FastISel.cpp revision 5aa0ddb0f8b15d4d0f3e6385908593e977360812
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/DwarfWriter.h"
51#include "llvm/Analysis/DebugInfo.h"
52#include "llvm/Target/TargetData.h"
53#include "llvm/Target/TargetInstrInfo.h"
54#include "llvm/Target/TargetLowering.h"
55#include "llvm/Target/TargetMachine.h"
56#include "SelectionDAGBuild.h"
57using namespace llvm;
58
59unsigned FastISel::getRegForValue(Value *V) {
60  MVT::SimpleValueType VT = TLI.getValueType(V->getType()).getSimpleVT();
61
62  // Ignore illegal types. We must do this before looking up the value
63  // in ValueMap because Arguments are given virtual registers regardless
64  // of whether FastISel can handle them.
65  if (!TLI.isTypeLegal(VT)) {
66    // Promote MVT::i1 to a legal type though, because it's common and easy.
67    if (VT == MVT::i1)
68      VT = TLI.getTypeToTransformTo(VT).getSimpleVT();
69    else
70      return 0;
71  }
72
73  // Look up the value to see if we already have a register for it. We
74  // cache values defined by Instructions across blocks, and other values
75  // only locally. This is because Instructions already have the SSA
76  // def-dominatess-use requirement enforced.
77  if (ValueMap.count(V))
78    return ValueMap[V];
79  unsigned Reg = LocalValueMap[V];
80  if (Reg != 0)
81    return Reg;
82
83  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
84    if (CI->getValue().getActiveBits() <= 64)
85      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
86  } else if (isa<AllocaInst>(V)) {
87    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
88  } else if (isa<ConstantPointerNull>(V)) {
89    // Translate this as an integer zero so that it can be
90    // local-CSE'd with actual integer zeros.
91    Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType()));
92  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
93    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
94
95    if (!Reg) {
96      const APFloat &Flt = CF->getValueAPF();
97      MVT IntVT = TLI.getPointerTy();
98
99      uint64_t x[2];
100      uint32_t IntBitWidth = IntVT.getSizeInBits();
101      bool isExact;
102      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
103                                APFloat::rmTowardZero, &isExact);
104      if (isExact) {
105        APInt IntVal(IntBitWidth, 2, x);
106
107        unsigned IntegerReg = getRegForValue(ConstantInt::get(IntVal));
108        if (IntegerReg != 0)
109          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
110      }
111    }
112  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
113    if (!SelectOperator(CE, CE->getOpcode())) return 0;
114    Reg = LocalValueMap[CE];
115  } else if (isa<UndefValue>(V)) {
116    Reg = createResultReg(TLI.getRegClassFor(VT));
117    BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
118  }
119
120  // If target-independent code couldn't handle the value, give target-specific
121  // code a try.
122  if (!Reg && isa<Constant>(V))
123    Reg = TargetMaterializeConstant(cast<Constant>(V));
124
125  // Don't cache constant materializations in the general ValueMap.
126  // To do so would require tracking what uses they dominate.
127  if (Reg != 0)
128    LocalValueMap[V] = Reg;
129  return Reg;
130}
131
132unsigned FastISel::lookUpRegForValue(Value *V) {
133  // Look up the value to see if we already have a register for it. We
134  // cache values defined by Instructions across blocks, and other values
135  // only locally. This is because Instructions already have the SSA
136  // def-dominatess-use requirement enforced.
137  if (ValueMap.count(V))
138    return ValueMap[V];
139  return LocalValueMap[V];
140}
141
142/// UpdateValueMap - Update the value map to include the new mapping for this
143/// instruction, or insert an extra copy to get the result in a previous
144/// determined register.
145/// NOTE: This is only necessary because we might select a block that uses
146/// a value before we select the block that defines the value.  It might be
147/// possible to fix this by selecting blocks in reverse postorder.
148void FastISel::UpdateValueMap(Value* I, unsigned Reg) {
149  if (!isa<Instruction>(I)) {
150    LocalValueMap[I] = Reg;
151    return;
152  }
153  if (!ValueMap.count(I))
154    ValueMap[I] = Reg;
155  else
156    TII.copyRegToReg(*MBB, MBB->end(), ValueMap[I],
157                     Reg, MRI.getRegClass(Reg), MRI.getRegClass(Reg));
158}
159
160unsigned FastISel::getRegForGEPIndex(Value *Idx) {
161  unsigned IdxN = getRegForValue(Idx);
162  if (IdxN == 0)
163    // Unhandled operand. Halt "fast" selection and bail.
164    return 0;
165
166  // If the index is smaller or larger than intptr_t, truncate or extend it.
167  MVT PtrVT = TLI.getPointerTy();
168  MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
169  if (IdxVT.bitsLT(PtrVT))
170    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
171                      ISD::SIGN_EXTEND, IdxN);
172  else if (IdxVT.bitsGT(PtrVT))
173    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
174                      ISD::TRUNCATE, IdxN);
175  return IdxN;
176}
177
178/// SelectBinaryOp - Select and emit code for a binary operator instruction,
179/// which has an opcode which directly corresponds to the given ISD opcode.
180///
181bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
182  MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
183  if (VT == MVT::Other || !VT.isSimple())
184    // Unhandled type. Halt "fast" selection and bail.
185    return false;
186
187  // We only handle legal types. For example, on x86-32 the instruction
188  // selector contains all of the 64-bit instructions from x86-64,
189  // under the assumption that i64 won't be used if the target doesn't
190  // support it.
191  if (!TLI.isTypeLegal(VT)) {
192    // MVT::i1 is special. Allow AND, OR, or XOR because they
193    // don't require additional zeroing, which makes them easy.
194    if (VT == MVT::i1 &&
195        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
196         ISDOpcode == ISD::XOR))
197      VT = TLI.getTypeToTransformTo(VT);
198    else
199      return false;
200  }
201
202  unsigned Op0 = getRegForValue(I->getOperand(0));
203  if (Op0 == 0)
204    // Unhandled operand. Halt "fast" selection and bail.
205    return false;
206
207  // Check if the second operand is a constant and handle it appropriately.
208  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
209    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
210                                     ISDOpcode, Op0, CI->getZExtValue());
211    if (ResultReg != 0) {
212      // We successfully emitted code for the given LLVM Instruction.
213      UpdateValueMap(I, ResultReg);
214      return true;
215    }
216  }
217
218  // Check if the second operand is a constant float.
219  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
220    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
221                                     ISDOpcode, Op0, CF);
222    if (ResultReg != 0) {
223      // We successfully emitted code for the given LLVM Instruction.
224      UpdateValueMap(I, ResultReg);
225      return true;
226    }
227  }
228
229  unsigned Op1 = getRegForValue(I->getOperand(1));
230  if (Op1 == 0)
231    // Unhandled operand. Halt "fast" selection and bail.
232    return false;
233
234  // Now we have both operands in registers. Emit the instruction.
235  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
236                                   ISDOpcode, Op0, Op1);
237  if (ResultReg == 0)
238    // Target-specific code wasn't able to find a machine opcode for
239    // the given ISD opcode and type. Halt "fast" selection and bail.
240    return false;
241
242  // We successfully emitted code for the given LLVM Instruction.
243  UpdateValueMap(I, ResultReg);
244  return true;
245}
246
247bool FastISel::SelectGetElementPtr(User *I) {
248  unsigned N = getRegForValue(I->getOperand(0));
249  if (N == 0)
250    // Unhandled operand. Halt "fast" selection and bail.
251    return false;
252
253  const Type *Ty = I->getOperand(0)->getType();
254  MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
255  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
256       OI != E; ++OI) {
257    Value *Idx = *OI;
258    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
259      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
260      if (Field) {
261        // N = N + Offset
262        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
263        // FIXME: This can be optimized by combining the add with a
264        // subsequent one.
265        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
266        if (N == 0)
267          // Unhandled operand. Halt "fast" selection and bail.
268          return false;
269      }
270      Ty = StTy->getElementType(Field);
271    } else {
272      Ty = cast<SequentialType>(Ty)->getElementType();
273
274      // If this is a constant subscript, handle it quickly.
275      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
276        if (CI->getZExtValue() == 0) continue;
277        uint64_t Offs =
278          TD.getTypePaddedSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
279        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
280        if (N == 0)
281          // Unhandled operand. Halt "fast" selection and bail.
282          return false;
283        continue;
284      }
285
286      // N = N + Idx * ElementSize;
287      uint64_t ElementSize = TD.getTypePaddedSize(Ty);
288      unsigned IdxN = getRegForGEPIndex(Idx);
289      if (IdxN == 0)
290        // Unhandled operand. Halt "fast" selection and bail.
291        return false;
292
293      if (ElementSize != 1) {
294        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
295        if (IdxN == 0)
296          // Unhandled operand. Halt "fast" selection and bail.
297          return false;
298      }
299      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
300      if (N == 0)
301        // Unhandled operand. Halt "fast" selection and bail.
302        return false;
303    }
304  }
305
306  // We successfully emitted code for the given LLVM Instruction.
307  UpdateValueMap(I, N);
308  return true;
309}
310
311bool FastISel::SelectCall(User *I) {
312  Function *F = cast<CallInst>(I)->getCalledFunction();
313  if (!F) return false;
314
315  unsigned IID = F->getIntrinsicID();
316  switch (IID) {
317  default: break;
318  case Intrinsic::dbg_stoppoint: {
319    DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
320    if (DW && DW->ValidDebugInfo(SPI->getContext())) {
321      DICompileUnit CU(cast<GlobalVariable>(SPI->getContext()));
322      unsigned SrcFile = DW->RecordSource(CU.getDirectory(),
323                                          CU.getFilename());
324      unsigned Line = SPI->getLine();
325      unsigned Col = SPI->getColumn();
326      unsigned ID = DW->RecordSourceLine(Line, Col, SrcFile);
327      unsigned Idx = MF.getOrCreateDebugLocID(SrcFile, Line, Col);
328      setCurDebugLoc(DebugLoc::get(Idx));
329      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
330      BuildMI(MBB, DL, II).addImm(ID);
331    }
332    return true;
333  }
334  case Intrinsic::dbg_region_start: {
335    DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
336    if (DW && DW->ValidDebugInfo(RSI->getContext())) {
337      unsigned ID =
338        DW->RecordRegionStart(cast<GlobalVariable>(RSI->getContext()));
339      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
340      BuildMI(MBB, DL, II).addImm(ID);
341    }
342    return true;
343  }
344  case Intrinsic::dbg_region_end: {
345    DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
346    if (DW && DW->ValidDebugInfo(REI->getContext())) {
347      unsigned ID =
348        DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext()));
349      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
350      BuildMI(MBB, DL, II).addImm(ID);
351    }
352    return true;
353  }
354  case Intrinsic::dbg_func_start: {
355    if (!DW) return true;
356    DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
357    Value *SP = FSI->getSubprogram();
358
359    if (DW->ValidDebugInfo(SP)) {
360      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what
361      // (most?) gdb expects.
362      DISubprogram Subprogram(cast<GlobalVariable>(SP));
363      DICompileUnit CompileUnit = Subprogram.getCompileUnit();
364      unsigned SrcFile = DW->RecordSource(CompileUnit.getDirectory(),
365                                          CompileUnit.getFilename());
366
367      // Record the source line but does not create a label for the normal
368      // function start. It will be emitted at asm emission time. However,
369      // create a label if this is a beginning of inlined function.
370      unsigned Line = Subprogram.getLineNumber();
371      unsigned LabelID = DW->RecordSourceLine(Line, 0, SrcFile);
372      setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(SrcFile, Line, 0)));
373
374      if (DW->getRecordSourceLineCount() != 1) {
375        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
376        BuildMI(MBB, DL, II).addImm(LabelID);
377      }
378    }
379
380    return true;
381  }
382  case Intrinsic::dbg_declare: {
383    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
384    Value *Variable = DI->getVariable();
385    if (DW && DW->ValidDebugInfo(Variable)) {
386      // Determine the address of the declared object.
387      Value *Address = DI->getAddress();
388      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
389        Address = BCI->getOperand(0);
390      AllocaInst *AI = dyn_cast<AllocaInst>(Address);
391      // Don't handle byval struct arguments, for example.
392      if (!AI) break;
393      DenseMap<const AllocaInst*, int>::iterator SI =
394        StaticAllocaMap.find(AI);
395      assert(SI != StaticAllocaMap.end() && "Invalid dbg.declare!");
396      int FI = SI->second;
397
398      // Determine the debug globalvariable.
399      GlobalValue *GV = cast<GlobalVariable>(Variable);
400
401      // Build the DECLARE instruction.
402      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
403      BuildMI(MBB, DL, II).addFrameIndex(FI).addGlobalAddress(GV);
404    }
405    return true;
406  }
407  case Intrinsic::eh_exception: {
408    MVT VT = TLI.getValueType(I->getType());
409    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
410    default: break;
411    case TargetLowering::Expand: {
412      if (!MBB->isLandingPad()) {
413        // FIXME: Mark exception register as live in.  Hack for PR1508.
414        unsigned Reg = TLI.getExceptionAddressRegister();
415        if (Reg) MBB->addLiveIn(Reg);
416      }
417      unsigned Reg = TLI.getExceptionAddressRegister();
418      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
419      unsigned ResultReg = createResultReg(RC);
420      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
421                                           Reg, RC, RC);
422      assert(InsertedCopy && "Can't copy address registers!");
423      InsertedCopy = InsertedCopy;
424      UpdateValueMap(I, ResultReg);
425      return true;
426    }
427    }
428    break;
429  }
430  case Intrinsic::eh_selector_i32:
431  case Intrinsic::eh_selector_i64: {
432    MVT VT = TLI.getValueType(I->getType());
433    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
434    default: break;
435    case TargetLowering::Expand: {
436      MVT VT = (IID == Intrinsic::eh_selector_i32 ?
437                           MVT::i32 : MVT::i64);
438
439      if (MMI) {
440        if (MBB->isLandingPad())
441          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
442        else {
443#ifndef NDEBUG
444          CatchInfoLost.insert(cast<CallInst>(I));
445#endif
446          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
447          unsigned Reg = TLI.getExceptionSelectorRegister();
448          if (Reg) MBB->addLiveIn(Reg);
449        }
450
451        unsigned Reg = TLI.getExceptionSelectorRegister();
452        const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
453        unsigned ResultReg = createResultReg(RC);
454        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
455                                             Reg, RC, RC);
456        assert(InsertedCopy && "Can't copy address registers!");
457        InsertedCopy = InsertedCopy;
458        UpdateValueMap(I, ResultReg);
459      } else {
460        unsigned ResultReg =
461          getRegForValue(Constant::getNullValue(I->getType()));
462        UpdateValueMap(I, ResultReg);
463      }
464      return true;
465    }
466    }
467    break;
468  }
469  }
470  return false;
471}
472
473bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
474  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
475  MVT DstVT = TLI.getValueType(I->getType());
476
477  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
478      DstVT == MVT::Other || !DstVT.isSimple() ||
479      !TLI.isTypeLegal(DstVT))
480    // Unhandled type. Halt "fast" selection and bail.
481    return false;
482
483  // Check if the source operand is legal. Or as a special case,
484  // it may be i1 if we're doing zero-extension because that's
485  // trivially easy and somewhat common.
486  if (!TLI.isTypeLegal(SrcVT)) {
487    if (SrcVT == MVT::i1 && Opcode == ISD::ZERO_EXTEND)
488      SrcVT = TLI.getTypeToTransformTo(SrcVT);
489    else
490      // Unhandled type. Halt "fast" selection and bail.
491      return false;
492  }
493
494  unsigned InputReg = getRegForValue(I->getOperand(0));
495  if (!InputReg)
496    // Unhandled operand.  Halt "fast" selection and bail.
497    return false;
498
499  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
500                                  DstVT.getSimpleVT(),
501                                  Opcode,
502                                  InputReg);
503  if (!ResultReg)
504    return false;
505
506  UpdateValueMap(I, ResultReg);
507  return true;
508}
509
510bool FastISel::SelectBitCast(User *I) {
511  // If the bitcast doesn't change the type, just use the operand value.
512  if (I->getType() == I->getOperand(0)->getType()) {
513    unsigned Reg = getRegForValue(I->getOperand(0));
514    if (Reg == 0)
515      return false;
516    UpdateValueMap(I, Reg);
517    return true;
518  }
519
520  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
521  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
522  MVT DstVT = TLI.getValueType(I->getType());
523
524  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
525      DstVT == MVT::Other || !DstVT.isSimple() ||
526      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
527    // Unhandled type. Halt "fast" selection and bail.
528    return false;
529
530  unsigned Op0 = getRegForValue(I->getOperand(0));
531  if (Op0 == 0)
532    // Unhandled operand. Halt "fast" selection and bail.
533    return false;
534
535  // First, try to perform the bitcast by inserting a reg-reg copy.
536  unsigned ResultReg = 0;
537  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
538    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
539    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
540    ResultReg = createResultReg(DstClass);
541
542    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
543                                         Op0, DstClass, SrcClass);
544    if (!InsertedCopy)
545      ResultReg = 0;
546  }
547
548  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
549  if (!ResultReg)
550    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
551                           ISD::BIT_CONVERT, Op0);
552
553  if (!ResultReg)
554    return false;
555
556  UpdateValueMap(I, ResultReg);
557  return true;
558}
559
560bool
561FastISel::SelectInstruction(Instruction *I) {
562  return SelectOperator(I, I->getOpcode());
563}
564
565/// FastEmitBranch - Emit an unconditional branch to the given block,
566/// unless it is the immediate (fall-through) successor, and update
567/// the CFG.
568void
569FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
570  MachineFunction::iterator NextMBB =
571     next(MachineFunction::iterator(MBB));
572
573  if (MBB->isLayoutSuccessor(MSucc)) {
574    // The unconditional fall-through case, which needs no instructions.
575  } else {
576    // The unconditional branch case.
577    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
578  }
579  MBB->addSuccessor(MSucc);
580}
581
582bool
583FastISel::SelectOperator(User *I, unsigned Opcode) {
584  switch (Opcode) {
585  case Instruction::Add: {
586    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD;
587    return SelectBinaryOp(I, Opc);
588  }
589  case Instruction::Sub: {
590    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB;
591    return SelectBinaryOp(I, Opc);
592  }
593  case Instruction::Mul: {
594    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL;
595    return SelectBinaryOp(I, Opc);
596  }
597  case Instruction::SDiv:
598    return SelectBinaryOp(I, ISD::SDIV);
599  case Instruction::UDiv:
600    return SelectBinaryOp(I, ISD::UDIV);
601  case Instruction::FDiv:
602    return SelectBinaryOp(I, ISD::FDIV);
603  case Instruction::SRem:
604    return SelectBinaryOp(I, ISD::SREM);
605  case Instruction::URem:
606    return SelectBinaryOp(I, ISD::UREM);
607  case Instruction::FRem:
608    return SelectBinaryOp(I, ISD::FREM);
609  case Instruction::Shl:
610    return SelectBinaryOp(I, ISD::SHL);
611  case Instruction::LShr:
612    return SelectBinaryOp(I, ISD::SRL);
613  case Instruction::AShr:
614    return SelectBinaryOp(I, ISD::SRA);
615  case Instruction::And:
616    return SelectBinaryOp(I, ISD::AND);
617  case Instruction::Or:
618    return SelectBinaryOp(I, ISD::OR);
619  case Instruction::Xor:
620    return SelectBinaryOp(I, ISD::XOR);
621
622  case Instruction::GetElementPtr:
623    return SelectGetElementPtr(I);
624
625  case Instruction::Br: {
626    BranchInst *BI = cast<BranchInst>(I);
627
628    if (BI->isUnconditional()) {
629      BasicBlock *LLVMSucc = BI->getSuccessor(0);
630      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
631      FastEmitBranch(MSucc);
632      return true;
633    }
634
635    // Conditional branches are not handed yet.
636    // Halt "fast" selection and bail.
637    return false;
638  }
639
640  case Instruction::Unreachable:
641    // Nothing to emit.
642    return true;
643
644  case Instruction::PHI:
645    // PHI nodes are already emitted.
646    return true;
647
648  case Instruction::Alloca:
649    // FunctionLowering has the static-sized case covered.
650    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
651      return true;
652
653    // Dynamic-sized alloca is not handled yet.
654    return false;
655
656  case Instruction::Call:
657    return SelectCall(I);
658
659  case Instruction::BitCast:
660    return SelectBitCast(I);
661
662  case Instruction::FPToSI:
663    return SelectCast(I, ISD::FP_TO_SINT);
664  case Instruction::ZExt:
665    return SelectCast(I, ISD::ZERO_EXTEND);
666  case Instruction::SExt:
667    return SelectCast(I, ISD::SIGN_EXTEND);
668  case Instruction::Trunc:
669    return SelectCast(I, ISD::TRUNCATE);
670  case Instruction::SIToFP:
671    return SelectCast(I, ISD::SINT_TO_FP);
672
673  case Instruction::IntToPtr: // Deliberate fall-through.
674  case Instruction::PtrToInt: {
675    MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
676    MVT DstVT = TLI.getValueType(I->getType());
677    if (DstVT.bitsGT(SrcVT))
678      return SelectCast(I, ISD::ZERO_EXTEND);
679    if (DstVT.bitsLT(SrcVT))
680      return SelectCast(I, ISD::TRUNCATE);
681    unsigned Reg = getRegForValue(I->getOperand(0));
682    if (Reg == 0) return false;
683    UpdateValueMap(I, Reg);
684    return true;
685  }
686
687  default:
688    // Unhandled instruction. Halt "fast" selection and bail.
689    return false;
690  }
691}
692
693FastISel::FastISel(MachineFunction &mf,
694                   MachineModuleInfo *mmi,
695                   DwarfWriter *dw,
696                   DenseMap<const Value *, unsigned> &vm,
697                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
698                   DenseMap<const AllocaInst *, int> &am
699#ifndef NDEBUG
700                   , SmallSet<Instruction*, 8> &cil
701#endif
702                   )
703  : MBB(0),
704    ValueMap(vm),
705    MBBMap(bm),
706    StaticAllocaMap(am),
707#ifndef NDEBUG
708    CatchInfoLost(cil),
709#endif
710    MF(mf),
711    MMI(mmi),
712    DW(dw),
713    MRI(MF.getRegInfo()),
714    MFI(*MF.getFrameInfo()),
715    MCP(*MF.getConstantPool()),
716    TM(MF.getTarget()),
717    TD(*TM.getTargetData()),
718    TII(*TM.getInstrInfo()),
719    TLI(*TM.getTargetLowering()) {
720}
721
722FastISel::~FastISel() {}
723
724unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
725                             ISD::NodeType) {
726  return 0;
727}
728
729unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
730                              ISD::NodeType, unsigned /*Op0*/) {
731  return 0;
732}
733
734unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
735                               ISD::NodeType, unsigned /*Op0*/,
736                               unsigned /*Op0*/) {
737  return 0;
738}
739
740unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
741                              ISD::NodeType, uint64_t /*Imm*/) {
742  return 0;
743}
744
745unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
746                              ISD::NodeType, ConstantFP * /*FPImm*/) {
747  return 0;
748}
749
750unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
751                               ISD::NodeType, unsigned /*Op0*/,
752                               uint64_t /*Imm*/) {
753  return 0;
754}
755
756unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
757                               ISD::NodeType, unsigned /*Op0*/,
758                               ConstantFP * /*FPImm*/) {
759  return 0;
760}
761
762unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
763                                ISD::NodeType,
764                                unsigned /*Op0*/, unsigned /*Op1*/,
765                                uint64_t /*Imm*/) {
766  return 0;
767}
768
769/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
770/// to emit an instruction with an immediate operand using FastEmit_ri.
771/// If that fails, it materializes the immediate into a register and try
772/// FastEmit_rr instead.
773unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
774                                unsigned Op0, uint64_t Imm,
775                                MVT::SimpleValueType ImmType) {
776  // First check if immediate type is legal. If not, we can't use the ri form.
777  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
778  if (ResultReg != 0)
779    return ResultReg;
780  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
781  if (MaterialReg == 0)
782    return 0;
783  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
784}
785
786/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
787/// to emit an instruction with a floating-point immediate operand using
788/// FastEmit_rf. If that fails, it materializes the immediate into a register
789/// and try FastEmit_rr instead.
790unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
791                                unsigned Op0, ConstantFP *FPImm,
792                                MVT::SimpleValueType ImmType) {
793  // First check if immediate type is legal. If not, we can't use the rf form.
794  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
795  if (ResultReg != 0)
796    return ResultReg;
797
798  // Materialize the constant in a register.
799  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
800  if (MaterialReg == 0) {
801    // If the target doesn't have a way to directly enter a floating-point
802    // value into a register, use an alternate approach.
803    // TODO: The current approach only supports floating-point constants
804    // that can be constructed by conversion from integer values. This should
805    // be replaced by code that creates a load from a constant-pool entry,
806    // which will require some target-specific work.
807    const APFloat &Flt = FPImm->getValueAPF();
808    MVT IntVT = TLI.getPointerTy();
809
810    uint64_t x[2];
811    uint32_t IntBitWidth = IntVT.getSizeInBits();
812    bool isExact;
813    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
814                             APFloat::rmTowardZero, &isExact);
815    if (!isExact)
816      return 0;
817    APInt IntVal(IntBitWidth, 2, x);
818
819    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
820                                     ISD::Constant, IntVal.getZExtValue());
821    if (IntegerReg == 0)
822      return 0;
823    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
824                             ISD::SINT_TO_FP, IntegerReg);
825    if (MaterialReg == 0)
826      return 0;
827  }
828  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
829}
830
831unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
832  return MRI.createVirtualRegister(RC);
833}
834
835unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
836                                 const TargetRegisterClass* RC) {
837  unsigned ResultReg = createResultReg(RC);
838  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
839
840  BuildMI(MBB, DL, II, ResultReg);
841  return ResultReg;
842}
843
844unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
845                                  const TargetRegisterClass *RC,
846                                  unsigned Op0) {
847  unsigned ResultReg = createResultReg(RC);
848  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
849
850  if (II.getNumDefs() >= 1)
851    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
852  else {
853    BuildMI(MBB, DL, II).addReg(Op0);
854    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
855                                         II.ImplicitDefs[0], RC, RC);
856    if (!InsertedCopy)
857      ResultReg = 0;
858  }
859
860  return ResultReg;
861}
862
863unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
864                                   const TargetRegisterClass *RC,
865                                   unsigned Op0, unsigned Op1) {
866  unsigned ResultReg = createResultReg(RC);
867  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
868
869  if (II.getNumDefs() >= 1)
870    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
871  else {
872    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
873    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
874                                         II.ImplicitDefs[0], RC, RC);
875    if (!InsertedCopy)
876      ResultReg = 0;
877  }
878  return ResultReg;
879}
880
881unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
882                                   const TargetRegisterClass *RC,
883                                   unsigned Op0, uint64_t Imm) {
884  unsigned ResultReg = createResultReg(RC);
885  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
886
887  if (II.getNumDefs() >= 1)
888    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
889  else {
890    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
891    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
892                                         II.ImplicitDefs[0], RC, RC);
893    if (!InsertedCopy)
894      ResultReg = 0;
895  }
896  return ResultReg;
897}
898
899unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
900                                   const TargetRegisterClass *RC,
901                                   unsigned Op0, ConstantFP *FPImm) {
902  unsigned ResultReg = createResultReg(RC);
903  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
904
905  if (II.getNumDefs() >= 1)
906    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
907  else {
908    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
909    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
910                                         II.ImplicitDefs[0], RC, RC);
911    if (!InsertedCopy)
912      ResultReg = 0;
913  }
914  return ResultReg;
915}
916
917unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
918                                    const TargetRegisterClass *RC,
919                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
920  unsigned ResultReg = createResultReg(RC);
921  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
922
923  if (II.getNumDefs() >= 1)
924    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
925  else {
926    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
927    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
928                                         II.ImplicitDefs[0], RC, RC);
929    if (!InsertedCopy)
930      ResultReg = 0;
931  }
932  return ResultReg;
933}
934
935unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
936                                  const TargetRegisterClass *RC,
937                                  uint64_t Imm) {
938  unsigned ResultReg = createResultReg(RC);
939  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
940
941  if (II.getNumDefs() >= 1)
942    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
943  else {
944    BuildMI(MBB, DL, II).addImm(Imm);
945    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
946                                         II.ImplicitDefs[0], RC, RC);
947    if (!InsertedCopy)
948      ResultReg = 0;
949  }
950  return ResultReg;
951}
952
953unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT,
954                                              unsigned Op0, uint32_t Idx) {
955  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
956
957  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
958  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
959
960  if (II.getNumDefs() >= 1)
961    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
962  else {
963    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
964    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
965                                         II.ImplicitDefs[0], RC, RC);
966    if (!InsertedCopy)
967      ResultReg = 0;
968  }
969  return ResultReg;
970}
971