FastISel.cpp revision 638c6830c6d0d6871065d2b00178ee4aa7d4d044
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Instructions.h"
15#include "llvm/CodeGen/FastISel.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
17#include "llvm/CodeGen/MachineRegisterInfo.h"
18#include "llvm/Target/TargetData.h"
19#include "llvm/Target/TargetInstrInfo.h"
20#include "llvm/Target/TargetLowering.h"
21#include "llvm/Target/TargetMachine.h"
22using namespace llvm;
23
24unsigned FastISel::getRegForValue(Value *V) {
25  // Look up the value to see if we already have a register for it. We
26  // cache values defined by Instructions across blocks, and other values
27  // only locally. This is because Instructions already have the SSA
28  // def-dominatess-use requirement enforced.
29  if (ValueMap.count(V))
30    return ValueMap[V];
31  unsigned Reg = LocalValueMap[V];
32  if (Reg != 0)
33    return Reg;
34
35  MVT::SimpleValueType VT = TLI.getValueType(V->getType()).getSimpleVT();
36  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
37    if (CI->getValue().getActiveBits() > 64)
38      return 0;
39    // Don't cache constant materializations.  To do so would require
40    // tracking what uses they dominate.
41    Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
42  } else if (isa<ConstantPointerNull>(V)) {
43    Reg = FastEmit_i(VT, VT, ISD::Constant, 0);
44  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
45    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
46
47    if (!Reg) {
48      const APFloat &Flt = CF->getValueAPF();
49      MVT IntVT = TLI.getPointerTy();
50
51      uint64_t x[2];
52      uint32_t IntBitWidth = IntVT.getSizeInBits();
53      if (Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
54                               APFloat::rmTowardZero) != APFloat::opOK)
55        return 0;
56      APInt IntVal(IntBitWidth, 2, x);
57
58      unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
59                                       ISD::Constant, IntVal.getZExtValue());
60      if (IntegerReg == 0)
61        return 0;
62      Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
63      if (Reg == 0)
64        return 0;
65    }
66  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
67    if (!SelectOperator(CE, CE->getOpcode())) return 0;
68    Reg = LocalValueMap[CE];
69  } else if (isa<UndefValue>(V)) {
70    Reg = createResultReg(TLI.getRegClassFor(VT));
71    BuildMI(MBB, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
72  } else {
73    return 0;
74  }
75
76  LocalValueMap[V] = Reg;
77  return Reg;
78}
79
80/// UpdateValueMap - Update the value map to include the new mapping for this
81/// instruction, or insert an extra copy to get the result in a previous
82/// determined register.
83/// NOTE: This is only necessary because we might select a block that uses
84/// a value before we select the block that defines the value.  It might be
85/// possible to fix this by selecting blocks in reverse postorder.
86void FastISel::UpdateValueMap(Value* I, unsigned Reg) {
87  if (!isa<Instruction>(I)) {
88    LocalValueMap[I] = Reg;
89    return;
90  }
91  if (!ValueMap.count(I))
92    ValueMap[I] = Reg;
93  else
94     TII.copyRegToReg(*MBB, MBB->end(), ValueMap[I],
95                      Reg, MRI.getRegClass(Reg), MRI.getRegClass(Reg));
96}
97
98/// SelectBinaryOp - Select and emit code for a binary operator instruction,
99/// which has an opcode which directly corresponds to the given ISD opcode.
100///
101bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
102  MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
103  if (VT == MVT::Other || !VT.isSimple())
104    // Unhandled type. Halt "fast" selection and bail.
105    return false;
106
107  // We only handle legal types. For example, on x86-32 the instruction
108  // selector contains all of the 64-bit instructions from x86-64,
109  // under the assumption that i64 won't be used if the target doesn't
110  // support it.
111  if (!TLI.isTypeLegal(VT)) {
112    // MVT::i1 is special. Allow AND and OR (but not XOR) because they
113    // don't require additional zeroing, which makes them easy.
114    if (VT == MVT::i1 &&
115        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR))
116      VT = TLI.getTypeToTransformTo(VT);
117    else
118      return false;
119  }
120
121  unsigned Op0 = getRegForValue(I->getOperand(0));
122  if (Op0 == 0)
123    // Unhandled operand. Halt "fast" selection and bail.
124    return false;
125
126  // Check if the second operand is a constant and handle it appropriately.
127  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
128    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
129                                     ISDOpcode, Op0, CI->getZExtValue());
130    if (ResultReg != 0) {
131      // We successfully emitted code for the given LLVM Instruction.
132      UpdateValueMap(I, ResultReg);
133      return true;
134    }
135  }
136
137  // Check if the second operand is a constant float.
138  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
139    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
140                                     ISDOpcode, Op0, CF);
141    if (ResultReg != 0) {
142      // We successfully emitted code for the given LLVM Instruction.
143      UpdateValueMap(I, ResultReg);
144      return true;
145    }
146  }
147
148  unsigned Op1 = getRegForValue(I->getOperand(1));
149  if (Op1 == 0)
150    // Unhandled operand. Halt "fast" selection and bail.
151    return false;
152
153  // Now we have both operands in registers. Emit the instruction.
154  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
155                                   ISDOpcode, Op0, Op1);
156  if (ResultReg == 0)
157    // Target-specific code wasn't able to find a machine opcode for
158    // the given ISD opcode and type. Halt "fast" selection and bail.
159    return false;
160
161  // We successfully emitted code for the given LLVM Instruction.
162  UpdateValueMap(I, ResultReg);
163  return true;
164}
165
166bool FastISel::SelectGetElementPtr(User *I) {
167  unsigned N = getRegForValue(I->getOperand(0));
168  if (N == 0)
169    // Unhandled operand. Halt "fast" selection and bail.
170    return false;
171
172  const Type *Ty = I->getOperand(0)->getType();
173  MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
174  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
175       OI != E; ++OI) {
176    Value *Idx = *OI;
177    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
178      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
179      if (Field) {
180        // N = N + Offset
181        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
182        // FIXME: This can be optimized by combining the add with a
183        // subsequent one.
184        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
185        if (N == 0)
186          // Unhandled operand. Halt "fast" selection and bail.
187          return false;
188      }
189      Ty = StTy->getElementType(Field);
190    } else {
191      Ty = cast<SequentialType>(Ty)->getElementType();
192
193      // If this is a constant subscript, handle it quickly.
194      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
195        if (CI->getZExtValue() == 0) continue;
196        uint64_t Offs =
197          TD.getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
198        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
199        if (N == 0)
200          // Unhandled operand. Halt "fast" selection and bail.
201          return false;
202        continue;
203      }
204
205      // N = N + Idx * ElementSize;
206      uint64_t ElementSize = TD.getABITypeSize(Ty);
207      unsigned IdxN = getRegForValue(Idx);
208      if (IdxN == 0)
209        // Unhandled operand. Halt "fast" selection and bail.
210        return false;
211
212      // If the index is smaller or larger than intptr_t, truncate or extend
213      // it.
214      MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
215      if (IdxVT.bitsLT(VT))
216        IdxN = FastEmit_r(IdxVT.getSimpleVT(), VT, ISD::SIGN_EXTEND, IdxN);
217      else if (IdxVT.bitsGT(VT))
218        IdxN = FastEmit_r(IdxVT.getSimpleVT(), VT, ISD::TRUNCATE, IdxN);
219      if (IdxN == 0)
220        // Unhandled operand. Halt "fast" selection and bail.
221        return false;
222
223      if (ElementSize != 1) {
224        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
225        if (IdxN == 0)
226          // Unhandled operand. Halt "fast" selection and bail.
227          return false;
228      }
229      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
230      if (N == 0)
231        // Unhandled operand. Halt "fast" selection and bail.
232        return false;
233    }
234  }
235
236  // We successfully emitted code for the given LLVM Instruction.
237  UpdateValueMap(I, N);
238  return true;
239}
240
241bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
242  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
243  MVT DstVT = TLI.getValueType(I->getType());
244
245  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
246      DstVT == MVT::Other || !DstVT.isSimple() ||
247      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
248    // Unhandled type. Halt "fast" selection and bail.
249    return false;
250
251  unsigned InputReg = getRegForValue(I->getOperand(0));
252  if (!InputReg)
253    // Unhandled operand.  Halt "fast" selection and bail.
254    return false;
255
256  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
257                                  DstVT.getSimpleVT(),
258                                  Opcode,
259                                  InputReg);
260  if (!ResultReg)
261    return false;
262
263  UpdateValueMap(I, ResultReg);
264  return true;
265}
266
267bool FastISel::SelectBitCast(User *I) {
268  // If the bitcast doesn't change the type, just use the operand value.
269  if (I->getType() == I->getOperand(0)->getType()) {
270    unsigned Reg = getRegForValue(I->getOperand(0));
271    if (Reg == 0)
272      return false;
273    UpdateValueMap(I, Reg);
274    return true;
275  }
276
277  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
278  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
279  MVT DstVT = TLI.getValueType(I->getType());
280
281  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
282      DstVT == MVT::Other || !DstVT.isSimple() ||
283      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
284    // Unhandled type. Halt "fast" selection and bail.
285    return false;
286
287  unsigned Op0 = getRegForValue(I->getOperand(0));
288  if (Op0 == 0)
289    // Unhandled operand. Halt "fast" selection and bail.
290    return false;
291
292  // First, try to perform the bitcast by inserting a reg-reg copy.
293  unsigned ResultReg = 0;
294  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
295    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
296    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
297    ResultReg = createResultReg(DstClass);
298
299    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
300                                         Op0, DstClass, SrcClass);
301    if (!InsertedCopy)
302      ResultReg = 0;
303  }
304
305  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
306  if (!ResultReg)
307    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
308                           ISD::BIT_CONVERT, Op0);
309
310  if (!ResultReg)
311    return false;
312
313  UpdateValueMap(I, ResultReg);
314  return true;
315}
316
317bool
318FastISel::SelectInstruction(Instruction *I) {
319  return SelectOperator(I, I->getOpcode());
320}
321
322bool
323FastISel::SelectOperator(User *I, unsigned Opcode) {
324  switch (Opcode) {
325  case Instruction::Add: {
326    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD;
327    return SelectBinaryOp(I, Opc);
328  }
329  case Instruction::Sub: {
330    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB;
331    return SelectBinaryOp(I, Opc);
332  }
333  case Instruction::Mul: {
334    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL;
335    return SelectBinaryOp(I, Opc);
336  }
337  case Instruction::SDiv:
338    return SelectBinaryOp(I, ISD::SDIV);
339  case Instruction::UDiv:
340    return SelectBinaryOp(I, ISD::UDIV);
341  case Instruction::FDiv:
342    return SelectBinaryOp(I, ISD::FDIV);
343  case Instruction::SRem:
344    return SelectBinaryOp(I, ISD::SREM);
345  case Instruction::URem:
346    return SelectBinaryOp(I, ISD::UREM);
347  case Instruction::FRem:
348    return SelectBinaryOp(I, ISD::FREM);
349  case Instruction::Shl:
350    return SelectBinaryOp(I, ISD::SHL);
351  case Instruction::LShr:
352    return SelectBinaryOp(I, ISD::SRL);
353  case Instruction::AShr:
354    return SelectBinaryOp(I, ISD::SRA);
355  case Instruction::And:
356    return SelectBinaryOp(I, ISD::AND);
357  case Instruction::Or:
358    return SelectBinaryOp(I, ISD::OR);
359  case Instruction::Xor:
360    return SelectBinaryOp(I, ISD::XOR);
361
362  case Instruction::GetElementPtr:
363    return SelectGetElementPtr(I);
364
365  case Instruction::Br: {
366    BranchInst *BI = cast<BranchInst>(I);
367
368    if (BI->isUnconditional()) {
369      MachineFunction::iterator NextMBB =
370         next(MachineFunction::iterator(MBB));
371      BasicBlock *LLVMSucc = BI->getSuccessor(0);
372      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
373
374      if (NextMBB != MF.end() && MSucc == NextMBB) {
375        // The unconditional fall-through case, which needs no instructions.
376      } else {
377        // The unconditional branch case.
378        TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
379      }
380      MBB->addSuccessor(MSucc);
381      return true;
382    }
383
384    // Conditional branches are not handed yet.
385    // Halt "fast" selection and bail.
386    return false;
387  }
388
389  case Instruction::Unreachable:
390    // Nothing to emit.
391    return true;
392
393  case Instruction::PHI:
394    // PHI nodes are already emitted.
395    return true;
396
397  case Instruction::BitCast:
398    return SelectBitCast(I);
399
400  case Instruction::FPToSI:
401    return SelectCast(I, ISD::FP_TO_SINT);
402  case Instruction::ZExt:
403    return SelectCast(I, ISD::ZERO_EXTEND);
404  case Instruction::SExt:
405    return SelectCast(I, ISD::SIGN_EXTEND);
406  case Instruction::Trunc:
407    return SelectCast(I, ISD::TRUNCATE);
408  case Instruction::SIToFP:
409    return SelectCast(I, ISD::SINT_TO_FP);
410
411  case Instruction::IntToPtr: // Deliberate fall-through.
412  case Instruction::PtrToInt: {
413    MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
414    MVT DstVT = TLI.getValueType(I->getType());
415    if (DstVT.bitsGT(SrcVT))
416      return SelectCast(I, ISD::ZERO_EXTEND);
417    if (DstVT.bitsLT(SrcVT))
418      return SelectCast(I, ISD::TRUNCATE);
419    unsigned Reg = getRegForValue(I->getOperand(0));
420    if (Reg == 0) return false;
421    UpdateValueMap(I, Reg);
422    return true;
423  }
424
425  default:
426    // Unhandled instruction. Halt "fast" selection and bail.
427    return false;
428  }
429}
430
431FastISel::FastISel(MachineFunction &mf,
432                   DenseMap<const Value *, unsigned> &vm,
433                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm)
434  : MBB(0),
435    ValueMap(vm),
436    MBBMap(bm),
437    MF(mf),
438    MRI(MF.getRegInfo()),
439    TM(MF.getTarget()),
440    TD(*TM.getTargetData()),
441    TII(*TM.getInstrInfo()),
442    TLI(*TM.getTargetLowering()) {
443}
444
445FastISel::~FastISel() {}
446
447unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
448                             ISD::NodeType) {
449  return 0;
450}
451
452unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
453                              ISD::NodeType, unsigned /*Op0*/) {
454  return 0;
455}
456
457unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
458                               ISD::NodeType, unsigned /*Op0*/,
459                               unsigned /*Op0*/) {
460  return 0;
461}
462
463unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
464                              ISD::NodeType, uint64_t /*Imm*/) {
465  return 0;
466}
467
468unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
469                              ISD::NodeType, ConstantFP * /*FPImm*/) {
470  return 0;
471}
472
473unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
474                               ISD::NodeType, unsigned /*Op0*/,
475                               uint64_t /*Imm*/) {
476  return 0;
477}
478
479unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
480                               ISD::NodeType, unsigned /*Op0*/,
481                               ConstantFP * /*FPImm*/) {
482  return 0;
483}
484
485unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
486                                ISD::NodeType,
487                                unsigned /*Op0*/, unsigned /*Op1*/,
488                                uint64_t /*Imm*/) {
489  return 0;
490}
491
492/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
493/// to emit an instruction with an immediate operand using FastEmit_ri.
494/// If that fails, it materializes the immediate into a register and try
495/// FastEmit_rr instead.
496unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
497                                unsigned Op0, uint64_t Imm,
498                                MVT::SimpleValueType ImmType) {
499  // First check if immediate type is legal. If not, we can't use the ri form.
500  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
501  if (ResultReg != 0)
502    return ResultReg;
503  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
504  if (MaterialReg == 0)
505    return 0;
506  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
507}
508
509/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
510/// to emit an instruction with a floating-point immediate operand using
511/// FastEmit_rf. If that fails, it materializes the immediate into a register
512/// and try FastEmit_rr instead.
513unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
514                                unsigned Op0, ConstantFP *FPImm,
515                                MVT::SimpleValueType ImmType) {
516  // First check if immediate type is legal. If not, we can't use the rf form.
517  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
518  if (ResultReg != 0)
519    return ResultReg;
520
521  // Materialize the constant in a register.
522  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
523  if (MaterialReg == 0) {
524    // If the target doesn't have a way to directly enter a floating-point
525    // value into a register, use an alternate approach.
526    // TODO: The current approach only supports floating-point constants
527    // that can be constructed by conversion from integer values. This should
528    // be replaced by code that creates a load from a constant-pool entry,
529    // which will require some target-specific work.
530    const APFloat &Flt = FPImm->getValueAPF();
531    MVT IntVT = TLI.getPointerTy();
532
533    uint64_t x[2];
534    uint32_t IntBitWidth = IntVT.getSizeInBits();
535    if (Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
536                             APFloat::rmTowardZero) != APFloat::opOK)
537      return 0;
538    APInt IntVal(IntBitWidth, 2, x);
539
540    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
541                                     ISD::Constant, IntVal.getZExtValue());
542    if (IntegerReg == 0)
543      return 0;
544    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
545                             ISD::SINT_TO_FP, IntegerReg);
546    if (MaterialReg == 0)
547      return 0;
548  }
549  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
550}
551
552unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
553  return MRI.createVirtualRegister(RC);
554}
555
556unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
557                                 const TargetRegisterClass* RC) {
558  unsigned ResultReg = createResultReg(RC);
559  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
560
561  BuildMI(MBB, II, ResultReg);
562  return ResultReg;
563}
564
565unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
566                                  const TargetRegisterClass *RC,
567                                  unsigned Op0) {
568  unsigned ResultReg = createResultReg(RC);
569  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
570
571  BuildMI(MBB, II, ResultReg).addReg(Op0);
572  return ResultReg;
573}
574
575unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
576                                   const TargetRegisterClass *RC,
577                                   unsigned Op0, unsigned Op1) {
578  unsigned ResultReg = createResultReg(RC);
579  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
580
581  BuildMI(MBB, II, ResultReg).addReg(Op0).addReg(Op1);
582  return ResultReg;
583}
584
585unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
586                                   const TargetRegisterClass *RC,
587                                   unsigned Op0, uint64_t Imm) {
588  unsigned ResultReg = createResultReg(RC);
589  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
590
591  BuildMI(MBB, II, ResultReg).addReg(Op0).addImm(Imm);
592  return ResultReg;
593}
594
595unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
596                                   const TargetRegisterClass *RC,
597                                   unsigned Op0, ConstantFP *FPImm) {
598  unsigned ResultReg = createResultReg(RC);
599  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
600
601  BuildMI(MBB, II, ResultReg).addReg(Op0).addFPImm(FPImm);
602  return ResultReg;
603}
604
605unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
606                                    const TargetRegisterClass *RC,
607                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
608  unsigned ResultReg = createResultReg(RC);
609  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
610
611  BuildMI(MBB, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
612  return ResultReg;
613}
614
615unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
616                                  const TargetRegisterClass *RC,
617                                  uint64_t Imm) {
618  unsigned ResultReg = createResultReg(RC);
619  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
620
621  BuildMI(MBB, II, ResultReg).addImm(Imm);
622  return ResultReg;
623}
624
625unsigned FastISel::FastEmitInst_extractsubreg(unsigned Op0, uint32_t Idx) {
626  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
627  const TargetRegisterClass* SRC = *(RC->subregclasses_begin()+Idx-1);
628
629  unsigned ResultReg = createResultReg(SRC);
630  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
631
632  BuildMI(MBB, II, ResultReg).addReg(Op0).addImm(Idx);
633  return ResultReg;
634}
635