FastISel.cpp revision 518bb53485df640d7b7e3f6b0544099020c42aa7
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/DwarfWriter.h"
51#include "llvm/Analysis/DebugInfo.h"
52#include "llvm/Target/TargetData.h"
53#include "llvm/Target/TargetInstrInfo.h"
54#include "llvm/Target/TargetLowering.h"
55#include "llvm/Target/TargetMachine.h"
56#include "SelectionDAGBuilder.h"
57#include "FunctionLoweringInfo.h"
58using namespace llvm;
59
60unsigned FastISel::getRegForValue(Value *V) {
61  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
62  // Don't handle non-simple values in FastISel.
63  if (!RealVT.isSimple())
64    return 0;
65
66  // Ignore illegal types. We must do this before looking up the value
67  // in ValueMap because Arguments are given virtual registers regardless
68  // of whether FastISel can handle them.
69  MVT VT = RealVT.getSimpleVT();
70  if (!TLI.isTypeLegal(VT)) {
71    // Promote MVT::i1 to a legal type though, because it's common and easy.
72    if (VT == MVT::i1)
73      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
74    else
75      return 0;
76  }
77
78  // Look up the value to see if we already have a register for it. We
79  // cache values defined by Instructions across blocks, and other values
80  // only locally. This is because Instructions already have the SSA
81  // def-dominates-use requirement enforced.
82  if (ValueMap.count(V))
83    return ValueMap[V];
84  unsigned Reg = LocalValueMap[V];
85  if (Reg != 0)
86    return Reg;
87
88  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
89    if (CI->getValue().getActiveBits() <= 64)
90      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
91  } else if (isa<AllocaInst>(V)) {
92    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
93  } else if (isa<ConstantPointerNull>(V)) {
94    // Translate this as an integer zero so that it can be
95    // local-CSE'd with actual integer zeros.
96    Reg =
97      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
98  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
99    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
100
101    if (!Reg) {
102      const APFloat &Flt = CF->getValueAPF();
103      EVT IntVT = TLI.getPointerTy();
104
105      uint64_t x[2];
106      uint32_t IntBitWidth = IntVT.getSizeInBits();
107      bool isExact;
108      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
109                                APFloat::rmTowardZero, &isExact);
110      if (isExact) {
111        APInt IntVal(IntBitWidth, 2, x);
112
113        unsigned IntegerReg =
114          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
115        if (IntegerReg != 0)
116          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
117      }
118    }
119  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
120    if (!SelectOperator(CE, CE->getOpcode())) return 0;
121    Reg = LocalValueMap[CE];
122  } else if (isa<UndefValue>(V)) {
123    Reg = createResultReg(TLI.getRegClassFor(VT));
124    BuildMI(MBB, DL, TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
125  }
126
127  // If target-independent code couldn't handle the value, give target-specific
128  // code a try.
129  if (!Reg && isa<Constant>(V))
130    Reg = TargetMaterializeConstant(cast<Constant>(V));
131
132  // Don't cache constant materializations in the general ValueMap.
133  // To do so would require tracking what uses they dominate.
134  if (Reg != 0)
135    LocalValueMap[V] = Reg;
136  return Reg;
137}
138
139unsigned FastISel::lookUpRegForValue(Value *V) {
140  // Look up the value to see if we already have a register for it. We
141  // cache values defined by Instructions across blocks, and other values
142  // only locally. This is because Instructions already have the SSA
143  // def-dominatess-use requirement enforced.
144  if (ValueMap.count(V))
145    return ValueMap[V];
146  return LocalValueMap[V];
147}
148
149/// UpdateValueMap - Update the value map to include the new mapping for this
150/// instruction, or insert an extra copy to get the result in a previous
151/// determined register.
152/// NOTE: This is only necessary because we might select a block that uses
153/// a value before we select the block that defines the value.  It might be
154/// possible to fix this by selecting blocks in reverse postorder.
155unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
156  if (!isa<Instruction>(I)) {
157    LocalValueMap[I] = Reg;
158    return Reg;
159  }
160
161  unsigned &AssignedReg = ValueMap[I];
162  if (AssignedReg == 0)
163    AssignedReg = Reg;
164  else if (Reg != AssignedReg) {
165    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
166    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
167                     Reg, RegClass, RegClass);
168  }
169  return AssignedReg;
170}
171
172unsigned FastISel::getRegForGEPIndex(Value *Idx) {
173  unsigned IdxN = getRegForValue(Idx);
174  if (IdxN == 0)
175    // Unhandled operand. Halt "fast" selection and bail.
176    return 0;
177
178  // If the index is smaller or larger than intptr_t, truncate or extend it.
179  MVT PtrVT = TLI.getPointerTy();
180  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
181  if (IdxVT.bitsLT(PtrVT))
182    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
183  else if (IdxVT.bitsGT(PtrVT))
184    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
185  return IdxN;
186}
187
188/// SelectBinaryOp - Select and emit code for a binary operator instruction,
189/// which has an opcode which directly corresponds to the given ISD opcode.
190///
191bool FastISel::SelectBinaryOp(User *I, unsigned ISDOpcode) {
192  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
193  if (VT == MVT::Other || !VT.isSimple())
194    // Unhandled type. Halt "fast" selection and bail.
195    return false;
196
197  // We only handle legal types. For example, on x86-32 the instruction
198  // selector contains all of the 64-bit instructions from x86-64,
199  // under the assumption that i64 won't be used if the target doesn't
200  // support it.
201  if (!TLI.isTypeLegal(VT)) {
202    // MVT::i1 is special. Allow AND, OR, or XOR because they
203    // don't require additional zeroing, which makes them easy.
204    if (VT == MVT::i1 &&
205        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
206         ISDOpcode == ISD::XOR))
207      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
208    else
209      return false;
210  }
211
212  unsigned Op0 = getRegForValue(I->getOperand(0));
213  if (Op0 == 0)
214    // Unhandled operand. Halt "fast" selection and bail.
215    return false;
216
217  // Check if the second operand is a constant and handle it appropriately.
218  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
219    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
220                                     ISDOpcode, Op0, CI->getZExtValue());
221    if (ResultReg != 0) {
222      // We successfully emitted code for the given LLVM Instruction.
223      UpdateValueMap(I, ResultReg);
224      return true;
225    }
226  }
227
228  // Check if the second operand is a constant float.
229  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
230    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
231                                     ISDOpcode, Op0, CF);
232    if (ResultReg != 0) {
233      // We successfully emitted code for the given LLVM Instruction.
234      UpdateValueMap(I, ResultReg);
235      return true;
236    }
237  }
238
239  unsigned Op1 = getRegForValue(I->getOperand(1));
240  if (Op1 == 0)
241    // Unhandled operand. Halt "fast" selection and bail.
242    return false;
243
244  // Now we have both operands in registers. Emit the instruction.
245  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
246                                   ISDOpcode, Op0, Op1);
247  if (ResultReg == 0)
248    // Target-specific code wasn't able to find a machine opcode for
249    // the given ISD opcode and type. Halt "fast" selection and bail.
250    return false;
251
252  // We successfully emitted code for the given LLVM Instruction.
253  UpdateValueMap(I, ResultReg);
254  return true;
255}
256
257bool FastISel::SelectGetElementPtr(User *I) {
258  unsigned N = getRegForValue(I->getOperand(0));
259  if (N == 0)
260    // Unhandled operand. Halt "fast" selection and bail.
261    return false;
262
263  const Type *Ty = I->getOperand(0)->getType();
264  MVT VT = TLI.getPointerTy();
265  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
266       OI != E; ++OI) {
267    Value *Idx = *OI;
268    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
269      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
270      if (Field) {
271        // N = N + Offset
272        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
273        // FIXME: This can be optimized by combining the add with a
274        // subsequent one.
275        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
276        if (N == 0)
277          // Unhandled operand. Halt "fast" selection and bail.
278          return false;
279      }
280      Ty = StTy->getElementType(Field);
281    } else {
282      Ty = cast<SequentialType>(Ty)->getElementType();
283
284      // If this is a constant subscript, handle it quickly.
285      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
286        if (CI->getZExtValue() == 0) continue;
287        uint64_t Offs =
288          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
289        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
290        if (N == 0)
291          // Unhandled operand. Halt "fast" selection and bail.
292          return false;
293        continue;
294      }
295
296      // N = N + Idx * ElementSize;
297      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
298      unsigned IdxN = getRegForGEPIndex(Idx);
299      if (IdxN == 0)
300        // Unhandled operand. Halt "fast" selection and bail.
301        return false;
302
303      if (ElementSize != 1) {
304        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
305        if (IdxN == 0)
306          // Unhandled operand. Halt "fast" selection and bail.
307          return false;
308      }
309      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
310      if (N == 0)
311        // Unhandled operand. Halt "fast" selection and bail.
312        return false;
313    }
314  }
315
316  // We successfully emitted code for the given LLVM Instruction.
317  UpdateValueMap(I, N);
318  return true;
319}
320
321bool FastISel::SelectCall(User *I) {
322  Function *F = cast<CallInst>(I)->getCalledFunction();
323  if (!F) return false;
324
325  unsigned IID = F->getIntrinsicID();
326  switch (IID) {
327  default: break;
328  case Intrinsic::dbg_declare: {
329    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
330    if (!DIDescriptor::ValidDebugInfo(DI->getVariable(), CodeGenOpt::None)||!DW
331        || !DW->ShouldEmitDwarfDebug())
332      return true;
333
334    Value *Address = DI->getAddress();
335    if (!Address)
336      return true;
337    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
338    // Don't handle byval struct arguments or VLAs, for example.
339    if (!AI) break;
340    DenseMap<const AllocaInst*, int>::iterator SI =
341      StaticAllocaMap.find(AI);
342    if (SI == StaticAllocaMap.end()) break; // VLAs.
343    int FI = SI->second;
344    if (MMI) {
345      if (MDNode *Dbg = DI->getMetadata("dbg"))
346        MMI->setVariableDbgInfo(DI->getVariable(), FI, Dbg);
347    }
348    // Building the map above is target independent.  Generating DEBUG_VALUE
349    // inline is target dependent; do this now.
350    (void)TargetSelectInstruction(cast<Instruction>(I));
351    return true;
352  }
353  case Intrinsic::eh_exception: {
354    EVT VT = TLI.getValueType(I->getType());
355    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
356    default: break;
357    case TargetLowering::Expand: {
358      assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
359      unsigned Reg = TLI.getExceptionAddressRegister();
360      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
361      unsigned ResultReg = createResultReg(RC);
362      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
363                                           Reg, RC, RC);
364      assert(InsertedCopy && "Can't copy address registers!");
365      InsertedCopy = InsertedCopy;
366      UpdateValueMap(I, ResultReg);
367      return true;
368    }
369    }
370    break;
371  }
372  case Intrinsic::eh_selector: {
373    EVT VT = TLI.getValueType(I->getType());
374    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
375    default: break;
376    case TargetLowering::Expand: {
377      if (MMI) {
378        if (MBB->isLandingPad())
379          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
380        else {
381#ifndef NDEBUG
382          CatchInfoLost.insert(cast<CallInst>(I));
383#endif
384          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
385          unsigned Reg = TLI.getExceptionSelectorRegister();
386          if (Reg) MBB->addLiveIn(Reg);
387        }
388
389        unsigned Reg = TLI.getExceptionSelectorRegister();
390        EVT SrcVT = TLI.getPointerTy();
391        const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
392        unsigned ResultReg = createResultReg(RC);
393        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Reg,
394                                             RC, RC);
395        assert(InsertedCopy && "Can't copy address registers!");
396        InsertedCopy = InsertedCopy;
397
398        // Cast the register to the type of the selector.
399        if (SrcVT.bitsGT(MVT::i32))
400          ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
401                                 ResultReg);
402        else if (SrcVT.bitsLT(MVT::i32))
403          ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
404                                 ISD::SIGN_EXTEND, ResultReg);
405        if (ResultReg == 0)
406          // Unhandled operand. Halt "fast" selection and bail.
407          return false;
408
409        UpdateValueMap(I, ResultReg);
410      } else {
411        unsigned ResultReg =
412          getRegForValue(Constant::getNullValue(I->getType()));
413        UpdateValueMap(I, ResultReg);
414      }
415      return true;
416    }
417    }
418    break;
419  }
420  }
421  return false;
422}
423
424bool FastISel::SelectCast(User *I, unsigned Opcode) {
425  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
426  EVT DstVT = TLI.getValueType(I->getType());
427
428  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
429      DstVT == MVT::Other || !DstVT.isSimple())
430    // Unhandled type. Halt "fast" selection and bail.
431    return false;
432
433  // Check if the destination type is legal. Or as a special case,
434  // it may be i1 if we're doing a truncate because that's
435  // easy and somewhat common.
436  if (!TLI.isTypeLegal(DstVT))
437    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
438      // Unhandled type. Halt "fast" selection and bail.
439      return false;
440
441  // Check if the source operand is legal. Or as a special case,
442  // it may be i1 if we're doing zero-extension because that's
443  // easy and somewhat common.
444  if (!TLI.isTypeLegal(SrcVT))
445    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
446      // Unhandled type. Halt "fast" selection and bail.
447      return false;
448
449  unsigned InputReg = getRegForValue(I->getOperand(0));
450  if (!InputReg)
451    // Unhandled operand.  Halt "fast" selection and bail.
452    return false;
453
454  // If the operand is i1, arrange for the high bits in the register to be zero.
455  if (SrcVT == MVT::i1) {
456   SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
457   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
458   if (!InputReg)
459     return false;
460  }
461  // If the result is i1, truncate to the target's type for i1 first.
462  if (DstVT == MVT::i1)
463    DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
464
465  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
466                                  DstVT.getSimpleVT(),
467                                  Opcode,
468                                  InputReg);
469  if (!ResultReg)
470    return false;
471
472  UpdateValueMap(I, ResultReg);
473  return true;
474}
475
476bool FastISel::SelectBitCast(User *I) {
477  // If the bitcast doesn't change the type, just use the operand value.
478  if (I->getType() == I->getOperand(0)->getType()) {
479    unsigned Reg = getRegForValue(I->getOperand(0));
480    if (Reg == 0)
481      return false;
482    UpdateValueMap(I, Reg);
483    return true;
484  }
485
486  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
487  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
488  EVT DstVT = TLI.getValueType(I->getType());
489
490  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
491      DstVT == MVT::Other || !DstVT.isSimple() ||
492      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
493    // Unhandled type. Halt "fast" selection and bail.
494    return false;
495
496  unsigned Op0 = getRegForValue(I->getOperand(0));
497  if (Op0 == 0)
498    // Unhandled operand. Halt "fast" selection and bail.
499    return false;
500
501  // First, try to perform the bitcast by inserting a reg-reg copy.
502  unsigned ResultReg = 0;
503  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
504    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
505    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
506    ResultReg = createResultReg(DstClass);
507
508    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
509                                         Op0, DstClass, SrcClass);
510    if (!InsertedCopy)
511      ResultReg = 0;
512  }
513
514  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
515  if (!ResultReg)
516    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
517                           ISD::BIT_CONVERT, Op0);
518
519  if (!ResultReg)
520    return false;
521
522  UpdateValueMap(I, ResultReg);
523  return true;
524}
525
526bool
527FastISel::SelectInstruction(Instruction *I) {
528  // First, try doing target-independent selection.
529  if (SelectOperator(I, I->getOpcode()))
530    return true;
531
532  // Next, try calling the target to attempt to handle the instruction.
533  if (TargetSelectInstruction(I))
534    return true;
535
536  return false;
537}
538
539/// FastEmitBranch - Emit an unconditional branch to the given block,
540/// unless it is the immediate (fall-through) successor, and update
541/// the CFG.
542void
543FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
544  if (MBB->isLayoutSuccessor(MSucc)) {
545    // The unconditional fall-through case, which needs no instructions.
546  } else {
547    // The unconditional branch case.
548    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
549  }
550  MBB->addSuccessor(MSucc);
551}
552
553/// SelectFNeg - Emit an FNeg operation.
554///
555bool
556FastISel::SelectFNeg(User *I) {
557  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
558  if (OpReg == 0) return false;
559
560  // If the target has ISD::FNEG, use it.
561  EVT VT = TLI.getValueType(I->getType());
562  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
563                                  ISD::FNEG, OpReg);
564  if (ResultReg != 0) {
565    UpdateValueMap(I, ResultReg);
566    return true;
567  }
568
569  // Bitcast the value to integer, twiddle the sign bit with xor,
570  // and then bitcast it back to floating-point.
571  if (VT.getSizeInBits() > 64) return false;
572  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
573  if (!TLI.isTypeLegal(IntVT))
574    return false;
575
576  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
577                               ISD::BIT_CONVERT, OpReg);
578  if (IntReg == 0)
579    return false;
580
581  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, IntReg,
582                                       UINT64_C(1) << (VT.getSizeInBits()-1),
583                                       IntVT.getSimpleVT());
584  if (IntResultReg == 0)
585    return false;
586
587  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
588                         ISD::BIT_CONVERT, IntResultReg);
589  if (ResultReg == 0)
590    return false;
591
592  UpdateValueMap(I, ResultReg);
593  return true;
594}
595
596bool
597FastISel::SelectOperator(User *I, unsigned Opcode) {
598  switch (Opcode) {
599  case Instruction::Add:
600    return SelectBinaryOp(I, ISD::ADD);
601  case Instruction::FAdd:
602    return SelectBinaryOp(I, ISD::FADD);
603  case Instruction::Sub:
604    return SelectBinaryOp(I, ISD::SUB);
605  case Instruction::FSub:
606    // FNeg is currently represented in LLVM IR as a special case of FSub.
607    if (BinaryOperator::isFNeg(I))
608      return SelectFNeg(I);
609    return SelectBinaryOp(I, ISD::FSUB);
610  case Instruction::Mul:
611    return SelectBinaryOp(I, ISD::MUL);
612  case Instruction::FMul:
613    return SelectBinaryOp(I, ISD::FMUL);
614  case Instruction::SDiv:
615    return SelectBinaryOp(I, ISD::SDIV);
616  case Instruction::UDiv:
617    return SelectBinaryOp(I, ISD::UDIV);
618  case Instruction::FDiv:
619    return SelectBinaryOp(I, ISD::FDIV);
620  case Instruction::SRem:
621    return SelectBinaryOp(I, ISD::SREM);
622  case Instruction::URem:
623    return SelectBinaryOp(I, ISD::UREM);
624  case Instruction::FRem:
625    return SelectBinaryOp(I, ISD::FREM);
626  case Instruction::Shl:
627    return SelectBinaryOp(I, ISD::SHL);
628  case Instruction::LShr:
629    return SelectBinaryOp(I, ISD::SRL);
630  case Instruction::AShr:
631    return SelectBinaryOp(I, ISD::SRA);
632  case Instruction::And:
633    return SelectBinaryOp(I, ISD::AND);
634  case Instruction::Or:
635    return SelectBinaryOp(I, ISD::OR);
636  case Instruction::Xor:
637    return SelectBinaryOp(I, ISD::XOR);
638
639  case Instruction::GetElementPtr:
640    return SelectGetElementPtr(I);
641
642  case Instruction::Br: {
643    BranchInst *BI = cast<BranchInst>(I);
644
645    if (BI->isUnconditional()) {
646      BasicBlock *LLVMSucc = BI->getSuccessor(0);
647      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
648      FastEmitBranch(MSucc);
649      return true;
650    }
651
652    // Conditional branches are not handed yet.
653    // Halt "fast" selection and bail.
654    return false;
655  }
656
657  case Instruction::Unreachable:
658    // Nothing to emit.
659    return true;
660
661  case Instruction::PHI:
662    // PHI nodes are already emitted.
663    return true;
664
665  case Instruction::Alloca:
666    // FunctionLowering has the static-sized case covered.
667    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
668      return true;
669
670    // Dynamic-sized alloca is not handled yet.
671    return false;
672
673  case Instruction::Call:
674    return SelectCall(I);
675
676  case Instruction::BitCast:
677    return SelectBitCast(I);
678
679  case Instruction::FPToSI:
680    return SelectCast(I, ISD::FP_TO_SINT);
681  case Instruction::ZExt:
682    return SelectCast(I, ISD::ZERO_EXTEND);
683  case Instruction::SExt:
684    return SelectCast(I, ISD::SIGN_EXTEND);
685  case Instruction::Trunc:
686    return SelectCast(I, ISD::TRUNCATE);
687  case Instruction::SIToFP:
688    return SelectCast(I, ISD::SINT_TO_FP);
689
690  case Instruction::IntToPtr: // Deliberate fall-through.
691  case Instruction::PtrToInt: {
692    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
693    EVT DstVT = TLI.getValueType(I->getType());
694    if (DstVT.bitsGT(SrcVT))
695      return SelectCast(I, ISD::ZERO_EXTEND);
696    if (DstVT.bitsLT(SrcVT))
697      return SelectCast(I, ISD::TRUNCATE);
698    unsigned Reg = getRegForValue(I->getOperand(0));
699    if (Reg == 0) return false;
700    UpdateValueMap(I, Reg);
701    return true;
702  }
703
704  default:
705    // Unhandled instruction. Halt "fast" selection and bail.
706    return false;
707  }
708}
709
710FastISel::FastISel(MachineFunction &mf,
711                   MachineModuleInfo *mmi,
712                   DwarfWriter *dw,
713                   DenseMap<const Value *, unsigned> &vm,
714                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
715                   DenseMap<const AllocaInst *, int> &am
716#ifndef NDEBUG
717                   , SmallSet<Instruction*, 8> &cil
718#endif
719                   )
720  : MBB(0),
721    ValueMap(vm),
722    MBBMap(bm),
723    StaticAllocaMap(am),
724#ifndef NDEBUG
725    CatchInfoLost(cil),
726#endif
727    MF(mf),
728    MMI(mmi),
729    DW(dw),
730    MRI(MF.getRegInfo()),
731    MFI(*MF.getFrameInfo()),
732    MCP(*MF.getConstantPool()),
733    TM(MF.getTarget()),
734    TD(*TM.getTargetData()),
735    TII(*TM.getInstrInfo()),
736    TLI(*TM.getTargetLowering()) {
737}
738
739FastISel::~FastISel() {}
740
741unsigned FastISel::FastEmit_(MVT, MVT,
742                             unsigned) {
743  return 0;
744}
745
746unsigned FastISel::FastEmit_r(MVT, MVT,
747                              unsigned, unsigned /*Op0*/) {
748  return 0;
749}
750
751unsigned FastISel::FastEmit_rr(MVT, MVT,
752                               unsigned, unsigned /*Op0*/,
753                               unsigned /*Op0*/) {
754  return 0;
755}
756
757unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
758  return 0;
759}
760
761unsigned FastISel::FastEmit_f(MVT, MVT,
762                              unsigned, ConstantFP * /*FPImm*/) {
763  return 0;
764}
765
766unsigned FastISel::FastEmit_ri(MVT, MVT,
767                               unsigned, unsigned /*Op0*/,
768                               uint64_t /*Imm*/) {
769  return 0;
770}
771
772unsigned FastISel::FastEmit_rf(MVT, MVT,
773                               unsigned, unsigned /*Op0*/,
774                               ConstantFP * /*FPImm*/) {
775  return 0;
776}
777
778unsigned FastISel::FastEmit_rri(MVT, MVT,
779                                unsigned,
780                                unsigned /*Op0*/, unsigned /*Op1*/,
781                                uint64_t /*Imm*/) {
782  return 0;
783}
784
785/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
786/// to emit an instruction with an immediate operand using FastEmit_ri.
787/// If that fails, it materializes the immediate into a register and try
788/// FastEmit_rr instead.
789unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
790                                unsigned Op0, uint64_t Imm,
791                                MVT ImmType) {
792  // First check if immediate type is legal. If not, we can't use the ri form.
793  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
794  if (ResultReg != 0)
795    return ResultReg;
796  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
797  if (MaterialReg == 0)
798    return 0;
799  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
800}
801
802/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
803/// to emit an instruction with a floating-point immediate operand using
804/// FastEmit_rf. If that fails, it materializes the immediate into a register
805/// and try FastEmit_rr instead.
806unsigned FastISel::FastEmit_rf_(MVT VT, unsigned Opcode,
807                                unsigned Op0, ConstantFP *FPImm,
808                                MVT ImmType) {
809  // First check if immediate type is legal. If not, we can't use the rf form.
810  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
811  if (ResultReg != 0)
812    return ResultReg;
813
814  // Materialize the constant in a register.
815  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
816  if (MaterialReg == 0) {
817    // If the target doesn't have a way to directly enter a floating-point
818    // value into a register, use an alternate approach.
819    // TODO: The current approach only supports floating-point constants
820    // that can be constructed by conversion from integer values. This should
821    // be replaced by code that creates a load from a constant-pool entry,
822    // which will require some target-specific work.
823    const APFloat &Flt = FPImm->getValueAPF();
824    EVT IntVT = TLI.getPointerTy();
825
826    uint64_t x[2];
827    uint32_t IntBitWidth = IntVT.getSizeInBits();
828    bool isExact;
829    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
830                             APFloat::rmTowardZero, &isExact);
831    if (!isExact)
832      return 0;
833    APInt IntVal(IntBitWidth, 2, x);
834
835    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
836                                     ISD::Constant, IntVal.getZExtValue());
837    if (IntegerReg == 0)
838      return 0;
839    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
840                             ISD::SINT_TO_FP, IntegerReg);
841    if (MaterialReg == 0)
842      return 0;
843  }
844  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
845}
846
847unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
848  return MRI.createVirtualRegister(RC);
849}
850
851unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
852                                 const TargetRegisterClass* RC) {
853  unsigned ResultReg = createResultReg(RC);
854  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
855
856  BuildMI(MBB, DL, II, ResultReg);
857  return ResultReg;
858}
859
860unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
861                                  const TargetRegisterClass *RC,
862                                  unsigned Op0) {
863  unsigned ResultReg = createResultReg(RC);
864  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
865
866  if (II.getNumDefs() >= 1)
867    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
868  else {
869    BuildMI(MBB, DL, II).addReg(Op0);
870    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
871                                         II.ImplicitDefs[0], RC, RC);
872    if (!InsertedCopy)
873      ResultReg = 0;
874  }
875
876  return ResultReg;
877}
878
879unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
880                                   const TargetRegisterClass *RC,
881                                   unsigned Op0, unsigned Op1) {
882  unsigned ResultReg = createResultReg(RC);
883  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
884
885  if (II.getNumDefs() >= 1)
886    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
887  else {
888    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
889    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
890                                         II.ImplicitDefs[0], RC, RC);
891    if (!InsertedCopy)
892      ResultReg = 0;
893  }
894  return ResultReg;
895}
896
897unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
898                                   const TargetRegisterClass *RC,
899                                   unsigned Op0, uint64_t Imm) {
900  unsigned ResultReg = createResultReg(RC);
901  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
902
903  if (II.getNumDefs() >= 1)
904    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
905  else {
906    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
907    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
908                                         II.ImplicitDefs[0], RC, RC);
909    if (!InsertedCopy)
910      ResultReg = 0;
911  }
912  return ResultReg;
913}
914
915unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
916                                   const TargetRegisterClass *RC,
917                                   unsigned Op0, ConstantFP *FPImm) {
918  unsigned ResultReg = createResultReg(RC);
919  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
920
921  if (II.getNumDefs() >= 1)
922    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
923  else {
924    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
925    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
926                                         II.ImplicitDefs[0], RC, RC);
927    if (!InsertedCopy)
928      ResultReg = 0;
929  }
930  return ResultReg;
931}
932
933unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
934                                    const TargetRegisterClass *RC,
935                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
936  unsigned ResultReg = createResultReg(RC);
937  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
938
939  if (II.getNumDefs() >= 1)
940    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
941  else {
942    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
943    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
944                                         II.ImplicitDefs[0], RC, RC);
945    if (!InsertedCopy)
946      ResultReg = 0;
947  }
948  return ResultReg;
949}
950
951unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
952                                  const TargetRegisterClass *RC,
953                                  uint64_t Imm) {
954  unsigned ResultReg = createResultReg(RC);
955  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
956
957  if (II.getNumDefs() >= 1)
958    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
959  else {
960    BuildMI(MBB, DL, II).addImm(Imm);
961    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
962                                         II.ImplicitDefs[0], RC, RC);
963    if (!InsertedCopy)
964      ResultReg = 0;
965  }
966  return ResultReg;
967}
968
969unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
970                                              unsigned Op0, uint32_t Idx) {
971  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
972
973  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
974  const TargetInstrDesc &II = TII.get(TargetOpcode::EXTRACT_SUBREG);
975
976  if (II.getNumDefs() >= 1)
977    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
978  else {
979    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
980    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
981                                         II.ImplicitDefs[0], RC, RC);
982    if (!InsertedCopy)
983      ResultReg = 0;
984  }
985  return ResultReg;
986}
987
988/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
989/// with all but the least significant bit set to zero.
990unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op) {
991  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
992}
993