FastISel.cpp revision 4efb3b2015b855a403ad0963000fe2b125059e6a
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/DwarfWriter.h"
51#include "llvm/Analysis/DebugInfo.h"
52#include "llvm/Target/TargetData.h"
53#include "llvm/Target/TargetInstrInfo.h"
54#include "llvm/Target/TargetLowering.h"
55#include "llvm/Target/TargetMachine.h"
56#include "SelectionDAGBuilder.h"
57#include "FunctionLoweringInfo.h"
58using namespace llvm;
59
60unsigned FastISel::getRegForValue(Value *V) {
61  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
62  // Don't handle non-simple values in FastISel.
63  if (!RealVT.isSimple())
64    return 0;
65
66  // Ignore illegal types. We must do this before looking up the value
67  // in ValueMap because Arguments are given virtual registers regardless
68  // of whether FastISel can handle them.
69  MVT VT = RealVT.getSimpleVT();
70  if (!TLI.isTypeLegal(VT)) {
71    // Promote MVT::i1 to a legal type though, because it's common and easy.
72    if (VT == MVT::i1)
73      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
74    else
75      return 0;
76  }
77
78  // Look up the value to see if we already have a register for it. We
79  // cache values defined by Instructions across blocks, and other values
80  // only locally. This is because Instructions already have the SSA
81  // def-dominatess-use requirement enforced.
82  if (ValueMap.count(V))
83    return ValueMap[V];
84  unsigned Reg = LocalValueMap[V];
85  if (Reg != 0)
86    return Reg;
87
88  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
89    if (CI->getValue().getActiveBits() <= 64)
90      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
91  } else if (isa<AllocaInst>(V)) {
92    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
93  } else if (isa<ConstantPointerNull>(V)) {
94    // Translate this as an integer zero so that it can be
95    // local-CSE'd with actual integer zeros.
96    Reg =
97      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
98  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
99    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
100
101    if (!Reg) {
102      const APFloat &Flt = CF->getValueAPF();
103      EVT IntVT = TLI.getPointerTy();
104
105      uint64_t x[2];
106      uint32_t IntBitWidth = IntVT.getSizeInBits();
107      bool isExact;
108      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
109                                APFloat::rmTowardZero, &isExact);
110      if (isExact) {
111        APInt IntVal(IntBitWidth, 2, x);
112
113        unsigned IntegerReg =
114          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
115        if (IntegerReg != 0)
116          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
117      }
118    }
119  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
120    if (!SelectOperator(CE, CE->getOpcode())) return 0;
121    Reg = LocalValueMap[CE];
122  } else if (isa<UndefValue>(V)) {
123    Reg = createResultReg(TLI.getRegClassFor(VT));
124    BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
125  }
126
127  // If target-independent code couldn't handle the value, give target-specific
128  // code a try.
129  if (!Reg && isa<Constant>(V))
130    Reg = TargetMaterializeConstant(cast<Constant>(V));
131
132  // Don't cache constant materializations in the general ValueMap.
133  // To do so would require tracking what uses they dominate.
134  if (Reg != 0)
135    LocalValueMap[V] = Reg;
136  return Reg;
137}
138
139unsigned FastISel::lookUpRegForValue(Value *V) {
140  // Look up the value to see if we already have a register for it. We
141  // cache values defined by Instructions across blocks, and other values
142  // only locally. This is because Instructions already have the SSA
143  // def-dominatess-use requirement enforced.
144  if (ValueMap.count(V))
145    return ValueMap[V];
146  return LocalValueMap[V];
147}
148
149/// UpdateValueMap - Update the value map to include the new mapping for this
150/// instruction, or insert an extra copy to get the result in a previous
151/// determined register.
152/// NOTE: This is only necessary because we might select a block that uses
153/// a value before we select the block that defines the value.  It might be
154/// possible to fix this by selecting blocks in reverse postorder.
155unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
156  if (!isa<Instruction>(I)) {
157    LocalValueMap[I] = Reg;
158    return Reg;
159  }
160
161  unsigned &AssignedReg = ValueMap[I];
162  if (AssignedReg == 0)
163    AssignedReg = Reg;
164  else if (Reg != AssignedReg) {
165    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
166    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
167                     Reg, RegClass, RegClass);
168  }
169  return AssignedReg;
170}
171
172unsigned FastISel::getRegForGEPIndex(Value *Idx) {
173  unsigned IdxN = getRegForValue(Idx);
174  if (IdxN == 0)
175    // Unhandled operand. Halt "fast" selection and bail.
176    return 0;
177
178  // If the index is smaller or larger than intptr_t, truncate or extend it.
179  MVT PtrVT = TLI.getPointerTy();
180  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
181  if (IdxVT.bitsLT(PtrVT))
182    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
183  else if (IdxVT.bitsGT(PtrVT))
184    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
185  return IdxN;
186}
187
188/// SelectBinaryOp - Select and emit code for a binary operator instruction,
189/// which has an opcode which directly corresponds to the given ISD opcode.
190///
191bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
192  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
193  if (VT == MVT::Other || !VT.isSimple())
194    // Unhandled type. Halt "fast" selection and bail.
195    return false;
196
197  // We only handle legal types. For example, on x86-32 the instruction
198  // selector contains all of the 64-bit instructions from x86-64,
199  // under the assumption that i64 won't be used if the target doesn't
200  // support it.
201  if (!TLI.isTypeLegal(VT)) {
202    // MVT::i1 is special. Allow AND, OR, or XOR because they
203    // don't require additional zeroing, which makes them easy.
204    if (VT == MVT::i1 &&
205        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
206         ISDOpcode == ISD::XOR))
207      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
208    else
209      return false;
210  }
211
212  unsigned Op0 = getRegForValue(I->getOperand(0));
213  if (Op0 == 0)
214    // Unhandled operand. Halt "fast" selection and bail.
215    return false;
216
217  // Check if the second operand is a constant and handle it appropriately.
218  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
219    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
220                                     ISDOpcode, Op0, CI->getZExtValue());
221    if (ResultReg != 0) {
222      // We successfully emitted code for the given LLVM Instruction.
223      UpdateValueMap(I, ResultReg);
224      return true;
225    }
226  }
227
228  // Check if the second operand is a constant float.
229  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
230    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
231                                     ISDOpcode, Op0, CF);
232    if (ResultReg != 0) {
233      // We successfully emitted code for the given LLVM Instruction.
234      UpdateValueMap(I, ResultReg);
235      return true;
236    }
237  }
238
239  unsigned Op1 = getRegForValue(I->getOperand(1));
240  if (Op1 == 0)
241    // Unhandled operand. Halt "fast" selection and bail.
242    return false;
243
244  // Now we have both operands in registers. Emit the instruction.
245  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
246                                   ISDOpcode, Op0, Op1);
247  if (ResultReg == 0)
248    // Target-specific code wasn't able to find a machine opcode for
249    // the given ISD opcode and type. Halt "fast" selection and bail.
250    return false;
251
252  // We successfully emitted code for the given LLVM Instruction.
253  UpdateValueMap(I, ResultReg);
254  return true;
255}
256
257bool FastISel::SelectGetElementPtr(User *I) {
258  unsigned N = getRegForValue(I->getOperand(0));
259  if (N == 0)
260    // Unhandled operand. Halt "fast" selection and bail.
261    return false;
262
263  const Type *Ty = I->getOperand(0)->getType();
264  MVT VT = TLI.getPointerTy();
265  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
266       OI != E; ++OI) {
267    Value *Idx = *OI;
268    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
269      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
270      if (Field) {
271        // N = N + Offset
272        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
273        // FIXME: This can be optimized by combining the add with a
274        // subsequent one.
275        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
276        if (N == 0)
277          // Unhandled operand. Halt "fast" selection and bail.
278          return false;
279      }
280      Ty = StTy->getElementType(Field);
281    } else {
282      Ty = cast<SequentialType>(Ty)->getElementType();
283
284      // If this is a constant subscript, handle it quickly.
285      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
286        if (CI->getZExtValue() == 0) continue;
287        uint64_t Offs =
288          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
289        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
290        if (N == 0)
291          // Unhandled operand. Halt "fast" selection and bail.
292          return false;
293        continue;
294      }
295
296      // N = N + Idx * ElementSize;
297      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
298      unsigned IdxN = getRegForGEPIndex(Idx);
299      if (IdxN == 0)
300        // Unhandled operand. Halt "fast" selection and bail.
301        return false;
302
303      if (ElementSize != 1) {
304        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
305        if (IdxN == 0)
306          // Unhandled operand. Halt "fast" selection and bail.
307          return false;
308      }
309      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
310      if (N == 0)
311        // Unhandled operand. Halt "fast" selection and bail.
312        return false;
313    }
314  }
315
316  // We successfully emitted code for the given LLVM Instruction.
317  UpdateValueMap(I, N);
318  return true;
319}
320
321bool FastISel::SelectCall(User *I) {
322  Function *F = cast<CallInst>(I)->getCalledFunction();
323  if (!F) return false;
324
325  unsigned IID = F->getIntrinsicID();
326  switch (IID) {
327  default: break;
328  case Intrinsic::dbg_declare: {
329    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
330    if (!DIDescriptor::ValidDebugInfo(DI->getVariable(), CodeGenOpt::None)||!DW
331        || !DW->ShouldEmitDwarfDebug())
332      return true;
333
334    Value *Address = DI->getAddress();
335    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
336      Address = BCI->getOperand(0);
337    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
338    // Don't handle byval struct arguments or VLAs, for example.
339    if (!AI) break;
340    DenseMap<const AllocaInst*, int>::iterator SI =
341      StaticAllocaMap.find(AI);
342    if (SI == StaticAllocaMap.end()) break; // VLAs.
343    int FI = SI->second;
344    if (MMI) {
345      if (MDNode *Dbg = DI->getMetadata("dbg"))
346        MMI->setVariableDbgInfo(DI->getVariable(), FI, Dbg);
347    }
348    return true;
349  }
350  case Intrinsic::eh_exception: {
351    EVT VT = TLI.getValueType(I->getType());
352    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
353    default: break;
354    case TargetLowering::Expand: {
355      assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
356      unsigned Reg = TLI.getExceptionAddressRegister();
357      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
358      unsigned ResultReg = createResultReg(RC);
359      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
360                                           Reg, RC, RC);
361      assert(InsertedCopy && "Can't copy address registers!");
362      InsertedCopy = InsertedCopy;
363      UpdateValueMap(I, ResultReg);
364      return true;
365    }
366    }
367    break;
368  }
369  case Intrinsic::eh_selector: {
370    EVT VT = TLI.getValueType(I->getType());
371    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
372    default: break;
373    case TargetLowering::Expand: {
374      if (MMI) {
375        if (MBB->isLandingPad())
376          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
377        else {
378#ifndef NDEBUG
379          CatchInfoLost.insert(cast<CallInst>(I));
380#endif
381          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
382          unsigned Reg = TLI.getExceptionSelectorRegister();
383          if (Reg) MBB->addLiveIn(Reg);
384        }
385
386        unsigned Reg = TLI.getExceptionSelectorRegister();
387        EVT SrcVT = TLI.getPointerTy();
388        const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
389        unsigned ResultReg = createResultReg(RC);
390        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Reg,
391                                             RC, RC);
392        assert(InsertedCopy && "Can't copy address registers!");
393        InsertedCopy = InsertedCopy;
394
395        // Cast the register to the type of the selector.
396        if (SrcVT.bitsGT(MVT::i32))
397          ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
398                                 ResultReg);
399        else if (SrcVT.bitsLT(MVT::i32))
400          ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
401                                 ISD::SIGN_EXTEND, ResultReg);
402        if (ResultReg == 0)
403          // Unhandled operand. Halt "fast" selection and bail.
404          return false;
405
406        UpdateValueMap(I, ResultReg);
407      } else {
408        unsigned ResultReg =
409          getRegForValue(Constant::getNullValue(I->getType()));
410        UpdateValueMap(I, ResultReg);
411      }
412      return true;
413    }
414    }
415    break;
416  }
417  }
418  return false;
419}
420
421bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
422  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
423  EVT DstVT = TLI.getValueType(I->getType());
424
425  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
426      DstVT == MVT::Other || !DstVT.isSimple())
427    // Unhandled type. Halt "fast" selection and bail.
428    return false;
429
430  // Check if the destination type is legal. Or as a special case,
431  // it may be i1 if we're doing a truncate because that's
432  // easy and somewhat common.
433  if (!TLI.isTypeLegal(DstVT))
434    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
435      // Unhandled type. Halt "fast" selection and bail.
436      return false;
437
438  // Check if the source operand is legal. Or as a special case,
439  // it may be i1 if we're doing zero-extension because that's
440  // easy and somewhat common.
441  if (!TLI.isTypeLegal(SrcVT))
442    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
443      // Unhandled type. Halt "fast" selection and bail.
444      return false;
445
446  unsigned InputReg = getRegForValue(I->getOperand(0));
447  if (!InputReg)
448    // Unhandled operand.  Halt "fast" selection and bail.
449    return false;
450
451  // If the operand is i1, arrange for the high bits in the register to be zero.
452  if (SrcVT == MVT::i1) {
453   SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
454   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
455   if (!InputReg)
456     return false;
457  }
458  // If the result is i1, truncate to the target's type for i1 first.
459  if (DstVT == MVT::i1)
460    DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
461
462  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
463                                  DstVT.getSimpleVT(),
464                                  Opcode,
465                                  InputReg);
466  if (!ResultReg)
467    return false;
468
469  UpdateValueMap(I, ResultReg);
470  return true;
471}
472
473bool FastISel::SelectBitCast(User *I) {
474  // If the bitcast doesn't change the type, just use the operand value.
475  if (I->getType() == I->getOperand(0)->getType()) {
476    unsigned Reg = getRegForValue(I->getOperand(0));
477    if (Reg == 0)
478      return false;
479    UpdateValueMap(I, Reg);
480    return true;
481  }
482
483  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
484  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
485  EVT DstVT = TLI.getValueType(I->getType());
486
487  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
488      DstVT == MVT::Other || !DstVT.isSimple() ||
489      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
490    // Unhandled type. Halt "fast" selection and bail.
491    return false;
492
493  unsigned Op0 = getRegForValue(I->getOperand(0));
494  if (Op0 == 0)
495    // Unhandled operand. Halt "fast" selection and bail.
496    return false;
497
498  // First, try to perform the bitcast by inserting a reg-reg copy.
499  unsigned ResultReg = 0;
500  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
501    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
502    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
503    ResultReg = createResultReg(DstClass);
504
505    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
506                                         Op0, DstClass, SrcClass);
507    if (!InsertedCopy)
508      ResultReg = 0;
509  }
510
511  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
512  if (!ResultReg)
513    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
514                           ISD::BIT_CONVERT, Op0);
515
516  if (!ResultReg)
517    return false;
518
519  UpdateValueMap(I, ResultReg);
520  return true;
521}
522
523bool
524FastISel::SelectInstruction(Instruction *I) {
525  // First, try doing target-independent selection.
526  if (SelectOperator(I, I->getOpcode()))
527    return true;
528
529  // Next, try calling the target to attempt to handle the instruction.
530  if (TargetSelectInstruction(I))
531    return true;
532
533  return false;
534}
535
536/// FastEmitBranch - Emit an unconditional branch to the given block,
537/// unless it is the immediate (fall-through) successor, and update
538/// the CFG.
539void
540FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
541  if (MBB->isLayoutSuccessor(MSucc)) {
542    // The unconditional fall-through case, which needs no instructions.
543  } else {
544    // The unconditional branch case.
545    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
546  }
547  MBB->addSuccessor(MSucc);
548}
549
550/// SelectFNeg - Emit an FNeg operation.
551///
552bool
553FastISel::SelectFNeg(User *I) {
554  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
555  if (OpReg == 0) return false;
556
557  // If the target has ISD::FNEG, use it.
558  EVT VT = TLI.getValueType(I->getType());
559  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
560                                  ISD::FNEG, OpReg);
561  if (ResultReg != 0) {
562    UpdateValueMap(I, ResultReg);
563    return true;
564  }
565
566  // Bitcast the value to integer, twiddle the sign bit with xor,
567  // and then bitcast it back to floating-point.
568  if (VT.getSizeInBits() > 64) return false;
569  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
570  if (!TLI.isTypeLegal(IntVT))
571    return false;
572
573  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
574                               ISD::BIT_CONVERT, OpReg);
575  if (IntReg == 0)
576    return false;
577
578  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, IntReg,
579                                       UINT64_C(1) << (VT.getSizeInBits()-1),
580                                       IntVT.getSimpleVT());
581  if (IntResultReg == 0)
582    return false;
583
584  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
585                         ISD::BIT_CONVERT, IntResultReg);
586  if (ResultReg == 0)
587    return false;
588
589  UpdateValueMap(I, ResultReg);
590  return true;
591}
592
593bool
594FastISel::SelectOperator(User *I, unsigned Opcode) {
595  switch (Opcode) {
596  case Instruction::Add:
597    return SelectBinaryOp(I, ISD::ADD);
598  case Instruction::FAdd:
599    return SelectBinaryOp(I, ISD::FADD);
600  case Instruction::Sub:
601    return SelectBinaryOp(I, ISD::SUB);
602  case Instruction::FSub:
603    // FNeg is currently represented in LLVM IR as a special case of FSub.
604    if (BinaryOperator::isFNeg(I))
605      return SelectFNeg(I);
606    return SelectBinaryOp(I, ISD::FSUB);
607  case Instruction::Mul:
608    return SelectBinaryOp(I, ISD::MUL);
609  case Instruction::FMul:
610    return SelectBinaryOp(I, ISD::FMUL);
611  case Instruction::SDiv:
612    return SelectBinaryOp(I, ISD::SDIV);
613  case Instruction::UDiv:
614    return SelectBinaryOp(I, ISD::UDIV);
615  case Instruction::FDiv:
616    return SelectBinaryOp(I, ISD::FDIV);
617  case Instruction::SRem:
618    return SelectBinaryOp(I, ISD::SREM);
619  case Instruction::URem:
620    return SelectBinaryOp(I, ISD::UREM);
621  case Instruction::FRem:
622    return SelectBinaryOp(I, ISD::FREM);
623  case Instruction::Shl:
624    return SelectBinaryOp(I, ISD::SHL);
625  case Instruction::LShr:
626    return SelectBinaryOp(I, ISD::SRL);
627  case Instruction::AShr:
628    return SelectBinaryOp(I, ISD::SRA);
629  case Instruction::And:
630    return SelectBinaryOp(I, ISD::AND);
631  case Instruction::Or:
632    return SelectBinaryOp(I, ISD::OR);
633  case Instruction::Xor:
634    return SelectBinaryOp(I, ISD::XOR);
635
636  case Instruction::GetElementPtr:
637    return SelectGetElementPtr(I);
638
639  case Instruction::Br: {
640    BranchInst *BI = cast<BranchInst>(I);
641
642    if (BI->isUnconditional()) {
643      BasicBlock *LLVMSucc = BI->getSuccessor(0);
644      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
645      FastEmitBranch(MSucc);
646      return true;
647    }
648
649    // Conditional branches are not handed yet.
650    // Halt "fast" selection and bail.
651    return false;
652  }
653
654  case Instruction::Unreachable:
655    // Nothing to emit.
656    return true;
657
658  case Instruction::PHI:
659    // PHI nodes are already emitted.
660    return true;
661
662  case Instruction::Alloca:
663    // FunctionLowering has the static-sized case covered.
664    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
665      return true;
666
667    // Dynamic-sized alloca is not handled yet.
668    return false;
669
670  case Instruction::Call:
671    return SelectCall(I);
672
673  case Instruction::BitCast:
674    return SelectBitCast(I);
675
676  case Instruction::FPToSI:
677    return SelectCast(I, ISD::FP_TO_SINT);
678  case Instruction::ZExt:
679    return SelectCast(I, ISD::ZERO_EXTEND);
680  case Instruction::SExt:
681    return SelectCast(I, ISD::SIGN_EXTEND);
682  case Instruction::Trunc:
683    return SelectCast(I, ISD::TRUNCATE);
684  case Instruction::SIToFP:
685    return SelectCast(I, ISD::SINT_TO_FP);
686
687  case Instruction::IntToPtr: // Deliberate fall-through.
688  case Instruction::PtrToInt: {
689    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
690    EVT DstVT = TLI.getValueType(I->getType());
691    if (DstVT.bitsGT(SrcVT))
692      return SelectCast(I, ISD::ZERO_EXTEND);
693    if (DstVT.bitsLT(SrcVT))
694      return SelectCast(I, ISD::TRUNCATE);
695    unsigned Reg = getRegForValue(I->getOperand(0));
696    if (Reg == 0) return false;
697    UpdateValueMap(I, Reg);
698    return true;
699  }
700
701  default:
702    // Unhandled instruction. Halt "fast" selection and bail.
703    return false;
704  }
705}
706
707FastISel::FastISel(MachineFunction &mf,
708                   MachineModuleInfo *mmi,
709                   DwarfWriter *dw,
710                   DenseMap<const Value *, unsigned> &vm,
711                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
712                   DenseMap<const AllocaInst *, int> &am
713#ifndef NDEBUG
714                   , SmallSet<Instruction*, 8> &cil
715#endif
716                   )
717  : MBB(0),
718    ValueMap(vm),
719    MBBMap(bm),
720    StaticAllocaMap(am),
721#ifndef NDEBUG
722    CatchInfoLost(cil),
723#endif
724    MF(mf),
725    MMI(mmi),
726    DW(dw),
727    MRI(MF.getRegInfo()),
728    MFI(*MF.getFrameInfo()),
729    MCP(*MF.getConstantPool()),
730    TM(MF.getTarget()),
731    TD(*TM.getTargetData()),
732    TII(*TM.getInstrInfo()),
733    TLI(*TM.getTargetLowering()) {
734}
735
736FastISel::~FastISel() {}
737
738unsigned FastISel::FastEmit_(MVT, MVT,
739                             ISD::NodeType) {
740  return 0;
741}
742
743unsigned FastISel::FastEmit_r(MVT, MVT,
744                              ISD::NodeType, unsigned /*Op0*/) {
745  return 0;
746}
747
748unsigned FastISel::FastEmit_rr(MVT, MVT,
749                               ISD::NodeType, unsigned /*Op0*/,
750                               unsigned /*Op0*/) {
751  return 0;
752}
753
754unsigned FastISel::FastEmit_i(MVT, MVT, ISD::NodeType, uint64_t /*Imm*/) {
755  return 0;
756}
757
758unsigned FastISel::FastEmit_f(MVT, MVT,
759                              ISD::NodeType, ConstantFP * /*FPImm*/) {
760  return 0;
761}
762
763unsigned FastISel::FastEmit_ri(MVT, MVT,
764                               ISD::NodeType, unsigned /*Op0*/,
765                               uint64_t /*Imm*/) {
766  return 0;
767}
768
769unsigned FastISel::FastEmit_rf(MVT, MVT,
770                               ISD::NodeType, unsigned /*Op0*/,
771                               ConstantFP * /*FPImm*/) {
772  return 0;
773}
774
775unsigned FastISel::FastEmit_rri(MVT, MVT,
776                                ISD::NodeType,
777                                unsigned /*Op0*/, unsigned /*Op1*/,
778                                uint64_t /*Imm*/) {
779  return 0;
780}
781
782/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
783/// to emit an instruction with an immediate operand using FastEmit_ri.
784/// If that fails, it materializes the immediate into a register and try
785/// FastEmit_rr instead.
786unsigned FastISel::FastEmit_ri_(MVT VT, ISD::NodeType Opcode,
787                                unsigned Op0, uint64_t Imm,
788                                MVT ImmType) {
789  // First check if immediate type is legal. If not, we can't use the ri form.
790  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
791  if (ResultReg != 0)
792    return ResultReg;
793  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
794  if (MaterialReg == 0)
795    return 0;
796  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
797}
798
799/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
800/// to emit an instruction with a floating-point immediate operand using
801/// FastEmit_rf. If that fails, it materializes the immediate into a register
802/// and try FastEmit_rr instead.
803unsigned FastISel::FastEmit_rf_(MVT VT, ISD::NodeType Opcode,
804                                unsigned Op0, ConstantFP *FPImm,
805                                MVT ImmType) {
806  // First check if immediate type is legal. If not, we can't use the rf form.
807  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
808  if (ResultReg != 0)
809    return ResultReg;
810
811  // Materialize the constant in a register.
812  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
813  if (MaterialReg == 0) {
814    // If the target doesn't have a way to directly enter a floating-point
815    // value into a register, use an alternate approach.
816    // TODO: The current approach only supports floating-point constants
817    // that can be constructed by conversion from integer values. This should
818    // be replaced by code that creates a load from a constant-pool entry,
819    // which will require some target-specific work.
820    const APFloat &Flt = FPImm->getValueAPF();
821    EVT IntVT = TLI.getPointerTy();
822
823    uint64_t x[2];
824    uint32_t IntBitWidth = IntVT.getSizeInBits();
825    bool isExact;
826    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
827                             APFloat::rmTowardZero, &isExact);
828    if (!isExact)
829      return 0;
830    APInt IntVal(IntBitWidth, 2, x);
831
832    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
833                                     ISD::Constant, IntVal.getZExtValue());
834    if (IntegerReg == 0)
835      return 0;
836    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
837                             ISD::SINT_TO_FP, IntegerReg);
838    if (MaterialReg == 0)
839      return 0;
840  }
841  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
842}
843
844unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
845  return MRI.createVirtualRegister(RC);
846}
847
848unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
849                                 const TargetRegisterClass* RC) {
850  unsigned ResultReg = createResultReg(RC);
851  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
852
853  BuildMI(MBB, DL, II, ResultReg);
854  return ResultReg;
855}
856
857unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
858                                  const TargetRegisterClass *RC,
859                                  unsigned Op0) {
860  unsigned ResultReg = createResultReg(RC);
861  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
862
863  if (II.getNumDefs() >= 1)
864    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
865  else {
866    BuildMI(MBB, DL, II).addReg(Op0);
867    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
868                                         II.ImplicitDefs[0], RC, RC);
869    if (!InsertedCopy)
870      ResultReg = 0;
871  }
872
873  return ResultReg;
874}
875
876unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
877                                   const TargetRegisterClass *RC,
878                                   unsigned Op0, unsigned Op1) {
879  unsigned ResultReg = createResultReg(RC);
880  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
881
882  if (II.getNumDefs() >= 1)
883    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
884  else {
885    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
886    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
887                                         II.ImplicitDefs[0], RC, RC);
888    if (!InsertedCopy)
889      ResultReg = 0;
890  }
891  return ResultReg;
892}
893
894unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
895                                   const TargetRegisterClass *RC,
896                                   unsigned Op0, uint64_t Imm) {
897  unsigned ResultReg = createResultReg(RC);
898  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
899
900  if (II.getNumDefs() >= 1)
901    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
902  else {
903    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
904    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
905                                         II.ImplicitDefs[0], RC, RC);
906    if (!InsertedCopy)
907      ResultReg = 0;
908  }
909  return ResultReg;
910}
911
912unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
913                                   const TargetRegisterClass *RC,
914                                   unsigned Op0, ConstantFP *FPImm) {
915  unsigned ResultReg = createResultReg(RC);
916  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
917
918  if (II.getNumDefs() >= 1)
919    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
920  else {
921    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
922    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
923                                         II.ImplicitDefs[0], RC, RC);
924    if (!InsertedCopy)
925      ResultReg = 0;
926  }
927  return ResultReg;
928}
929
930unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
931                                    const TargetRegisterClass *RC,
932                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
933  unsigned ResultReg = createResultReg(RC);
934  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
935
936  if (II.getNumDefs() >= 1)
937    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
938  else {
939    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
940    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
941                                         II.ImplicitDefs[0], RC, RC);
942    if (!InsertedCopy)
943      ResultReg = 0;
944  }
945  return ResultReg;
946}
947
948unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
949                                  const TargetRegisterClass *RC,
950                                  uint64_t Imm) {
951  unsigned ResultReg = createResultReg(RC);
952  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
953
954  if (II.getNumDefs() >= 1)
955    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
956  else {
957    BuildMI(MBB, DL, II).addImm(Imm);
958    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
959                                         II.ImplicitDefs[0], RC, RC);
960    if (!InsertedCopy)
961      ResultReg = 0;
962  }
963  return ResultReg;
964}
965
966unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
967                                              unsigned Op0, uint32_t Idx) {
968  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
969
970  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
971  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
972
973  if (II.getNumDefs() >= 1)
974    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
975  else {
976    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
977    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
978                                         II.ImplicitDefs[0], RC, RC);
979    if (!InsertedCopy)
980      ResultReg = 0;
981  }
982  return ResultReg;
983}
984
985/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
986/// with all but the least significant bit set to zero.
987unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op) {
988  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
989}
990