FastISel.cpp revision 5ac35427d2e43a9f5eea212591e26cf2fa895eae
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Instructions.h"
15#include "llvm/CodeGen/FastISel.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
17#include "llvm/CodeGen/MachineRegisterInfo.h"
18#include "llvm/Target/TargetData.h"
19#include "llvm/Target/TargetInstrInfo.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/Target/TargetMachine.h"
22using namespace llvm;
23
24unsigned FastISel::getRegForValue(Value *V) {
25  // Look up the value to see if we already have a register for it. We
26  // cache values defined by Instructions across blocks, and other values
27  // only locally. This is because Instructions already have the SSA
28  // def-dominatess-use requirement enforced.
29  if (ValueMap.count(V))
30    return ValueMap[V];
31  unsigned Reg = LocalValueMap[V];
32  if (Reg != 0)
33    return Reg;
34
35  MVT::SimpleValueType VT = TLI.getValueType(V->getType()).getSimpleVT();
36  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
37    if (CI->getValue().getActiveBits() > 64)
38      return 0;
39    // Don't cache constant materializations.  To do so would require
40    // tracking what uses they dominate.
41    Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
42  } else if (isa<ConstantPointerNull>(V)) {
43    Reg = FastEmit_i(VT, VT, ISD::Constant, 0);
44  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
45    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
46
47    if (!Reg) {
48      const APFloat &Flt = CF->getValueAPF();
49      MVT IntVT = TLI.getPointerTy();
50
51      uint64_t x[2];
52      uint32_t IntBitWidth = IntVT.getSizeInBits();
53      if (Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
54                               APFloat::rmTowardZero) != APFloat::opOK)
55        return 0;
56      APInt IntVal(IntBitWidth, 2, x);
57
58      unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
59                                       ISD::Constant, IntVal.getZExtValue());
60      if (IntegerReg == 0)
61        return 0;
62      Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
63      if (Reg == 0)
64        return 0;
65    }
66  } else if (isa<UndefValue>(V)) {
67    Reg = createResultReg(TLI.getRegClassFor(VT));
68    BuildMI(MBB, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
69  } else {
70    return 0;
71  }
72
73  LocalValueMap[V] = Reg;
74  return Reg;
75}
76
77/// UpdateValueMap - Update the value map to include the new mapping for this
78/// instruction, or insert an extra copy to get the result in a previous
79/// determined register.
80/// NOTE: This is only necessary because we might select a block that uses
81/// a value before we select the block that defines the value.  It might be
82/// possible to fix this by selecting blocks in reverse postorder.
83void FastISel::UpdateValueMap(Instruction* I, unsigned Reg) {
84  if (!ValueMap.count(I))
85    ValueMap[I] = Reg;
86  else
87     TII.copyRegToReg(*MBB, MBB->end(), ValueMap[I],
88                      Reg, MRI.getRegClass(Reg), MRI.getRegClass(Reg));
89}
90
91/// SelectBinaryOp - Select and emit code for a binary operator instruction,
92/// which has an opcode which directly corresponds to the given ISD opcode.
93///
94bool FastISel::SelectBinaryOp(Instruction *I, ISD::NodeType ISDOpcode) {
95  MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
96  if (VT == MVT::Other || !VT.isSimple())
97    // Unhandled type. Halt "fast" selection and bail.
98    return false;
99  // We only handle legal types. For example, on x86-32 the instruction
100  // selector contains all of the 64-bit instructions from x86-64,
101  // under the assumption that i64 won't be used if the target doesn't
102  // support it.
103  if (!TLI.isTypeLegal(VT))
104    return false;
105
106  unsigned Op0 = getRegForValue(I->getOperand(0));
107  if (Op0 == 0)
108    // Unhandled operand. Halt "fast" selection and bail.
109    return false;
110
111  // Check if the second operand is a constant and handle it appropriately.
112  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
113    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
114                                     ISDOpcode, Op0, CI->getZExtValue());
115    if (ResultReg != 0) {
116      // We successfully emitted code for the given LLVM Instruction.
117      UpdateValueMap(I, ResultReg);
118      return true;
119    }
120  }
121
122  // Check if the second operand is a constant float.
123  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
124    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
125                                     ISDOpcode, Op0, CF);
126    if (ResultReg != 0) {
127      // We successfully emitted code for the given LLVM Instruction.
128      UpdateValueMap(I, ResultReg);
129      return true;
130    }
131  }
132
133  unsigned Op1 = getRegForValue(I->getOperand(1));
134  if (Op1 == 0)
135    // Unhandled operand. Halt "fast" selection and bail.
136    return false;
137
138  // Now we have both operands in registers. Emit the instruction.
139  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
140                                   ISDOpcode, Op0, Op1);
141  if (ResultReg == 0)
142    // Target-specific code wasn't able to find a machine opcode for
143    // the given ISD opcode and type. Halt "fast" selection and bail.
144    return false;
145
146  // We successfully emitted code for the given LLVM Instruction.
147  UpdateValueMap(I, ResultReg);
148  return true;
149}
150
151bool FastISel::SelectGetElementPtr(Instruction *I) {
152  unsigned N = getRegForValue(I->getOperand(0));
153  if (N == 0)
154    // Unhandled operand. Halt "fast" selection and bail.
155    return false;
156
157  const Type *Ty = I->getOperand(0)->getType();
158  MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
159  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
160       OI != E; ++OI) {
161    Value *Idx = *OI;
162    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
163      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
164      if (Field) {
165        // N = N + Offset
166        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
167        // FIXME: This can be optimized by combining the add with a
168        // subsequent one.
169        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
170        if (N == 0)
171          // Unhandled operand. Halt "fast" selection and bail.
172          return false;
173      }
174      Ty = StTy->getElementType(Field);
175    } else {
176      Ty = cast<SequentialType>(Ty)->getElementType();
177
178      // If this is a constant subscript, handle it quickly.
179      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
180        if (CI->getZExtValue() == 0) continue;
181        uint64_t Offs =
182          TD.getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
183        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
184        if (N == 0)
185          // Unhandled operand. Halt "fast" selection and bail.
186          return false;
187        continue;
188      }
189
190      // N = N + Idx * ElementSize;
191      uint64_t ElementSize = TD.getABITypeSize(Ty);
192      unsigned IdxN = getRegForValue(Idx);
193      if (IdxN == 0)
194        // Unhandled operand. Halt "fast" selection and bail.
195        return false;
196
197      // If the index is smaller or larger than intptr_t, truncate or extend
198      // it.
199      MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
200      if (IdxVT.bitsLT(VT))
201        IdxN = FastEmit_r(IdxVT.getSimpleVT(), VT, ISD::SIGN_EXTEND, IdxN);
202      else if (IdxVT.bitsGT(VT))
203        IdxN = FastEmit_r(IdxVT.getSimpleVT(), VT, ISD::TRUNCATE, IdxN);
204      if (IdxN == 0)
205        // Unhandled operand. Halt "fast" selection and bail.
206        return false;
207
208      if (ElementSize != 1) {
209        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
210        if (IdxN == 0)
211          // Unhandled operand. Halt "fast" selection and bail.
212          return false;
213      }
214      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
215      if (N == 0)
216        // Unhandled operand. Halt "fast" selection and bail.
217        return false;
218    }
219  }
220
221  // We successfully emitted code for the given LLVM Instruction.
222  UpdateValueMap(I, N);
223  return true;
224}
225
226bool FastISel::SelectCast(Instruction *I, ISD::NodeType Opcode) {
227  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
228  MVT DstVT = TLI.getValueType(I->getType());
229
230  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
231      DstVT == MVT::Other || !DstVT.isSimple() ||
232      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
233    // Unhandled type. Halt "fast" selection and bail.
234    return false;
235
236  unsigned InputReg = getRegForValue(I->getOperand(0));
237  if (!InputReg)
238    // Unhandled operand.  Halt "fast" selection and bail.
239    return false;
240
241  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
242                                  DstVT.getSimpleVT(),
243                                  Opcode,
244                                  InputReg);
245  if (!ResultReg)
246    return false;
247
248  UpdateValueMap(I, ResultReg);
249  return true;
250}
251
252bool FastISel::SelectBitCast(Instruction *I) {
253  // If the bitcast doesn't change the type, just use the operand value.
254  if (I->getType() == I->getOperand(0)->getType()) {
255    unsigned Reg = getRegForValue(I->getOperand(0));
256    if (Reg == 0)
257      return false;
258    UpdateValueMap(I, Reg);
259    return true;
260  }
261
262  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
263  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
264  MVT DstVT = TLI.getValueType(I->getType());
265
266  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
267      DstVT == MVT::Other || !DstVT.isSimple() ||
268      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
269    // Unhandled type. Halt "fast" selection and bail.
270    return false;
271
272  unsigned Op0 = getRegForValue(I->getOperand(0));
273  if (Op0 == 0)
274    // Unhandled operand. Halt "fast" selection and bail.
275    return false;
276
277  // First, try to perform the bitcast by inserting a reg-reg copy.
278  unsigned ResultReg = 0;
279  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
280    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
281    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
282    ResultReg = createResultReg(DstClass);
283
284    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
285                                         Op0, DstClass, SrcClass);
286    if (!InsertedCopy)
287      ResultReg = 0;
288  }
289
290  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
291  if (!ResultReg)
292    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
293                           ISD::BIT_CONVERT, Op0);
294
295  if (!ResultReg)
296    return false;
297
298  UpdateValueMap(I, ResultReg);
299  return true;
300}
301
302bool
303FastISel::SelectInstruction(Instruction *I) {
304  switch (I->getOpcode()) {
305  case Instruction::Add: {
306    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD;
307    return SelectBinaryOp(I, Opc);
308  }
309  case Instruction::Sub: {
310    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB;
311    return SelectBinaryOp(I, Opc);
312  }
313  case Instruction::Mul: {
314    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL;
315    return SelectBinaryOp(I, Opc);
316  }
317  case Instruction::SDiv:
318    return SelectBinaryOp(I, ISD::SDIV);
319  case Instruction::UDiv:
320    return SelectBinaryOp(I, ISD::UDIV);
321  case Instruction::FDiv:
322    return SelectBinaryOp(I, ISD::FDIV);
323  case Instruction::SRem:
324    return SelectBinaryOp(I, ISD::SREM);
325  case Instruction::URem:
326    return SelectBinaryOp(I, ISD::UREM);
327  case Instruction::FRem:
328    return SelectBinaryOp(I, ISD::FREM);
329  case Instruction::Shl:
330    return SelectBinaryOp(I, ISD::SHL);
331  case Instruction::LShr:
332    return SelectBinaryOp(I, ISD::SRL);
333  case Instruction::AShr:
334    return SelectBinaryOp(I, ISD::SRA);
335  case Instruction::And:
336    return SelectBinaryOp(I, ISD::AND);
337  case Instruction::Or:
338    return SelectBinaryOp(I, ISD::OR);
339  case Instruction::Xor:
340    return SelectBinaryOp(I, ISD::XOR);
341
342  case Instruction::GetElementPtr:
343    return SelectGetElementPtr(I);
344
345  case Instruction::Br: {
346    BranchInst *BI = cast<BranchInst>(I);
347
348    if (BI->isUnconditional()) {
349      MachineFunction::iterator NextMBB =
350         next(MachineFunction::iterator(MBB));
351      BasicBlock *LLVMSucc = BI->getSuccessor(0);
352      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
353
354      if (NextMBB != MF.end() && MSucc == NextMBB) {
355        // The unconditional fall-through case, which needs no instructions.
356      } else {
357        // The unconditional branch case.
358        TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
359      }
360      MBB->addSuccessor(MSucc);
361      return true;
362    }
363
364    // Conditional branches are not handed yet.
365    // Halt "fast" selection and bail.
366    return false;
367  }
368
369  case Instruction::PHI:
370    // PHI nodes are already emitted.
371    return true;
372
373  case Instruction::BitCast:
374    return SelectBitCast(I);
375
376  case Instruction::FPToSI:
377    return SelectCast(I, ISD::FP_TO_SINT);
378  case Instruction::ZExt:
379    return SelectCast(I, ISD::ZERO_EXTEND);
380  case Instruction::SExt:
381    return SelectCast(I, ISD::SIGN_EXTEND);
382  case Instruction::Trunc:
383    return SelectCast(I, ISD::TRUNCATE);
384  case Instruction::SIToFP:
385    return SelectCast(I, ISD::SINT_TO_FP);
386
387  case Instruction::IntToPtr: // Deliberate fall-through.
388  case Instruction::PtrToInt: {
389    MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
390    MVT DstVT = TLI.getValueType(I->getType());
391    if (DstVT.bitsGT(SrcVT))
392      return SelectCast(I, ISD::ZERO_EXTEND);
393    if (DstVT.bitsLT(SrcVT))
394      return SelectCast(I, ISD::TRUNCATE);
395    unsigned Reg = getRegForValue(I->getOperand(0));
396    if (Reg == 0) return false;
397    UpdateValueMap(I, Reg);
398    return true;
399  }
400
401  default:
402    // Unhandled instruction. Halt "fast" selection and bail.
403    return false;
404  }
405}
406
407FastISel::FastISel(MachineFunction &mf,
408                   DenseMap<const Value *, unsigned> &vm,
409                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm)
410  : MBB(0),
411    ValueMap(vm),
412    MBBMap(bm),
413    MF(mf),
414    MRI(MF.getRegInfo()),
415    TM(MF.getTarget()),
416    TD(*TM.getTargetData()),
417    TII(*TM.getInstrInfo()),
418    TLI(*TM.getTargetLowering()) {
419}
420
421FastISel::~FastISel() {}
422
423unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
424                             ISD::NodeType) {
425  return 0;
426}
427
428unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
429                              ISD::NodeType, unsigned /*Op0*/) {
430  return 0;
431}
432
433unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
434                               ISD::NodeType, unsigned /*Op0*/,
435                               unsigned /*Op0*/) {
436  return 0;
437}
438
439unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
440                              ISD::NodeType, uint64_t /*Imm*/) {
441  return 0;
442}
443
444unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
445                              ISD::NodeType, ConstantFP * /*FPImm*/) {
446  return 0;
447}
448
449unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
450                               ISD::NodeType, unsigned /*Op0*/,
451                               uint64_t /*Imm*/) {
452  return 0;
453}
454
455unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
456                               ISD::NodeType, unsigned /*Op0*/,
457                               ConstantFP * /*FPImm*/) {
458  return 0;
459}
460
461unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
462                                ISD::NodeType,
463                                unsigned /*Op0*/, unsigned /*Op1*/,
464                                uint64_t /*Imm*/) {
465  return 0;
466}
467
468/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
469/// to emit an instruction with an immediate operand using FastEmit_ri.
470/// If that fails, it materializes the immediate into a register and try
471/// FastEmit_rr instead.
472unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
473                                unsigned Op0, uint64_t Imm,
474                                MVT::SimpleValueType ImmType) {
475  // First check if immediate type is legal. If not, we can't use the ri form.
476  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
477  if (ResultReg != 0)
478    return ResultReg;
479  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
480  if (MaterialReg == 0)
481    return 0;
482  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
483}
484
485/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
486/// to emit an instruction with a floating-point immediate operand using
487/// FastEmit_rf. If that fails, it materializes the immediate into a register
488/// and try FastEmit_rr instead.
489unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
490                                unsigned Op0, ConstantFP *FPImm,
491                                MVT::SimpleValueType ImmType) {
492  // First check if immediate type is legal. If not, we can't use the rf form.
493  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
494  if (ResultReg != 0)
495    return ResultReg;
496
497  // Materialize the constant in a register.
498  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
499  if (MaterialReg == 0) {
500    // If the target doesn't have a way to directly enter a floating-point
501    // value into a register, use an alternate approach.
502    // TODO: The current approach only supports floating-point constants
503    // that can be constructed by conversion from integer values. This should
504    // be replaced by code that creates a load from a constant-pool entry,
505    // which will require some target-specific work.
506    const APFloat &Flt = FPImm->getValueAPF();
507    MVT IntVT = TLI.getPointerTy();
508
509    uint64_t x[2];
510    uint32_t IntBitWidth = IntVT.getSizeInBits();
511    if (Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
512                             APFloat::rmTowardZero) != APFloat::opOK)
513      return 0;
514    APInt IntVal(IntBitWidth, 2, x);
515
516    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
517                                     ISD::Constant, IntVal.getZExtValue());
518    if (IntegerReg == 0)
519      return 0;
520    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
521                             ISD::SINT_TO_FP, IntegerReg);
522    if (MaterialReg == 0)
523      return 0;
524  }
525  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
526}
527
528unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
529  return MRI.createVirtualRegister(RC);
530}
531
532unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
533                                 const TargetRegisterClass* RC) {
534  unsigned ResultReg = createResultReg(RC);
535  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
536
537  BuildMI(MBB, II, ResultReg);
538  return ResultReg;
539}
540
541unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
542                                  const TargetRegisterClass *RC,
543                                  unsigned Op0) {
544  unsigned ResultReg = createResultReg(RC);
545  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
546
547  BuildMI(MBB, II, ResultReg).addReg(Op0);
548  return ResultReg;
549}
550
551unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
552                                   const TargetRegisterClass *RC,
553                                   unsigned Op0, unsigned Op1) {
554  unsigned ResultReg = createResultReg(RC);
555  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
556
557  BuildMI(MBB, II, ResultReg).addReg(Op0).addReg(Op1);
558  return ResultReg;
559}
560
561unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
562                                   const TargetRegisterClass *RC,
563                                   unsigned Op0, uint64_t Imm) {
564  unsigned ResultReg = createResultReg(RC);
565  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
566
567  BuildMI(MBB, II, ResultReg).addReg(Op0).addImm(Imm);
568  return ResultReg;
569}
570
571unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
572                                   const TargetRegisterClass *RC,
573                                   unsigned Op0, ConstantFP *FPImm) {
574  unsigned ResultReg = createResultReg(RC);
575  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
576
577  BuildMI(MBB, II, ResultReg).addReg(Op0).addFPImm(FPImm);
578  return ResultReg;
579}
580
581unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
582                                    const TargetRegisterClass *RC,
583                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
584  unsigned ResultReg = createResultReg(RC);
585  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
586
587  BuildMI(MBB, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
588  return ResultReg;
589}
590
591unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
592                                  const TargetRegisterClass *RC,
593                                  uint64_t Imm) {
594  unsigned ResultReg = createResultReg(RC);
595  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
596
597  BuildMI(MBB, II, ResultReg).addImm(Imm);
598  return ResultReg;
599}
600
601unsigned FastISel::FastEmitInst_extractsubreg(unsigned Op0, uint32_t Idx) {
602  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
603  const TargetRegisterClass* SRC = *(RC->subregclasses_begin()+Idx-1);
604
605  unsigned ResultReg = createResultReg(SRC);
606  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
607
608  BuildMI(MBB, II, ResultReg).addReg(Op0).addImm(Idx);
609  return ResultReg;
610}
611