FastISel.cpp revision 44d23825d61d530b8d562329ec8fc2d4f843bb8d
1//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#define DEBUG_TYPE "isel"
43#include "llvm/Function.h"
44#include "llvm/GlobalVariable.h"
45#include "llvm/Instructions.h"
46#include "llvm/IntrinsicInst.h"
47#include "llvm/Operator.h"
48#include "llvm/CodeGen/Analysis.h"
49#include "llvm/CodeGen/FastISel.h"
50#include "llvm/CodeGen/FunctionLoweringInfo.h"
51#include "llvm/CodeGen/MachineInstrBuilder.h"
52#include "llvm/CodeGen/MachineModuleInfo.h"
53#include "llvm/CodeGen/MachineRegisterInfo.h"
54#include "llvm/Analysis/DebugInfo.h"
55#include "llvm/Analysis/Loads.h"
56#include "llvm/Target/TargetData.h"
57#include "llvm/Target/TargetInstrInfo.h"
58#include "llvm/Target/TargetLowering.h"
59#include "llvm/Target/TargetMachine.h"
60#include "llvm/Support/ErrorHandling.h"
61#include "llvm/Support/Debug.h"
62#include "llvm/ADT/Statistic.h"
63using namespace llvm;
64
65STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
66          "target-independent selector");
67STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
68          "target-specific selector");
69STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
70
71/// startNewBlock - Set the current block to which generated machine
72/// instructions will be appended, and clear the local CSE map.
73///
74void FastISel::startNewBlock() {
75  LocalValueMap.clear();
76
77  EmitStartPt = 0;
78
79  // Advance the emit start point past any EH_LABEL instructions.
80  MachineBasicBlock::iterator
81    I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
82  while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
83    EmitStartPt = I;
84    ++I;
85  }
86  LastLocalValue = EmitStartPt;
87}
88
89void FastISel::flushLocalValueMap() {
90  LocalValueMap.clear();
91  LastLocalValue = EmitStartPt;
92  recomputeInsertPt();
93}
94
95bool FastISel::hasTrivialKill(const Value *V) const {
96  // Don't consider constants or arguments to have trivial kills.
97  const Instruction *I = dyn_cast<Instruction>(V);
98  if (!I)
99    return false;
100
101  // No-op casts are trivially coalesced by fast-isel.
102  if (const CastInst *Cast = dyn_cast<CastInst>(I))
103    if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
104        !hasTrivialKill(Cast->getOperand(0)))
105      return false;
106
107  // GEPs with all zero indices are trivially coalesced by fast-isel.
108  if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
109    if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
110      return false;
111
112  // Only instructions with a single use in the same basic block are considered
113  // to have trivial kills.
114  return I->hasOneUse() &&
115         !(I->getOpcode() == Instruction::BitCast ||
116           I->getOpcode() == Instruction::PtrToInt ||
117           I->getOpcode() == Instruction::IntToPtr) &&
118         cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
119}
120
121unsigned FastISel::getRegForValue(const Value *V) {
122  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
123  // Don't handle non-simple values in FastISel.
124  if (!RealVT.isSimple())
125    return 0;
126
127  // Ignore illegal types. We must do this before looking up the value
128  // in ValueMap because Arguments are given virtual registers regardless
129  // of whether FastISel can handle them.
130  MVT VT = RealVT.getSimpleVT();
131  if (!TLI.isTypeLegal(VT)) {
132    // Handle integer promotions, though, because they're common and easy.
133    if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
134      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
135    else
136      return 0;
137  }
138
139  // Look up the value to see if we already have a register for it. We
140  // cache values defined by Instructions across blocks, and other values
141  // only locally. This is because Instructions already have the SSA
142  // def-dominates-use requirement enforced.
143  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
144  if (I != FuncInfo.ValueMap.end())
145    return I->second;
146
147  unsigned Reg = LocalValueMap[V];
148  if (Reg != 0)
149    return Reg;
150
151  // In bottom-up mode, just create the virtual register which will be used
152  // to hold the value. It will be materialized later.
153  if (isa<Instruction>(V) &&
154      (!isa<AllocaInst>(V) ||
155       !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
156    return FuncInfo.InitializeRegForValue(V);
157
158  SavePoint SaveInsertPt = enterLocalValueArea();
159
160  // Materialize the value in a register. Emit any instructions in the
161  // local value area.
162  Reg = materializeRegForValue(V, VT);
163
164  leaveLocalValueArea(SaveInsertPt);
165
166  return Reg;
167}
168
169/// materializeRegForValue - Helper for getRegForValue. This function is
170/// called when the value isn't already available in a register and must
171/// be materialized with new instructions.
172unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
173  unsigned Reg = 0;
174
175  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
176    if (CI->getValue().getActiveBits() <= 64)
177      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
178  } else if (isa<AllocaInst>(V)) {
179    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
180  } else if (isa<ConstantPointerNull>(V)) {
181    // Translate this as an integer zero so that it can be
182    // local-CSE'd with actual integer zeros.
183    Reg =
184      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
185  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
186    if (CF->isNullValue()) {
187      Reg = TargetMaterializeFloatZero(CF);
188    } else {
189      // Try to emit the constant directly.
190      Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
191    }
192
193    if (!Reg) {
194      // Try to emit the constant by using an integer constant with a cast.
195      const APFloat &Flt = CF->getValueAPF();
196      EVT IntVT = TLI.getPointerTy();
197
198      uint64_t x[2];
199      uint32_t IntBitWidth = IntVT.getSizeInBits();
200      bool isExact;
201      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
202                                APFloat::rmTowardZero, &isExact);
203      if (isExact) {
204        APInt IntVal(IntBitWidth, x);
205
206        unsigned IntegerReg =
207          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
208        if (IntegerReg != 0)
209          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
210                           IntegerReg, /*Kill=*/false);
211      }
212    }
213  } else if (const Operator *Op = dyn_cast<Operator>(V)) {
214    if (!SelectOperator(Op, Op->getOpcode()))
215      if (!isa<Instruction>(Op) ||
216          !TargetSelectInstruction(cast<Instruction>(Op)))
217        return 0;
218    Reg = lookUpRegForValue(Op);
219  } else if (isa<UndefValue>(V)) {
220    Reg = createResultReg(TLI.getRegClassFor(VT));
221    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
222            TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
223  }
224
225  // If target-independent code couldn't handle the value, give target-specific
226  // code a try.
227  if (!Reg && isa<Constant>(V))
228    Reg = TargetMaterializeConstant(cast<Constant>(V));
229
230  // Don't cache constant materializations in the general ValueMap.
231  // To do so would require tracking what uses they dominate.
232  if (Reg != 0) {
233    LocalValueMap[V] = Reg;
234    LastLocalValue = MRI.getVRegDef(Reg);
235  }
236  return Reg;
237}
238
239unsigned FastISel::lookUpRegForValue(const Value *V) {
240  // Look up the value to see if we already have a register for it. We
241  // cache values defined by Instructions across blocks, and other values
242  // only locally. This is because Instructions already have the SSA
243  // def-dominates-use requirement enforced.
244  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
245  if (I != FuncInfo.ValueMap.end())
246    return I->second;
247  return LocalValueMap[V];
248}
249
250/// UpdateValueMap - Update the value map to include the new mapping for this
251/// instruction, or insert an extra copy to get the result in a previous
252/// determined register.
253/// NOTE: This is only necessary because we might select a block that uses
254/// a value before we select the block that defines the value.  It might be
255/// possible to fix this by selecting blocks in reverse postorder.
256void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
257  if (!isa<Instruction>(I)) {
258    LocalValueMap[I] = Reg;
259    return;
260  }
261
262  unsigned &AssignedReg = FuncInfo.ValueMap[I];
263  if (AssignedReg == 0)
264    // Use the new register.
265    AssignedReg = Reg;
266  else if (Reg != AssignedReg) {
267    // Arrange for uses of AssignedReg to be replaced by uses of Reg.
268    for (unsigned i = 0; i < NumRegs; i++)
269      FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
270
271    AssignedReg = Reg;
272  }
273}
274
275std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
276  unsigned IdxN = getRegForValue(Idx);
277  if (IdxN == 0)
278    // Unhandled operand. Halt "fast" selection and bail.
279    return std::pair<unsigned, bool>(0, false);
280
281  bool IdxNIsKill = hasTrivialKill(Idx);
282
283  // If the index is smaller or larger than intptr_t, truncate or extend it.
284  MVT PtrVT = TLI.getPointerTy();
285  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
286  if (IdxVT.bitsLT(PtrVT)) {
287    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
288                      IdxN, IdxNIsKill);
289    IdxNIsKill = true;
290  }
291  else if (IdxVT.bitsGT(PtrVT)) {
292    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
293                      IdxN, IdxNIsKill);
294    IdxNIsKill = true;
295  }
296  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
297}
298
299void FastISel::recomputeInsertPt() {
300  if (getLastLocalValue()) {
301    FuncInfo.InsertPt = getLastLocalValue();
302    FuncInfo.MBB = FuncInfo.InsertPt->getParent();
303    ++FuncInfo.InsertPt;
304  } else
305    FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
306
307  // Now skip past any EH_LABELs, which must remain at the beginning.
308  while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
309         FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
310    ++FuncInfo.InsertPt;
311}
312
313void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
314                              MachineBasicBlock::iterator E) {
315  assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!");
316  while (I != E) {
317    MachineInstr *Dead = &*I;
318    ++I;
319    Dead->eraseFromParent();
320    ++NumFastIselDead;
321  }
322  recomputeInsertPt();
323}
324
325FastISel::SavePoint FastISel::enterLocalValueArea() {
326  MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
327  DebugLoc OldDL = DL;
328  recomputeInsertPt();
329  DL = DebugLoc();
330  SavePoint SP = { OldInsertPt, OldDL };
331  return SP;
332}
333
334void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
335  if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
336    LastLocalValue = llvm::prior(FuncInfo.InsertPt);
337
338  // Restore the previous insert position.
339  FuncInfo.InsertPt = OldInsertPt.InsertPt;
340  DL = OldInsertPt.DL;
341}
342
343/// SelectBinaryOp - Select and emit code for a binary operator instruction,
344/// which has an opcode which directly corresponds to the given ISD opcode.
345///
346bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
347  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
348  if (VT == MVT::Other || !VT.isSimple())
349    // Unhandled type. Halt "fast" selection and bail.
350    return false;
351
352  // We only handle legal types. For example, on x86-32 the instruction
353  // selector contains all of the 64-bit instructions from x86-64,
354  // under the assumption that i64 won't be used if the target doesn't
355  // support it.
356  if (!TLI.isTypeLegal(VT)) {
357    // MVT::i1 is special. Allow AND, OR, or XOR because they
358    // don't require additional zeroing, which makes them easy.
359    if (VT == MVT::i1 &&
360        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
361         ISDOpcode == ISD::XOR))
362      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
363    else
364      return false;
365  }
366
367  // Check if the first operand is a constant, and handle it as "ri".  At -O0,
368  // we don't have anything that canonicalizes operand order.
369  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
370    if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
371      unsigned Op1 = getRegForValue(I->getOperand(1));
372      if (Op1 == 0) return false;
373
374      bool Op1IsKill = hasTrivialKill(I->getOperand(1));
375
376      unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
377                                        Op1IsKill, CI->getZExtValue(),
378                                        VT.getSimpleVT());
379      if (ResultReg == 0) return false;
380
381      // We successfully emitted code for the given LLVM Instruction.
382      UpdateValueMap(I, ResultReg);
383      return true;
384    }
385
386
387  unsigned Op0 = getRegForValue(I->getOperand(0));
388  if (Op0 == 0)   // Unhandled operand. Halt "fast" selection and bail.
389    return false;
390
391  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
392
393  // Check if the second operand is a constant and handle it appropriately.
394  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
395    uint64_t Imm = CI->getZExtValue();
396
397    // Transform "sdiv exact X, 8" -> "sra X, 3".
398    if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
399        cast<BinaryOperator>(I)->isExact() &&
400        isPowerOf2_64(Imm)) {
401      Imm = Log2_64(Imm);
402      ISDOpcode = ISD::SRA;
403    }
404
405    unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
406                                      Op0IsKill, Imm, VT.getSimpleVT());
407    if (ResultReg == 0) return false;
408
409    // We successfully emitted code for the given LLVM Instruction.
410    UpdateValueMap(I, ResultReg);
411    return true;
412  }
413
414  // Check if the second operand is a constant float.
415  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
416    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
417                                     ISDOpcode, Op0, Op0IsKill, CF);
418    if (ResultReg != 0) {
419      // We successfully emitted code for the given LLVM Instruction.
420      UpdateValueMap(I, ResultReg);
421      return true;
422    }
423  }
424
425  unsigned Op1 = getRegForValue(I->getOperand(1));
426  if (Op1 == 0)
427    // Unhandled operand. Halt "fast" selection and bail.
428    return false;
429
430  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
431
432  // Now we have both operands in registers. Emit the instruction.
433  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
434                                   ISDOpcode,
435                                   Op0, Op0IsKill,
436                                   Op1, Op1IsKill);
437  if (ResultReg == 0)
438    // Target-specific code wasn't able to find a machine opcode for
439    // the given ISD opcode and type. Halt "fast" selection and bail.
440    return false;
441
442  // We successfully emitted code for the given LLVM Instruction.
443  UpdateValueMap(I, ResultReg);
444  return true;
445}
446
447bool FastISel::SelectGetElementPtr(const User *I) {
448  unsigned N = getRegForValue(I->getOperand(0));
449  if (N == 0)
450    // Unhandled operand. Halt "fast" selection and bail.
451    return false;
452
453  bool NIsKill = hasTrivialKill(I->getOperand(0));
454
455  // Keep a running tab of the total offset to coalesce multiple N = N + Offset
456  // into a single N = N + TotalOffset.
457  uint64_t TotalOffs = 0;
458  // FIXME: What's a good SWAG number for MaxOffs?
459  uint64_t MaxOffs = 2048;
460  Type *Ty = I->getOperand(0)->getType();
461  MVT VT = TLI.getPointerTy();
462  for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
463       E = I->op_end(); OI != E; ++OI) {
464    const Value *Idx = *OI;
465    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
466      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
467      if (Field) {
468        // N = N + Offset
469        TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field);
470        if (TotalOffs >= MaxOffs) {
471          N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
472          if (N == 0)
473            // Unhandled operand. Halt "fast" selection and bail.
474            return false;
475          NIsKill = true;
476          TotalOffs = 0;
477        }
478      }
479      Ty = StTy->getElementType(Field);
480    } else {
481      Ty = cast<SequentialType>(Ty)->getElementType();
482
483      // If this is a constant subscript, handle it quickly.
484      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
485        if (CI->isZero()) continue;
486        // N = N + Offset
487        TotalOffs +=
488          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
489        if (TotalOffs >= MaxOffs) {
490          N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
491          if (N == 0)
492            // Unhandled operand. Halt "fast" selection and bail.
493            return false;
494          NIsKill = true;
495          TotalOffs = 0;
496        }
497        continue;
498      }
499      if (TotalOffs) {
500        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
501        if (N == 0)
502          // Unhandled operand. Halt "fast" selection and bail.
503          return false;
504        NIsKill = true;
505        TotalOffs = 0;
506      }
507
508      // N = N + Idx * ElementSize;
509      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
510      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
511      unsigned IdxN = Pair.first;
512      bool IdxNIsKill = Pair.second;
513      if (IdxN == 0)
514        // Unhandled operand. Halt "fast" selection and bail.
515        return false;
516
517      if (ElementSize != 1) {
518        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
519        if (IdxN == 0)
520          // Unhandled operand. Halt "fast" selection and bail.
521          return false;
522        IdxNIsKill = true;
523      }
524      N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
525      if (N == 0)
526        // Unhandled operand. Halt "fast" selection and bail.
527        return false;
528    }
529  }
530  if (TotalOffs) {
531    N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
532    if (N == 0)
533      // Unhandled operand. Halt "fast" selection and bail.
534      return false;
535  }
536
537  // We successfully emitted code for the given LLVM Instruction.
538  UpdateValueMap(I, N);
539  return true;
540}
541
542bool FastISel::SelectCall(const User *I) {
543  const CallInst *Call = cast<CallInst>(I);
544
545  // Handle simple inline asms.
546  if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
547    // Don't attempt to handle constraints.
548    if (!IA->getConstraintString().empty())
549      return false;
550
551    unsigned ExtraInfo = 0;
552    if (IA->hasSideEffects())
553      ExtraInfo |= InlineAsm::Extra_HasSideEffects;
554    if (IA->isAlignStack())
555      ExtraInfo |= InlineAsm::Extra_IsAlignStack;
556
557    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
558            TII.get(TargetOpcode::INLINEASM))
559      .addExternalSymbol(IA->getAsmString().c_str())
560      .addImm(ExtraInfo);
561    return true;
562  }
563
564  const Function *F = Call->getCalledFunction();
565  if (!F) return false;
566
567  // Handle selected intrinsic function calls.
568  switch (F->getIntrinsicID()) {
569  default: break;
570    // At -O0 we don't care about the lifetime intrinsics.
571  case Intrinsic::lifetime_start:
572  case Intrinsic::lifetime_end:
573    return true;
574  case Intrinsic::dbg_declare: {
575    const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
576    if (!DIVariable(DI->getVariable()).Verify() ||
577        !FuncInfo.MF->getMMI().hasDebugInfo())
578      return true;
579
580    const Value *Address = DI->getAddress();
581    if (!Address || isa<UndefValue>(Address) || isa<AllocaInst>(Address))
582      return true;
583
584    unsigned Reg = 0;
585    unsigned Offset = 0;
586    if (const Argument *Arg = dyn_cast<Argument>(Address)) {
587      // Some arguments' frame index is recorded during argument lowering.
588      Offset = FuncInfo.getArgumentFrameIndex(Arg);
589      if (Offset)
590	Reg = TRI.getFrameRegister(*FuncInfo.MF);
591    }
592    if (!Reg)
593      Reg = getRegForValue(Address);
594
595    if (Reg)
596      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
597              TII.get(TargetOpcode::DBG_VALUE))
598        .addReg(Reg, RegState::Debug).addImm(Offset)
599        .addMetadata(DI->getVariable());
600    return true;
601  }
602  case Intrinsic::dbg_value: {
603    // This form of DBG_VALUE is target-independent.
604    const DbgValueInst *DI = cast<DbgValueInst>(Call);
605    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
606    const Value *V = DI->getValue();
607    if (!V) {
608      // Currently the optimizer can produce this; insert an undef to
609      // help debugging.  Probably the optimizer should not do this.
610      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
611        .addReg(0U).addImm(DI->getOffset())
612        .addMetadata(DI->getVariable());
613    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
614      if (CI->getBitWidth() > 64)
615        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
616          .addCImm(CI).addImm(DI->getOffset())
617          .addMetadata(DI->getVariable());
618      else
619        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
620          .addImm(CI->getZExtValue()).addImm(DI->getOffset())
621          .addMetadata(DI->getVariable());
622    } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
623      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
624        .addFPImm(CF).addImm(DI->getOffset())
625        .addMetadata(DI->getVariable());
626    } else if (unsigned Reg = lookUpRegForValue(V)) {
627      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
628        .addReg(Reg, RegState::Debug).addImm(DI->getOffset())
629        .addMetadata(DI->getVariable());
630    } else {
631      // We can't yet handle anything else here because it would require
632      // generating code, thus altering codegen because of debug info.
633      DEBUG(dbgs() << "Dropping debug info for " << DI);
634    }
635    return true;
636  }
637  case Intrinsic::objectsize: {
638    ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
639    unsigned long long Res = CI->isZero() ? -1ULL : 0;
640    Constant *ResCI = ConstantInt::get(Call->getType(), Res);
641    unsigned ResultReg = getRegForValue(ResCI);
642    if (ResultReg == 0)
643      return false;
644    UpdateValueMap(Call, ResultReg);
645    return true;
646  }
647  }
648
649  // Usually, it does not make sense to initialize a value,
650  // make an unrelated function call and use the value, because
651  // it tends to be spilled on the stack. So, we move the pointer
652  // to the last local value to the beginning of the block, so that
653  // all the values which have already been materialized,
654  // appear after the call. It also makes sense to skip intrinsics
655  // since they tend to be inlined.
656  if (!isa<IntrinsicInst>(F))
657    flushLocalValueMap();
658
659  // An arbitrary call. Bail.
660  return false;
661}
662
663bool FastISel::SelectCast(const User *I, unsigned Opcode) {
664  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
665  EVT DstVT = TLI.getValueType(I->getType());
666
667  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
668      DstVT == MVT::Other || !DstVT.isSimple())
669    // Unhandled type. Halt "fast" selection and bail.
670    return false;
671
672  // Check if the destination type is legal.
673  if (!TLI.isTypeLegal(DstVT))
674    return false;
675
676  // Check if the source operand is legal.
677  if (!TLI.isTypeLegal(SrcVT))
678    return false;
679
680  unsigned InputReg = getRegForValue(I->getOperand(0));
681  if (!InputReg)
682    // Unhandled operand.  Halt "fast" selection and bail.
683    return false;
684
685  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
686
687  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
688                                  DstVT.getSimpleVT(),
689                                  Opcode,
690                                  InputReg, InputRegIsKill);
691  if (!ResultReg)
692    return false;
693
694  UpdateValueMap(I, ResultReg);
695  return true;
696}
697
698bool FastISel::SelectBitCast(const User *I) {
699  // If the bitcast doesn't change the type, just use the operand value.
700  if (I->getType() == I->getOperand(0)->getType()) {
701    unsigned Reg = getRegForValue(I->getOperand(0));
702    if (Reg == 0)
703      return false;
704    UpdateValueMap(I, Reg);
705    return true;
706  }
707
708  // Bitcasts of other values become reg-reg copies or BITCAST operators.
709  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
710  EVT DstVT = TLI.getValueType(I->getType());
711
712  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
713      DstVT == MVT::Other || !DstVT.isSimple() ||
714      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
715    // Unhandled type. Halt "fast" selection and bail.
716    return false;
717
718  unsigned Op0 = getRegForValue(I->getOperand(0));
719  if (Op0 == 0)
720    // Unhandled operand. Halt "fast" selection and bail.
721    return false;
722
723  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
724
725  // First, try to perform the bitcast by inserting a reg-reg copy.
726  unsigned ResultReg = 0;
727  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
728    const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
729    const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
730    // Don't attempt a cross-class copy. It will likely fail.
731    if (SrcClass == DstClass) {
732      ResultReg = createResultReg(DstClass);
733      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
734              ResultReg).addReg(Op0);
735    }
736  }
737
738  // If the reg-reg copy failed, select a BITCAST opcode.
739  if (!ResultReg)
740    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
741                           ISD::BITCAST, Op0, Op0IsKill);
742
743  if (!ResultReg)
744    return false;
745
746  UpdateValueMap(I, ResultReg);
747  return true;
748}
749
750bool
751FastISel::SelectInstruction(const Instruction *I) {
752  // Just before the terminator instruction, insert instructions to
753  // feed PHI nodes in successor blocks.
754  if (isa<TerminatorInst>(I))
755    if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
756      return false;
757
758  DL = I->getDebugLoc();
759
760  MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt;
761
762  // First, try doing target-independent selection.
763  if (SelectOperator(I, I->getOpcode())) {
764    ++NumFastIselSuccessIndependent;
765    DL = DebugLoc();
766    return true;
767  }
768  // Remove dead code.  However, ignore call instructions since we've flushed
769  // the local value map and recomputed the insert point.
770  if (!isa<CallInst>(I)) {
771    recomputeInsertPt();
772    if (SavedInsertPt != FuncInfo.InsertPt)
773      removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
774  }
775
776  // Next, try calling the target to attempt to handle the instruction.
777  SavedInsertPt = FuncInfo.InsertPt;
778  if (TargetSelectInstruction(I)) {
779    ++NumFastIselSuccessTarget;
780    DL = DebugLoc();
781    return true;
782  }
783  // Check for dead code and remove as necessary.
784  recomputeInsertPt();
785  if (SavedInsertPt != FuncInfo.InsertPt)
786    removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
787
788  DL = DebugLoc();
789  return false;
790}
791
792/// FastEmitBranch - Emit an unconditional branch to the given block,
793/// unless it is the immediate (fall-through) successor, and update
794/// the CFG.
795void
796FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
797  if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
798    // The unconditional fall-through case, which needs no instructions.
799  } else {
800    // The unconditional branch case.
801    TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
802                     SmallVector<MachineOperand, 0>(), DL);
803  }
804  FuncInfo.MBB->addSuccessor(MSucc);
805}
806
807/// SelectFNeg - Emit an FNeg operation.
808///
809bool
810FastISel::SelectFNeg(const User *I) {
811  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
812  if (OpReg == 0) return false;
813
814  bool OpRegIsKill = hasTrivialKill(I);
815
816  // If the target has ISD::FNEG, use it.
817  EVT VT = TLI.getValueType(I->getType());
818  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
819                                  ISD::FNEG, OpReg, OpRegIsKill);
820  if (ResultReg != 0) {
821    UpdateValueMap(I, ResultReg);
822    return true;
823  }
824
825  // Bitcast the value to integer, twiddle the sign bit with xor,
826  // and then bitcast it back to floating-point.
827  if (VT.getSizeInBits() > 64) return false;
828  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
829  if (!TLI.isTypeLegal(IntVT))
830    return false;
831
832  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
833                               ISD::BITCAST, OpReg, OpRegIsKill);
834  if (IntReg == 0)
835    return false;
836
837  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
838                                       IntReg, /*Kill=*/true,
839                                       UINT64_C(1) << (VT.getSizeInBits()-1),
840                                       IntVT.getSimpleVT());
841  if (IntResultReg == 0)
842    return false;
843
844  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
845                         ISD::BITCAST, IntResultReg, /*Kill=*/true);
846  if (ResultReg == 0)
847    return false;
848
849  UpdateValueMap(I, ResultReg);
850  return true;
851}
852
853bool
854FastISel::SelectExtractValue(const User *U) {
855  const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
856  if (!EVI)
857    return false;
858
859  // Make sure we only try to handle extracts with a legal result.  But also
860  // allow i1 because it's easy.
861  EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
862  if (!RealVT.isSimple())
863    return false;
864  MVT VT = RealVT.getSimpleVT();
865  if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
866    return false;
867
868  const Value *Op0 = EVI->getOperand(0);
869  Type *AggTy = Op0->getType();
870
871  // Get the base result register.
872  unsigned ResultReg;
873  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
874  if (I != FuncInfo.ValueMap.end())
875    ResultReg = I->second;
876  else if (isa<Instruction>(Op0))
877    ResultReg = FuncInfo.InitializeRegForValue(Op0);
878  else
879    return false; // fast-isel can't handle aggregate constants at the moment
880
881  // Get the actual result register, which is an offset from the base register.
882  unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
883
884  SmallVector<EVT, 4> AggValueVTs;
885  ComputeValueVTs(TLI, AggTy, AggValueVTs);
886
887  for (unsigned i = 0; i < VTIndex; i++)
888    ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
889
890  UpdateValueMap(EVI, ResultReg);
891  return true;
892}
893
894bool
895FastISel::SelectOperator(const User *I, unsigned Opcode) {
896  switch (Opcode) {
897  case Instruction::Add:
898    return SelectBinaryOp(I, ISD::ADD);
899  case Instruction::FAdd:
900    return SelectBinaryOp(I, ISD::FADD);
901  case Instruction::Sub:
902    return SelectBinaryOp(I, ISD::SUB);
903  case Instruction::FSub:
904    // FNeg is currently represented in LLVM IR as a special case of FSub.
905    if (BinaryOperator::isFNeg(I))
906      return SelectFNeg(I);
907    return SelectBinaryOp(I, ISD::FSUB);
908  case Instruction::Mul:
909    return SelectBinaryOp(I, ISD::MUL);
910  case Instruction::FMul:
911    return SelectBinaryOp(I, ISD::FMUL);
912  case Instruction::SDiv:
913    return SelectBinaryOp(I, ISD::SDIV);
914  case Instruction::UDiv:
915    return SelectBinaryOp(I, ISD::UDIV);
916  case Instruction::FDiv:
917    return SelectBinaryOp(I, ISD::FDIV);
918  case Instruction::SRem:
919    return SelectBinaryOp(I, ISD::SREM);
920  case Instruction::URem:
921    return SelectBinaryOp(I, ISD::UREM);
922  case Instruction::FRem:
923    return SelectBinaryOp(I, ISD::FREM);
924  case Instruction::Shl:
925    return SelectBinaryOp(I, ISD::SHL);
926  case Instruction::LShr:
927    return SelectBinaryOp(I, ISD::SRL);
928  case Instruction::AShr:
929    return SelectBinaryOp(I, ISD::SRA);
930  case Instruction::And:
931    return SelectBinaryOp(I, ISD::AND);
932  case Instruction::Or:
933    return SelectBinaryOp(I, ISD::OR);
934  case Instruction::Xor:
935    return SelectBinaryOp(I, ISD::XOR);
936
937  case Instruction::GetElementPtr:
938    return SelectGetElementPtr(I);
939
940  case Instruction::Br: {
941    const BranchInst *BI = cast<BranchInst>(I);
942
943    if (BI->isUnconditional()) {
944      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
945      MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
946      FastEmitBranch(MSucc, BI->getDebugLoc());
947      return true;
948    }
949
950    // Conditional branches are not handed yet.
951    // Halt "fast" selection and bail.
952    return false;
953  }
954
955  case Instruction::Unreachable:
956    // Nothing to emit.
957    return true;
958
959  case Instruction::Alloca:
960    // FunctionLowering has the static-sized case covered.
961    if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
962      return true;
963
964    // Dynamic-sized alloca is not handled yet.
965    return false;
966
967  case Instruction::Call:
968    return SelectCall(I);
969
970  case Instruction::BitCast:
971    return SelectBitCast(I);
972
973  case Instruction::FPToSI:
974    return SelectCast(I, ISD::FP_TO_SINT);
975  case Instruction::ZExt:
976    return SelectCast(I, ISD::ZERO_EXTEND);
977  case Instruction::SExt:
978    return SelectCast(I, ISD::SIGN_EXTEND);
979  case Instruction::Trunc:
980    return SelectCast(I, ISD::TRUNCATE);
981  case Instruction::SIToFP:
982    return SelectCast(I, ISD::SINT_TO_FP);
983
984  case Instruction::IntToPtr: // Deliberate fall-through.
985  case Instruction::PtrToInt: {
986    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
987    EVT DstVT = TLI.getValueType(I->getType());
988    if (DstVT.bitsGT(SrcVT))
989      return SelectCast(I, ISD::ZERO_EXTEND);
990    if (DstVT.bitsLT(SrcVT))
991      return SelectCast(I, ISD::TRUNCATE);
992    unsigned Reg = getRegForValue(I->getOperand(0));
993    if (Reg == 0) return false;
994    UpdateValueMap(I, Reg);
995    return true;
996  }
997
998  case Instruction::ExtractValue:
999    return SelectExtractValue(I);
1000
1001  case Instruction::PHI:
1002    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1003
1004  default:
1005    // Unhandled instruction. Halt "fast" selection and bail.
1006    return false;
1007  }
1008}
1009
1010FastISel::FastISel(FunctionLoweringInfo &funcInfo)
1011  : FuncInfo(funcInfo),
1012    MRI(FuncInfo.MF->getRegInfo()),
1013    MFI(*FuncInfo.MF->getFrameInfo()),
1014    MCP(*FuncInfo.MF->getConstantPool()),
1015    TM(FuncInfo.MF->getTarget()),
1016    TD(*TM.getTargetData()),
1017    TII(*TM.getInstrInfo()),
1018    TLI(*TM.getTargetLowering()),
1019    TRI(*TM.getRegisterInfo()) {
1020}
1021
1022FastISel::~FastISel() {}
1023
1024unsigned FastISel::FastEmit_(MVT, MVT,
1025                             unsigned) {
1026  return 0;
1027}
1028
1029unsigned FastISel::FastEmit_r(MVT, MVT,
1030                              unsigned,
1031                              unsigned /*Op0*/, bool /*Op0IsKill*/) {
1032  return 0;
1033}
1034
1035unsigned FastISel::FastEmit_rr(MVT, MVT,
1036                               unsigned,
1037                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1038                               unsigned /*Op1*/, bool /*Op1IsKill*/) {
1039  return 0;
1040}
1041
1042unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1043  return 0;
1044}
1045
1046unsigned FastISel::FastEmit_f(MVT, MVT,
1047                              unsigned, const ConstantFP * /*FPImm*/) {
1048  return 0;
1049}
1050
1051unsigned FastISel::FastEmit_ri(MVT, MVT,
1052                               unsigned,
1053                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1054                               uint64_t /*Imm*/) {
1055  return 0;
1056}
1057
1058unsigned FastISel::FastEmit_rf(MVT, MVT,
1059                               unsigned,
1060                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1061                               const ConstantFP * /*FPImm*/) {
1062  return 0;
1063}
1064
1065unsigned FastISel::FastEmit_rri(MVT, MVT,
1066                                unsigned,
1067                                unsigned /*Op0*/, bool /*Op0IsKill*/,
1068                                unsigned /*Op1*/, bool /*Op1IsKill*/,
1069                                uint64_t /*Imm*/) {
1070  return 0;
1071}
1072
1073/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
1074/// to emit an instruction with an immediate operand using FastEmit_ri.
1075/// If that fails, it materializes the immediate into a register and try
1076/// FastEmit_rr instead.
1077unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
1078                                unsigned Op0, bool Op0IsKill,
1079                                uint64_t Imm, MVT ImmType) {
1080  // If this is a multiply by a power of two, emit this as a shift left.
1081  if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1082    Opcode = ISD::SHL;
1083    Imm = Log2_64(Imm);
1084  } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1085    // div x, 8 -> srl x, 3
1086    Opcode = ISD::SRL;
1087    Imm = Log2_64(Imm);
1088  }
1089
1090  // Horrible hack (to be removed), check to make sure shift amounts are
1091  // in-range.
1092  if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1093      Imm >= VT.getSizeInBits())
1094    return 0;
1095
1096  // First check if immediate type is legal. If not, we can't use the ri form.
1097  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1098  if (ResultReg != 0)
1099    return ResultReg;
1100  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1101  if (MaterialReg == 0) {
1102    // This is a bit ugly/slow, but failing here means falling out of
1103    // fast-isel, which would be very slow.
1104    IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
1105                                              VT.getSizeInBits());
1106    MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1107  }
1108  return FastEmit_rr(VT, VT, Opcode,
1109                     Op0, Op0IsKill,
1110                     MaterialReg, /*Kill=*/true);
1111}
1112
1113unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
1114  return MRI.createVirtualRegister(RC);
1115}
1116
1117unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1118                                 const TargetRegisterClass* RC) {
1119  unsigned ResultReg = createResultReg(RC);
1120  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1121
1122  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
1123  return ResultReg;
1124}
1125
1126unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1127                                  const TargetRegisterClass *RC,
1128                                  unsigned Op0, bool Op0IsKill) {
1129  unsigned ResultReg = createResultReg(RC);
1130  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1131
1132  if (II.getNumDefs() >= 1)
1133    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1134      .addReg(Op0, Op0IsKill * RegState::Kill);
1135  else {
1136    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1137      .addReg(Op0, Op0IsKill * RegState::Kill);
1138    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1139            ResultReg).addReg(II.ImplicitDefs[0]);
1140  }
1141
1142  return ResultReg;
1143}
1144
1145unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1146                                   const TargetRegisterClass *RC,
1147                                   unsigned Op0, bool Op0IsKill,
1148                                   unsigned Op1, bool Op1IsKill) {
1149  unsigned ResultReg = createResultReg(RC);
1150  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1151
1152  if (II.getNumDefs() >= 1)
1153    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1154      .addReg(Op0, Op0IsKill * RegState::Kill)
1155      .addReg(Op1, Op1IsKill * RegState::Kill);
1156  else {
1157    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1158      .addReg(Op0, Op0IsKill * RegState::Kill)
1159      .addReg(Op1, Op1IsKill * RegState::Kill);
1160    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1161            ResultReg).addReg(II.ImplicitDefs[0]);
1162  }
1163  return ResultReg;
1164}
1165
1166unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
1167                                   const TargetRegisterClass *RC,
1168                                   unsigned Op0, bool Op0IsKill,
1169                                   unsigned Op1, bool Op1IsKill,
1170                                   unsigned Op2, bool Op2IsKill) {
1171  unsigned ResultReg = createResultReg(RC);
1172  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1173
1174  if (II.getNumDefs() >= 1)
1175    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1176      .addReg(Op0, Op0IsKill * RegState::Kill)
1177      .addReg(Op1, Op1IsKill * RegState::Kill)
1178      .addReg(Op2, Op2IsKill * RegState::Kill);
1179  else {
1180    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1181      .addReg(Op0, Op0IsKill * RegState::Kill)
1182      .addReg(Op1, Op1IsKill * RegState::Kill)
1183      .addReg(Op2, Op2IsKill * RegState::Kill);
1184    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1185            ResultReg).addReg(II.ImplicitDefs[0]);
1186  }
1187  return ResultReg;
1188}
1189
1190unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1191                                   const TargetRegisterClass *RC,
1192                                   unsigned Op0, bool Op0IsKill,
1193                                   uint64_t Imm) {
1194  unsigned ResultReg = createResultReg(RC);
1195  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1196
1197  if (II.getNumDefs() >= 1)
1198    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1199      .addReg(Op0, Op0IsKill * RegState::Kill)
1200      .addImm(Imm);
1201  else {
1202    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1203      .addReg(Op0, Op0IsKill * RegState::Kill)
1204      .addImm(Imm);
1205    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1206            ResultReg).addReg(II.ImplicitDefs[0]);
1207  }
1208  return ResultReg;
1209}
1210
1211unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
1212                                   const TargetRegisterClass *RC,
1213                                   unsigned Op0, bool Op0IsKill,
1214                                   uint64_t Imm1, uint64_t Imm2) {
1215  unsigned ResultReg = createResultReg(RC);
1216  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1217
1218  if (II.getNumDefs() >= 1)
1219    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1220      .addReg(Op0, Op0IsKill * RegState::Kill)
1221      .addImm(Imm1)
1222      .addImm(Imm2);
1223  else {
1224    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1225      .addReg(Op0, Op0IsKill * RegState::Kill)
1226      .addImm(Imm1)
1227      .addImm(Imm2);
1228    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1229            ResultReg).addReg(II.ImplicitDefs[0]);
1230  }
1231  return ResultReg;
1232}
1233
1234unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1235                                   const TargetRegisterClass *RC,
1236                                   unsigned Op0, bool Op0IsKill,
1237                                   const ConstantFP *FPImm) {
1238  unsigned ResultReg = createResultReg(RC);
1239  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1240
1241  if (II.getNumDefs() >= 1)
1242    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1243      .addReg(Op0, Op0IsKill * RegState::Kill)
1244      .addFPImm(FPImm);
1245  else {
1246    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1247      .addReg(Op0, Op0IsKill * RegState::Kill)
1248      .addFPImm(FPImm);
1249    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1250            ResultReg).addReg(II.ImplicitDefs[0]);
1251  }
1252  return ResultReg;
1253}
1254
1255unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1256                                    const TargetRegisterClass *RC,
1257                                    unsigned Op0, bool Op0IsKill,
1258                                    unsigned Op1, bool Op1IsKill,
1259                                    uint64_t Imm) {
1260  unsigned ResultReg = createResultReg(RC);
1261  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1262
1263  if (II.getNumDefs() >= 1)
1264    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1265      .addReg(Op0, Op0IsKill * RegState::Kill)
1266      .addReg(Op1, Op1IsKill * RegState::Kill)
1267      .addImm(Imm);
1268  else {
1269    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1270      .addReg(Op0, Op0IsKill * RegState::Kill)
1271      .addReg(Op1, Op1IsKill * RegState::Kill)
1272      .addImm(Imm);
1273    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1274            ResultReg).addReg(II.ImplicitDefs[0]);
1275  }
1276  return ResultReg;
1277}
1278
1279unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1280                                  const TargetRegisterClass *RC,
1281                                  uint64_t Imm) {
1282  unsigned ResultReg = createResultReg(RC);
1283  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1284
1285  if (II.getNumDefs() >= 1)
1286    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
1287  else {
1288    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
1289    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1290            ResultReg).addReg(II.ImplicitDefs[0]);
1291  }
1292  return ResultReg;
1293}
1294
1295unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
1296                                  const TargetRegisterClass *RC,
1297                                  uint64_t Imm1, uint64_t Imm2) {
1298  unsigned ResultReg = createResultReg(RC);
1299  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1300
1301  if (II.getNumDefs() >= 1)
1302    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1303      .addImm(Imm1).addImm(Imm2);
1304  else {
1305    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
1306    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1307            ResultReg).addReg(II.ImplicitDefs[0]);
1308  }
1309  return ResultReg;
1310}
1311
1312unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1313                                              unsigned Op0, bool Op0IsKill,
1314                                              uint32_t Idx) {
1315  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1316  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1317         "Cannot yet extract from physregs");
1318  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1319          DL, TII.get(TargetOpcode::COPY), ResultReg)
1320    .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1321  return ResultReg;
1322}
1323
1324/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1325/// with all but the least significant bit set to zero.
1326unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1327  return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1328}
1329
1330/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1331/// Emit code to ensure constants are copied into registers when needed.
1332/// Remember the virtual registers that need to be added to the Machine PHI
1333/// nodes as input.  We cannot just directly add them, because expansion
1334/// might result in multiple MBB's for one BB.  As such, the start of the
1335/// BB might correspond to a different MBB than the end.
1336bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1337  const TerminatorInst *TI = LLVMBB->getTerminator();
1338
1339  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1340  unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1341
1342  // Check successor nodes' PHI nodes that expect a constant to be available
1343  // from this block.
1344  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1345    const BasicBlock *SuccBB = TI->getSuccessor(succ);
1346    if (!isa<PHINode>(SuccBB->begin())) continue;
1347    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1348
1349    // If this terminator has multiple identical successors (common for
1350    // switches), only handle each succ once.
1351    if (!SuccsHandled.insert(SuccMBB)) continue;
1352
1353    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1354
1355    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1356    // nodes and Machine PHI nodes, but the incoming operands have not been
1357    // emitted yet.
1358    for (BasicBlock::const_iterator I = SuccBB->begin();
1359         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1360
1361      // Ignore dead phi's.
1362      if (PN->use_empty()) continue;
1363
1364      // Only handle legal types. Two interesting things to note here. First,
1365      // by bailing out early, we may leave behind some dead instructions,
1366      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1367      // own moves. Second, this check is necessary because FastISel doesn't
1368      // use CreateRegs to create registers, so it always creates
1369      // exactly one register for each non-void instruction.
1370      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1371      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1372        // Handle integer promotions, though, because they're common and easy.
1373        if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
1374          VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1375        else {
1376          FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1377          return false;
1378        }
1379      }
1380
1381      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1382
1383      // Set the DebugLoc for the copy. Prefer the location of the operand
1384      // if there is one; use the location of the PHI otherwise.
1385      DL = PN->getDebugLoc();
1386      if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1387        DL = Inst->getDebugLoc();
1388
1389      unsigned Reg = getRegForValue(PHIOp);
1390      if (Reg == 0) {
1391        FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1392        return false;
1393      }
1394      FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1395      DL = DebugLoc();
1396    }
1397  }
1398
1399  return true;
1400}
1401