Other || !DstVT.isSimple())
457    // Unhandled type. Halt "fast" selection and bail.
458    return false;
459
460  // Check if the destination type is legal. Or as a special case,
461  // it may be i1 if we're doing a truncate because that's
462  // easy and somewhat common.
463  if (!TLI.isTypeLegal(DstVT))
464    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
465      // Unhandled type. Halt "fast" selection and bail.
466      return false;
467
468  // Check if the source operand is legal. Or as a special case,
469  // it may be i1 if we're doing zero-extension because that's
470  // easy and somewhat common.
471  if (!TLI.isTypeLegal(SrcVT))
472    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
473      // Unhandled type. Halt "fast" selection and bail.
474      return false;
475
476  unsigned InputReg = getRegForValue(I->getOperand(0));
477  if (!InputReg)
478    // Unhandled operand.  Halt "fast" selection and bail.
479    return false;
480
481  // If the operand is i1, arrange for the high bits in the register to be zero.
482  if (SrcVT == MVT::i1) {
483   SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
484   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
485   if (!InputReg)
486     return false;
487  }
488  // If the result is i1, truncate to the target's type for i1 first.
489  if (DstVT == MVT::i1)
490    DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
491
492  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
493                                  DstVT.getSimpleVT(),
494                                  Opcode,
495                                  InputReg);
496  if (!ResultReg)
497    return false;
498
499  UpdateValueMap(I, ResultReg);
500  return true;
501}
502
503bool FastISel::SelectBitCast(User *I) {
504  // If the bitcast doesn't change the type, just use the operand value.
505  if (I->getType() == I->getOperand(0)->getType()) {
506    unsigned Reg = getRegForValue(I->getOperand(0));
507    if (Reg == 0)
508      return false;
509    UpdateValueMap(I, Reg);
510    return true;
511  }
512
513  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
514  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
515  EVT DstVT = TLI.getValueType(I->getType());
516
517  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
518      DstVT == MVT::Other || !DstVT.isSimple() ||
519      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
520    // Unhandled type. Halt "fast" selection and bail.
521    return false;
522
523  unsigned Op0 = getRegForValue(I->getOperand(0));
524  if (Op0 == 0)
525    // Unhandled operand. Halt "fast" selection and bail.
526    return false;
527
528  // First, try to perform the bitcast by inserting a reg-reg copy.
529  unsigned ResultReg = 0;
530  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
531    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
532    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
533    ResultReg = createResultReg(DstClass);
534
535    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
536                                         Op0, DstClass, SrcClass);
537    if (!InsertedCopy)
538      ResultReg = 0;
539  }
540
541  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
542  if (!ResultReg)
543    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
544                           ISD::BIT_CONVERT, Op0);
545
546  if (!ResultReg)
547    return false;
548
549  UpdateValueMap(I, ResultReg);
550  return true;
551}
552
553bool
554FastISel::SelectInstruction(Instruction *I) {
555  // First, try doing target-independent selection.
556  if (SelectOperator(I, I->getOpcode()))
557    return true;
558
559  // Next, try calling the target to attempt to handle the instruction.
560  if (TargetSelectInstruction(I))
561    return true;
562
563  return false;
564}
565
566/// FastEmitBranch - Emit an unconditional branch to the given block,
567/// unless it is the immediate (fall-through) successor, and update
568/// the CFG.
569void
570FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
571  if (MBB->isLayoutSuccessor(MSucc)) {
572    // The unconditional fall-through case, which needs no instructions.
573  } else {
574    // The unconditional branch case.
575    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
576  }
577  MBB->addSuccessor(MSucc);
578}
579
580/// SelectFNeg - Emit an FNeg operation.
581///
582bool
583FastISel::SelectFNeg(User *I) {
584  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
585  if (OpReg == 0) return false;
586
587  // If the target has ISD::FNEG, use it.
588  EVT VT = TLI.getValueType(I->getType());
589  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
590                                  ISD::FNEG, OpReg);
591  if (ResultReg != 0) {
592    UpdateValueMap(I, ResultReg);
593    return true;
594  }
595
596  // Bitcast the value to integer, twiddle the sign bit with xor,
597  // and then bitcast it back to floating-point.
598  if (VT.getSizeInBits() > 64) return false;
599  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
600  if (!TLI.isTypeLegal(IntVT))
601    return false;
602
603  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
604                               ISD::BIT_CONVERT, OpReg);
605  if (IntReg == 0)
606    return false;
607
608  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, IntReg,
609                                       UINT64_C(1) << (VT.getSizeInBits()-1),
610                                       IntVT.getSimpleVT());
611  if (IntResultReg == 0)
612    return false;
613
614  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
615                         ISD::BIT_CONVERT, IntResultReg);
616  if (ResultReg == 0)
617    return false;
618
619  UpdateValueMap(I, ResultReg);
620  return true;
621}
622
623bool
624FastISel::SelectOperator(User *I, unsigned Opcode) {
625  switch (Opcode) {
626  case Instruction::Add:
627    return SelectBinaryOp(I, ISD::ADD);
628  case Instruction::FAdd:
629    return SelectBinaryOp(I, ISD::FADD);
630  case Instruction::Sub:
631    return SelectBinaryOp(I, ISD::SUB);
632  case Instruction::FSub:
633    // FNeg is currently represented in LLVM IR as a special case of FSub.
634    if (BinaryOperator::isFNeg(I))
635      return SelectFNeg(I);
636    return SelectBinaryOp(I, ISD::FSUB);
637  case Instruction::Mul:
638    return SelectBinaryOp(I, ISD::MUL);
639  case Instruction::FMul:
640    return SelectBinaryOp(I, ISD::FMUL);
641  case Instruction::SDiv:
642    return SelectBinaryOp(I, ISD::SDIV);
643  case Instruction::UDiv:
644    return SelectBinaryOp(I, ISD::UDIV);
645  case Instruction::FDiv:
646    return SelectBinaryOp(I, ISD::FDIV);
647  case Instruction::SRem:
648    return SelectBinaryOp(I, ISD::SREM);
649  case Instruction::URem:
650    return SelectBinaryOp(I, ISD::UREM);
651  case Instruction::FRem:
652    return SelectBinaryOp(I, ISD::FREM);
653  case Instruction::Shl:
654    return SelectBinaryOp(I, ISD::SHL);
655  case Instruction::LShr:
656    return SelectBinaryOp(I, ISD::SRL);
657  case Instruction::AShr:
658    return SelectBinaryOp(I, ISD::SRA);
659  case Instruction::And:
660    return SelectBinaryOp(I, ISD::AND);
661  case Instruction::Or:
662    return SelectBinaryOp(I, ISD::OR);
663  case Instruction::Xor:
664    return SelectBinaryOp(I, ISD::XOR);
665
666  case Instruction::GetElementPtr:
667    return SelectGetElementPtr(I);
668
669  case Instruction::Br: {
670    BranchInst *BI = cast<BranchInst>(I);
671
672    if (BI->isUnconditional()) {
673      BasicBlock *LLVMSucc = BI->getSuccessor(0);
674      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
675      FastEmitBranch(MSucc);
676      return true;
677    }
678
679    // Conditional branches are not handed yet.
680    // Halt "fast" selection and bail.
681    return false;
682  }
683
684  case Instruction::Unreachable:
685    // Nothing to emit.
686    return true;
687
688  case Instruction::PHI:
689    // PHI nodes are already emitted.
690    return true;
691
692  case Instruction::Alloca:
693    // FunctionLowering has the static-sized case covered.
694    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
695      return true;
696
697    // Dynamic-sized alloca is not handled yet.
698    return false;
699
700  case Instruction::Call:
701    return SelectCall(I);
702
703  case Instruction::BitCast:
704    return SelectBitCast(I);
705
706  case Instruction::FPToSI:
707    return SelectCast(I, ISD::FP_TO_SINT);
708  case Instruction::ZExt:
709    return SelectCast(I, ISD::ZERO_EXTEND);
710  case Instruction::SExt:
711    return SelectCast(I, ISD::SIGN_EXTEND);
712  case Instruction::Trunc:
713    return SelectCast(I, ISD::TRUNCATE);
714  case Instruction::SIToFP:
715    return SelectCast(I, ISD::SINT_TO_FP);
716
717  case Instruction::IntToPtr: // Deliberate fall-through.
718  case Instruction::PtrToInt: {
719    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
720    EVT DstVT = TLI.getValueType(I->getType());
721    if (DstVT.bitsGT(SrcVT))
722      return SelectCast(I, ISD::ZERO_EXTEND);
723    if (DstVT.bitsLT(SrcVT))
724      return SelectCast(I, ISD::TRUNCATE);
725    unsigned Reg = getRegForValue(I->getOperand(0));
726    if (Reg == 0) return false;
727    UpdateValueMap(I, Reg);
728    return true;
729  }
730
731  default:
732    // Unhandled instruction. Halt "fast" selection and bail.
733    return false;
734  }
735}
736
737FastISel::FastISel(MachineFunction &mf,
738                   DenseMap<const Value *, unsigned> &vm,
739                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
740                   DenseMap<const AllocaInst *, int> &am
741#ifndef NDEBUG
742                   , SmallSet<Instruction*, 8> &cil
743#endif
744                   )
745  : MBB(0),
746    ValueMap(vm),
747    MBBMap(bm),
748    StaticAllocaMap(am),
749#ifndef NDEBUG
750    CatchInfoLost(cil),
751#endif
752    MF(mf),
753    MRI(MF.getRegInfo()),
754    MFI(*MF.getFrameInfo()),
755    MCP(*MF.getConstantPool()),
756    TM(MF.getTarget()),
757    TD(*TM.getTargetData()),
758    TII(*TM.getInstrInfo()),
759    TLI(*TM.getTargetLowering()) {
760}
761
762FastISel::~FastISel() {}
763
764unsigned FastISel::FastEmit_(MVT, MVT,
765                             unsigned) {
766  return 0;
767}
768
769unsigned FastISel::FastEmit_r(MVT, MVT,
770                              unsigned, unsigned /*Op0*/) {
771  return 0;
772}
773
774unsigned FastISel::FastEmit_rr(MVT, MVT,
775                               unsigned, unsigned /*Op0*/,
776                               unsigned /*Op0*/) {
777  return 0;
778}
779
780unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
781  return 0;
782}
783
784unsigned FastISel::FastEmit_f(MVT, MVT,
785                              unsigned, ConstantFP * /*FPImm*/) {
786  return 0;
787}
788
789unsigned FastISel::FastEmit_ri(MVT, MVT,
790                               unsigned, unsigned /*Op0*/,
791                               uint64_t /*Imm*/) {
792  return 0;
793}
794
795unsigned FastISel::FastEmit_rf(MVT, MVT,
796                               unsigned, unsigned /*Op0*/,
797                               ConstantFP * /*FPImm*/) {
798  return 0;
799}
800
801unsigned FastISel::FastEmit_rri(MVT, MVT,
802                                unsigned,
803                                unsigned /*Op0*/, unsigned /*Op1*/,
804                                uint64_t /*Imm*/) {
805  return 0;
806}
807
808/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
809/// to emit an instruction with an immediate operand using FastEmit_ri.
810/// If that fails, it materializes the immediate into a register and try
811/// FastEmit_rr instead.
812unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
813                                unsigned Op0, uint64_t Imm,
814                                MVT ImmType) {
815  // First check if immediate type is legal. If not, we can't use the ri form.
816  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
817  if (ResultReg != 0)
818    return ResultReg;
819  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
820  if (MaterialReg == 0)
821    return 0;
822  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
823}
824
825/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
826/// to emit an instruction with a floating-point immediate operand using
827/// FastEmit_rf. If that fails, it materializes the immediate into a register
828/// and try FastEmit_rr instead.
829unsigned FastISel::FastEmit_rf_(MVT VT, unsigned Opcode,
830                                unsigned Op0, ConstantFP *FPImm,
831                                MVT ImmType) {
832  // First check if immediate type is legal. If not, we can't use the rf form.
833  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
834  if (ResultReg != 0)
835    return ResultReg;
836
837  // Materialize the constant in a register.
838  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
839  if (MaterialReg == 0) {
840    // If the target doesn't have a way to directly enter a floating-point
841    // value into a register, use an alternate approach.
842    // TODO: The current approach only supports floating-point constants
843    // that can be constructed by conversion from integer values. This should
844    // be replaced by code that creates a load from a constant-pool entry,
845    // which will require some target-specific work.
846    const APFloat &Flt = FPImm->getValueAPF();
847    EVT IntVT = TLI.getPointerTy();
848
849    uint64_t x[2];
850    uint32_t IntBitWidth = IntVT.getSizeInBits();
851    bool isExact;
852    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
853                             APFloat::rmTowardZero, &isExact);
854    if (!isExact)
855      return 0;
856    APInt IntVal(IntBitWidth, 2, x);
857
858    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
859                                     ISD::Constant, IntVal.getZExtValue());
860    if (IntegerReg == 0)
861      return 0;
862    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
863                             ISD::SINT_TO_FP, IntegerReg);
864    if (MaterialReg == 0)
865      return 0;
866  }
867  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
868}
869
870unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
871  return MRI.createVirtualRegister(RC);
872}
873
874unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
875                                 const TargetRegisterClass* RC) {
876  unsigned ResultReg = createResultReg(RC);
877  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
878
879  BuildMI(MBB, DL, II, ResultReg);
880  return ResultReg;
881}
882
883unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
884                                  const TargetRegisterClass *RC,
885                                  unsigned Op0) {
886  unsigned ResultReg = createResultReg(RC);
887  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
888
889  if (II.getNumDefs() >= 1)
890    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
891  else {
892    BuildMI(MBB, DL, II).addReg(Op0);
893    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
894                                         II.ImplicitDefs[0], RC, RC);
895    if (!InsertedCopy)
896      ResultReg = 0;
897  }
898
899  return ResultReg;
900}
901
902unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
903                                   const TargetRegisterClass *RC,
904                                   unsigned Op0, unsigned Op1) {
905  unsigned ResultReg = createResultReg(RC);
906  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
907
908  if (II.getNumDefs() >= 1)
909    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
910  else {
911    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
912    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
913                                         II.ImplicitDefs[0], RC, RC);
914    if (!InsertedCopy)
915      ResultReg = 0;
916  }
917  return ResultReg;
918}
919
920unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
921                                   const TargetRegisterClass *RC,
922                                   unsigned Op0, uint64_t Imm) {
923  unsigned ResultReg = createResultReg(RC);
924  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
925
926  if (II.getNumDefs() >= 1)
927    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
928  else {
929    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
930    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
931                                         II.ImplicitDefs[0], RC, RC);
932    if (!InsertedCopy)
933      ResultReg = 0;
934  }
935  return ResultReg;
936}
937
938unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
939                                   const TargetRegisterClass *RC,
940                                   unsigned Op0, ConstantFP *FPImm) {
941  unsigned ResultReg = createResultReg(RC);
942  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
943
944  if (II.getNumDefs() >= 1)
945    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
946  else {
947    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
948    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
949                                         II.ImplicitDefs[0], RC, RC);
950    if (!InsertedCopy)
951      ResultReg = 0;
952  }
953  return ResultReg;
954}
955
956unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
957                                    const TargetRegisterClass *RC,
958                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
959  unsigned ResultReg = createResultReg(RC);
960  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
961
962  if (II.getNumDefs() >= 1)
963    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
964  else {
965    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
966    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
967                                         II.ImplicitDefs[0], RC, RC);
968    if (!InsertedCopy)
969      ResultReg = 0;
970  }
971  return ResultReg;
972}
973
974unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
975                                  const TargetRegisterClass *RC,
976                                  uint64_t Imm) {
977  unsigned ResultReg = createResultReg(RC);
978  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
979
980  if (II.getNumDefs() >= 1)
981    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
982  else {
983    BuildMI(MBB, DL, II).addImm(Imm);
984    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
985                                         II.ImplicitDefs[0], RC, RC);
986    if (!InsertedCopy)
987      ResultReg = 0;
988  }
989  return ResultReg;
990}
991
992unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
993                                              unsigned Op0, uint32_t Idx) {
994  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
995
996  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
997  const TargetInstrDesc &II = TII.get(TargetOpcode::EXTRACT_SUBREG);
998
999  if (II.getNumDefs() >= 1)
1000    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
1001  else {
1002    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
1003    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1004                                         II.ImplicitDefs[0], RC, RC);
1005    if (!InsertedCopy)
1006      ResultReg = 0;
1007  }
1008  return ResultReg;
1009}
1010
1011/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1012/// with all but the least significant bit set to zero.
1013unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op) {
1014  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
1015}
1016