FastISel.cpp revision 84364a4e23e8ba2fe9332da99bcab31acc173381
1//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#define DEBUG_TYPE "isel"
43#include "llvm/Function.h"
44#include "llvm/GlobalVariable.h"
45#include "llvm/Instructions.h"
46#include "llvm/IntrinsicInst.h"
47#include "llvm/Operator.h"
48#include "llvm/CodeGen/Analysis.h"
49#include "llvm/CodeGen/FastISel.h"
50#include "llvm/CodeGen/FunctionLoweringInfo.h"
51#include "llvm/CodeGen/MachineInstrBuilder.h"
52#include "llvm/CodeGen/MachineModuleInfo.h"
53#include "llvm/CodeGen/MachineRegisterInfo.h"
54#include "llvm/Analysis/DebugInfo.h"
55#include "llvm/Analysis/Loads.h"
56#include "llvm/Target/TargetData.h"
57#include "llvm/Target/TargetInstrInfo.h"
58#include "llvm/Target/TargetLowering.h"
59#include "llvm/Target/TargetMachine.h"
60#include "llvm/Support/ErrorHandling.h"
61#include "llvm/Support/Debug.h"
62#include "llvm/ADT/Statistic.h"
63using namespace llvm;
64
65STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
66          "target-independent selector");
67STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
68          "target-specific selector");
69STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
70
71/// startNewBlock - Set the current block to which generated machine
72/// instructions will be appended, and clear the local CSE map.
73///
74void FastISel::startNewBlock() {
75  LocalValueMap.clear();
76
77  EmitStartPt = 0;
78
79  // Advance the emit start point past any EH_LABEL instructions.
80  MachineBasicBlock::iterator
81    I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
82  while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
83    EmitStartPt = I;
84    ++I;
85  }
86  LastLocalValue = EmitStartPt;
87}
88
89void FastISel::flushLocalValueMap() {
90  LocalValueMap.clear();
91  LastLocalValue = EmitStartPt;
92  recomputeInsertPt();
93}
94
95bool FastISel::hasTrivialKill(const Value *V) const {
96  // Don't consider constants or arguments to have trivial kills.
97  const Instruction *I = dyn_cast<Instruction>(V);
98  if (!I)
99    return false;
100
101  // No-op casts are trivially coalesced by fast-isel.
102  if (const CastInst *Cast = dyn_cast<CastInst>(I))
103    if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
104        !hasTrivialKill(Cast->getOperand(0)))
105      return false;
106
107  // GEPs with all zero indices are trivially coalesced by fast-isel.
108  if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
109    if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
110      return false;
111
112  // Only instructions with a single use in the same basic block are considered
113  // to have trivial kills.
114  return I->hasOneUse() &&
115         !(I->getOpcode() == Instruction::BitCast ||
116           I->getOpcode() == Instruction::PtrToInt ||
117           I->getOpcode() == Instruction::IntToPtr) &&
118         cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
119}
120
121unsigned FastISel::getRegForValue(const Value *V) {
122  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
123  // Don't handle non-simple values in FastISel.
124  if (!RealVT.isSimple())
125    return 0;
126
127  // Ignore illegal types. We must do this before looking up the value
128  // in ValueMap because Arguments are given virtual registers regardless
129  // of whether FastISel can handle them.
130  MVT VT = RealVT.getSimpleVT();
131  if (!TLI.isTypeLegal(VT)) {
132    // Handle integer promotions, though, because they're common and easy.
133    if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
134      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
135    else
136      return 0;
137  }
138
139  // Look up the value to see if we already have a register for it.
140  unsigned Reg = lookUpRegForValue(V);
141  if (Reg != 0)
142    return Reg;
143
144  // In bottom-up mode, just create the virtual register which will be used
145  // to hold the value. It will be materialized later.
146  if (isa<Instruction>(V) &&
147      (!isa<AllocaInst>(V) ||
148       !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
149    return FuncInfo.InitializeRegForValue(V);
150
151  SavePoint SaveInsertPt = enterLocalValueArea();
152
153  // Materialize the value in a register. Emit any instructions in the
154  // local value area.
155  Reg = materializeRegForValue(V, VT);
156
157  leaveLocalValueArea(SaveInsertPt);
158
159  return Reg;
160}
161
162/// materializeRegForValue - Helper for getRegForValue. This function is
163/// called when the value isn't already available in a register and must
164/// be materialized with new instructions.
165unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
166  unsigned Reg = 0;
167
168  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
169    if (CI->getValue().getActiveBits() <= 64)
170      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
171  } else if (isa<AllocaInst>(V)) {
172    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
173  } else if (isa<ConstantPointerNull>(V)) {
174    // Translate this as an integer zero so that it can be
175    // local-CSE'd with actual integer zeros.
176    Reg =
177      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
178  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
179    if (CF->isNullValue()) {
180      Reg = TargetMaterializeFloatZero(CF);
181    } else {
182      // Try to emit the constant directly.
183      Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
184    }
185
186    if (!Reg) {
187      // Try to emit the constant by using an integer constant with a cast.
188      const APFloat &Flt = CF->getValueAPF();
189      EVT IntVT = TLI.getPointerTy();
190
191      uint64_t x[2];
192      uint32_t IntBitWidth = IntVT.getSizeInBits();
193      bool isExact;
194      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
195                                  APFloat::rmTowardZero, &isExact);
196      if (isExact) {
197        APInt IntVal(IntBitWidth, x);
198
199        unsigned IntegerReg =
200          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
201        if (IntegerReg != 0)
202          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
203                           IntegerReg, /*Kill=*/false);
204      }
205    }
206  } else if (const Operator *Op = dyn_cast<Operator>(V)) {
207    if (!SelectOperator(Op, Op->getOpcode()))
208      if (!isa<Instruction>(Op) ||
209          !TargetSelectInstruction(cast<Instruction>(Op)))
210        return 0;
211    Reg = lookUpRegForValue(Op);
212  } else if (isa<UndefValue>(V)) {
213    Reg = createResultReg(TLI.getRegClassFor(VT));
214    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
215            TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
216  }
217
218  // If target-independent code couldn't handle the value, give target-specific
219  // code a try.
220  if (!Reg && isa<Constant>(V))
221    Reg = TargetMaterializeConstant(cast<Constant>(V));
222
223  // Don't cache constant materializations in the general ValueMap.
224  // To do so would require tracking what uses they dominate.
225  if (Reg != 0) {
226    LocalValueMap[V] = Reg;
227    LastLocalValue = MRI.getVRegDef(Reg);
228  }
229  return Reg;
230}
231
232unsigned FastISel::lookUpRegForValue(const Value *V) {
233  // Look up the value to see if we already have a register for it. We
234  // cache values defined by Instructions across blocks, and other values
235  // only locally. This is because Instructions already have the SSA
236  // def-dominates-use requirement enforced.
237  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
238  if (I != FuncInfo.ValueMap.end())
239    return I->second;
240  return LocalValueMap[V];
241}
242
243/// UpdateValueMap - Update the value map to include the new mapping for this
244/// instruction, or insert an extra copy to get the result in a previous
245/// determined register.
246/// NOTE: This is only necessary because we might select a block that uses
247/// a value before we select the block that defines the value.  It might be
248/// possible to fix this by selecting blocks in reverse postorder.
249void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
250  if (!isa<Instruction>(I)) {
251    LocalValueMap[I] = Reg;
252    return;
253  }
254
255  unsigned &AssignedReg = FuncInfo.ValueMap[I];
256  if (AssignedReg == 0)
257    // Use the new register.
258    AssignedReg = Reg;
259  else if (Reg != AssignedReg) {
260    // Arrange for uses of AssignedReg to be replaced by uses of Reg.
261    for (unsigned i = 0; i < NumRegs; i++)
262      FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
263
264    AssignedReg = Reg;
265  }
266}
267
268std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
269  unsigned IdxN = getRegForValue(Idx);
270  if (IdxN == 0)
271    // Unhandled operand. Halt "fast" selection and bail.
272    return std::pair<unsigned, bool>(0, false);
273
274  bool IdxNIsKill = hasTrivialKill(Idx);
275
276  // If the index is smaller or larger than intptr_t, truncate or extend it.
277  MVT PtrVT = TLI.getPointerTy();
278  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
279  if (IdxVT.bitsLT(PtrVT)) {
280    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
281                      IdxN, IdxNIsKill);
282    IdxNIsKill = true;
283  }
284  else if (IdxVT.bitsGT(PtrVT)) {
285    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
286                      IdxN, IdxNIsKill);
287    IdxNIsKill = true;
288  }
289  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
290}
291
292void FastISel::recomputeInsertPt() {
293  if (getLastLocalValue()) {
294    FuncInfo.InsertPt = getLastLocalValue();
295    FuncInfo.MBB = FuncInfo.InsertPt->getParent();
296    ++FuncInfo.InsertPt;
297  } else
298    FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
299
300  // Now skip past any EH_LABELs, which must remain at the beginning.
301  while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
302         FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
303    ++FuncInfo.InsertPt;
304}
305
306void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
307                              MachineBasicBlock::iterator E) {
308  assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!");
309  while (I != E) {
310    MachineInstr *Dead = &*I;
311    ++I;
312    Dead->eraseFromParent();
313    ++NumFastIselDead;
314  }
315  recomputeInsertPt();
316}
317
318FastISel::SavePoint FastISel::enterLocalValueArea() {
319  MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
320  DebugLoc OldDL = DL;
321  recomputeInsertPt();
322  DL = DebugLoc();
323  SavePoint SP = { OldInsertPt, OldDL };
324  return SP;
325}
326
327void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
328  if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
329    LastLocalValue = llvm::prior(FuncInfo.InsertPt);
330
331  // Restore the previous insert position.
332  FuncInfo.InsertPt = OldInsertPt.InsertPt;
333  DL = OldInsertPt.DL;
334}
335
336/// SelectBinaryOp - Select and emit code for a binary operator instruction,
337/// which has an opcode which directly corresponds to the given ISD opcode.
338///
339bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
340  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
341  if (VT == MVT::Other || !VT.isSimple())
342    // Unhandled type. Halt "fast" selection and bail.
343    return false;
344
345  // We only handle legal types. For example, on x86-32 the instruction
346  // selector contains all of the 64-bit instructions from x86-64,
347  // under the assumption that i64 won't be used if the target doesn't
348  // support it.
349  if (!TLI.isTypeLegal(VT)) {
350    // MVT::i1 is special. Allow AND, OR, or XOR because they
351    // don't require additional zeroing, which makes them easy.
352    if (VT == MVT::i1 &&
353        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
354         ISDOpcode == ISD::XOR))
355      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
356    else
357      return false;
358  }
359
360  // Check if the first operand is a constant, and handle it as "ri".  At -O0,
361  // we don't have anything that canonicalizes operand order.
362  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
363    if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
364      unsigned Op1 = getRegForValue(I->getOperand(1));
365      if (Op1 == 0) return false;
366
367      bool Op1IsKill = hasTrivialKill(I->getOperand(1));
368
369      unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
370                                        Op1IsKill, CI->getZExtValue(),
371                                        VT.getSimpleVT());
372      if (ResultReg == 0) return false;
373
374      // We successfully emitted code for the given LLVM Instruction.
375      UpdateValueMap(I, ResultReg);
376      return true;
377    }
378
379
380  unsigned Op0 = getRegForValue(I->getOperand(0));
381  if (Op0 == 0)   // Unhandled operand. Halt "fast" selection and bail.
382    return false;
383
384  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
385
386  // Check if the second operand is a constant and handle it appropriately.
387  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
388    uint64_t Imm = CI->getZExtValue();
389
390    // Transform "sdiv exact X, 8" -> "sra X, 3".
391    if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
392        cast<BinaryOperator>(I)->isExact() &&
393        isPowerOf2_64(Imm)) {
394      Imm = Log2_64(Imm);
395      ISDOpcode = ISD::SRA;
396    }
397
398    // Transform "urem x, pow2" -> "and x, pow2-1".
399    if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) &&
400        isPowerOf2_64(Imm)) {
401      --Imm;
402      ISDOpcode = ISD::AND;
403    }
404
405    unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
406                                      Op0IsKill, Imm, VT.getSimpleVT());
407    if (ResultReg == 0) return false;
408
409    // We successfully emitted code for the given LLVM Instruction.
410    UpdateValueMap(I, ResultReg);
411    return true;
412  }
413
414  // Check if the second operand is a constant float.
415  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
416    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
417                                     ISDOpcode, Op0, Op0IsKill, CF);
418    if (ResultReg != 0) {
419      // We successfully emitted code for the given LLVM Instruction.
420      UpdateValueMap(I, ResultReg);
421      return true;
422    }
423  }
424
425  unsigned Op1 = getRegForValue(I->getOperand(1));
426  if (Op1 == 0)
427    // Unhandled operand. Halt "fast" selection and bail.
428    return false;
429
430  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
431
432  // Now we have both operands in registers. Emit the instruction.
433  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
434                                   ISDOpcode,
435                                   Op0, Op0IsKill,
436                                   Op1, Op1IsKill);
437  if (ResultReg == 0)
438    // Target-specific code wasn't able to find a machine opcode for
439    // the given ISD opcode and type. Halt "fast" selection and bail.
440    return false;
441
442  // We successfully emitted code for the given LLVM Instruction.
443  UpdateValueMap(I, ResultReg);
444  return true;
445}
446
447bool FastISel::SelectGetElementPtr(const User *I) {
448  unsigned N = getRegForValue(I->getOperand(0));
449  if (N == 0)
450    // Unhandled operand. Halt "fast" selection and bail.
451    return false;
452
453  bool NIsKill = hasTrivialKill(I->getOperand(0));
454
455  // Keep a running tab of the total offset to coalesce multiple N = N + Offset
456  // into a single N = N + TotalOffset.
457  uint64_t TotalOffs = 0;
458  // FIXME: What's a good SWAG number for MaxOffs?
459  uint64_t MaxOffs = 2048;
460  Type *Ty = I->getOperand(0)->getType();
461  MVT VT = TLI.getPointerTy();
462  for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
463       E = I->op_end(); OI != E; ++OI) {
464    const Value *Idx = *OI;
465    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
466      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
467      if (Field) {
468        // N = N + Offset
469        TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field);
470        if (TotalOffs >= MaxOffs) {
471          N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
472          if (N == 0)
473            // Unhandled operand. Halt "fast" selection and bail.
474            return false;
475          NIsKill = true;
476          TotalOffs = 0;
477        }
478      }
479      Ty = StTy->getElementType(Field);
480    } else {
481      Ty = cast<SequentialType>(Ty)->getElementType();
482
483      // If this is a constant subscript, handle it quickly.
484      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
485        if (CI->isZero()) continue;
486        // N = N + Offset
487        TotalOffs +=
488          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
489        if (TotalOffs >= MaxOffs) {
490          N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
491          if (N == 0)
492            // Unhandled operand. Halt "fast" selection and bail.
493            return false;
494          NIsKill = true;
495          TotalOffs = 0;
496        }
497        continue;
498      }
499      if (TotalOffs) {
500        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
501        if (N == 0)
502          // Unhandled operand. Halt "fast" selection and bail.
503          return false;
504        NIsKill = true;
505        TotalOffs = 0;
506      }
507
508      // N = N + Idx * ElementSize;
509      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
510      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
511      unsigned IdxN = Pair.first;
512      bool IdxNIsKill = Pair.second;
513      if (IdxN == 0)
514        // Unhandled operand. Halt "fast" selection and bail.
515        return false;
516
517      if (ElementSize != 1) {
518        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
519        if (IdxN == 0)
520          // Unhandled operand. Halt "fast" selection and bail.
521          return false;
522        IdxNIsKill = true;
523      }
524      N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
525      if (N == 0)
526        // Unhandled operand. Halt "fast" selection and bail.
527        return false;
528    }
529  }
530  if (TotalOffs) {
531    N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
532    if (N == 0)
533      // Unhandled operand. Halt "fast" selection and bail.
534      return false;
535  }
536
537  // We successfully emitted code for the given LLVM Instruction.
538  UpdateValueMap(I, N);
539  return true;
540}
541
542bool FastISel::SelectCall(const User *I) {
543  const CallInst *Call = cast<CallInst>(I);
544
545  // Handle simple inline asms.
546  if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
547    // Don't attempt to handle constraints.
548    if (!IA->getConstraintString().empty())
549      return false;
550
551    unsigned ExtraInfo = 0;
552    if (IA->hasSideEffects())
553      ExtraInfo |= InlineAsm::Extra_HasSideEffects;
554    if (IA->isAlignStack())
555      ExtraInfo |= InlineAsm::Extra_IsAlignStack;
556
557    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
558            TII.get(TargetOpcode::INLINEASM))
559      .addExternalSymbol(IA->getAsmString().c_str())
560      .addImm(ExtraInfo);
561    return true;
562  }
563
564  MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
565  ComputeUsesVAFloatArgument(*Call, &MMI);
566
567  const Function *F = Call->getCalledFunction();
568  if (!F) return false;
569
570  // Handle selected intrinsic function calls.
571  switch (F->getIntrinsicID()) {
572  default: break;
573    // At -O0 we don't care about the lifetime intrinsics.
574  case Intrinsic::lifetime_start:
575  case Intrinsic::lifetime_end:
576    return true;
577  case Intrinsic::dbg_declare: {
578    const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
579    if (!DIVariable(DI->getVariable()).Verify() ||
580        !FuncInfo.MF->getMMI().hasDebugInfo()) {
581      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
582      return true;
583    }
584
585    const Value *Address = DI->getAddress();
586    if (!Address || isa<UndefValue>(Address)) {
587      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
588      return true;
589    }
590
591    unsigned Reg = 0;
592    unsigned Offset = 0;
593    if (const Argument *Arg = dyn_cast<Argument>(Address)) {
594      // Some arguments' frame index is recorded during argument lowering.
595      Offset = FuncInfo.getArgumentFrameIndex(Arg);
596      if (Offset)
597        Reg = TRI.getFrameRegister(*FuncInfo.MF);
598    }
599    if (!Reg)
600      Reg = lookUpRegForValue(Address);
601
602    // If we have a VLA that has a "use" in a metadata node that's then used
603    // here but it has no other uses, then we have a problem. E.g.,
604    //
605    //   int foo (const int *x) {
606    //     char a[*x];
607    //     return 0;
608    //   }
609    //
610    // If we assign 'a' a vreg and fast isel later on has to use the selection
611    // DAG isel, it will want to copy the value to the vreg. However, there are
612    // no uses, which goes counter to what selection DAG isel expects.
613    if (!Reg && !Address->use_empty() && isa<Instruction>(Address) &&
614        (!isa<AllocaInst>(Address) ||
615         !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address))))
616      Reg = FuncInfo.InitializeRegForValue(Address);
617
618    if (Reg)
619      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
620              TII.get(TargetOpcode::DBG_VALUE))
621        .addReg(Reg, RegState::Debug).addImm(Offset)
622        .addMetadata(DI->getVariable());
623    else
624      // We can't yet handle anything else here because it would require
625      // generating code, thus altering codegen because of debug info.
626      DEBUG(dbgs() << "Dropping debug info for " << DI);
627    return true;
628  }
629  case Intrinsic::dbg_value: {
630    // This form of DBG_VALUE is target-independent.
631    const DbgValueInst *DI = cast<DbgValueInst>(Call);
632    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
633    const Value *V = DI->getValue();
634    if (!V) {
635      // Currently the optimizer can produce this; insert an undef to
636      // help debugging.  Probably the optimizer should not do this.
637      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
638        .addReg(0U).addImm(DI->getOffset())
639        .addMetadata(DI->getVariable());
640    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
641      if (CI->getBitWidth() > 64)
642        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
643          .addCImm(CI).addImm(DI->getOffset())
644          .addMetadata(DI->getVariable());
645      else
646        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
647          .addImm(CI->getZExtValue()).addImm(DI->getOffset())
648          .addMetadata(DI->getVariable());
649    } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
650      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
651        .addFPImm(CF).addImm(DI->getOffset())
652        .addMetadata(DI->getVariable());
653    } else if (unsigned Reg = lookUpRegForValue(V)) {
654      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
655        .addReg(Reg, RegState::Debug).addImm(DI->getOffset())
656        .addMetadata(DI->getVariable());
657    } else {
658      // We can't yet handle anything else here because it would require
659      // generating code, thus altering codegen because of debug info.
660      DEBUG(dbgs() << "Dropping debug info for " << DI);
661    }
662    return true;
663  }
664  case Intrinsic::objectsize: {
665    ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
666    unsigned long long Res = CI->isZero() ? -1ULL : 0;
667    Constant *ResCI = ConstantInt::get(Call->getType(), Res);
668    unsigned ResultReg = getRegForValue(ResCI);
669    if (ResultReg == 0)
670      return false;
671    UpdateValueMap(Call, ResultReg);
672    return true;
673  }
674  }
675
676  // Usually, it does not make sense to initialize a value,
677  // make an unrelated function call and use the value, because
678  // it tends to be spilled on the stack. So, we move the pointer
679  // to the last local value to the beginning of the block, so that
680  // all the values which have already been materialized,
681  // appear after the call. It also makes sense to skip intrinsics
682  // since they tend to be inlined.
683  if (!isa<IntrinsicInst>(F))
684    flushLocalValueMap();
685
686  // An arbitrary call. Bail.
687  return false;
688}
689
690bool FastISel::SelectCast(const User *I, unsigned Opcode) {
691  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
692  EVT DstVT = TLI.getValueType(I->getType());
693
694  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
695      DstVT == MVT::Other || !DstVT.isSimple())
696    // Unhandled type. Halt "fast" selection and bail.
697    return false;
698
699  // Check if the destination type is legal.
700  if (!TLI.isTypeLegal(DstVT))
701    return false;
702
703  // Check if the source operand is legal.
704  if (!TLI.isTypeLegal(SrcVT))
705    return false;
706
707  unsigned InputReg = getRegForValue(I->getOperand(0));
708  if (!InputReg)
709    // Unhandled operand.  Halt "fast" selection and bail.
710    return false;
711
712  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
713
714  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
715                                  DstVT.getSimpleVT(),
716                                  Opcode,
717                                  InputReg, InputRegIsKill);
718  if (!ResultReg)
719    return false;
720
721  UpdateValueMap(I, ResultReg);
722  return true;
723}
724
725bool FastISel::SelectBitCast(const User *I) {
726  // If the bitcast doesn't change the type, just use the operand value.
727  if (I->getType() == I->getOperand(0)->getType()) {
728    unsigned Reg = getRegForValue(I->getOperand(0));
729    if (Reg == 0)
730      return false;
731    UpdateValueMap(I, Reg);
732    return true;
733  }
734
735  // Bitcasts of other values become reg-reg copies or BITCAST operators.
736  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
737  EVT DstVT = TLI.getValueType(I->getType());
738
739  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
740      DstVT == MVT::Other || !DstVT.isSimple() ||
741      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
742    // Unhandled type. Halt "fast" selection and bail.
743    return false;
744
745  unsigned Op0 = getRegForValue(I->getOperand(0));
746  if (Op0 == 0)
747    // Unhandled operand. Halt "fast" selection and bail.
748    return false;
749
750  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
751
752  // First, try to perform the bitcast by inserting a reg-reg copy.
753  unsigned ResultReg = 0;
754  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
755    const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
756    const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
757    // Don't attempt a cross-class copy. It will likely fail.
758    if (SrcClass == DstClass) {
759      ResultReg = createResultReg(DstClass);
760      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
761              ResultReg).addReg(Op0);
762    }
763  }
764
765  // If the reg-reg copy failed, select a BITCAST opcode.
766  if (!ResultReg)
767    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
768                           ISD::BITCAST, Op0, Op0IsKill);
769
770  if (!ResultReg)
771    return false;
772
773  UpdateValueMap(I, ResultReg);
774  return true;
775}
776
777bool
778FastISel::SelectInstruction(const Instruction *I) {
779  // Just before the terminator instruction, insert instructions to
780  // feed PHI nodes in successor blocks.
781  if (isa<TerminatorInst>(I))
782    if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
783      return false;
784
785  DL = I->getDebugLoc();
786
787  MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt;
788
789  // First, try doing target-independent selection.
790  if (SelectOperator(I, I->getOpcode())) {
791    ++NumFastIselSuccessIndependent;
792    DL = DebugLoc();
793    return true;
794  }
795  // Remove dead code.  However, ignore call instructions since we've flushed
796  // the local value map and recomputed the insert point.
797  if (!isa<CallInst>(I)) {
798    recomputeInsertPt();
799    if (SavedInsertPt != FuncInfo.InsertPt)
800      removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
801  }
802
803  // Next, try calling the target to attempt to handle the instruction.
804  SavedInsertPt = FuncInfo.InsertPt;
805  if (TargetSelectInstruction(I)) {
806    ++NumFastIselSuccessTarget;
807    DL = DebugLoc();
808    return true;
809  }
810  // Check for dead code and remove as necessary.
811  recomputeInsertPt();
812  if (SavedInsertPt != FuncInfo.InsertPt)
813    removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
814
815  DL = DebugLoc();
816  return false;
817}
818
819/// FastEmitBranch - Emit an unconditional branch to the given block,
820/// unless it is the immediate (fall-through) successor, and update
821/// the CFG.
822void
823FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
824  if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
825    // The unconditional fall-through case, which needs no instructions.
826  } else {
827    // The unconditional branch case.
828    TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
829                     SmallVector<MachineOperand, 0>(), DL);
830  }
831  FuncInfo.MBB->addSuccessor(MSucc);
832}
833
834/// SelectFNeg - Emit an FNeg operation.
835///
836bool
837FastISel::SelectFNeg(const User *I) {
838  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
839  if (OpReg == 0) return false;
840
841  bool OpRegIsKill = hasTrivialKill(I);
842
843  // If the target has ISD::FNEG, use it.
844  EVT VT = TLI.getValueType(I->getType());
845  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
846                                  ISD::FNEG, OpReg, OpRegIsKill);
847  if (ResultReg != 0) {
848    UpdateValueMap(I, ResultReg);
849    return true;
850  }
851
852  // Bitcast the value to integer, twiddle the sign bit with xor,
853  // and then bitcast it back to floating-point.
854  if (VT.getSizeInBits() > 64) return false;
855  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
856  if (!TLI.isTypeLegal(IntVT))
857    return false;
858
859  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
860                               ISD::BITCAST, OpReg, OpRegIsKill);
861  if (IntReg == 0)
862    return false;
863
864  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
865                                       IntReg, /*Kill=*/true,
866                                       UINT64_C(1) << (VT.getSizeInBits()-1),
867                                       IntVT.getSimpleVT());
868  if (IntResultReg == 0)
869    return false;
870
871  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
872                         ISD::BITCAST, IntResultReg, /*Kill=*/true);
873  if (ResultReg == 0)
874    return false;
875
876  UpdateValueMap(I, ResultReg);
877  return true;
878}
879
880bool
881FastISel::SelectExtractValue(const User *U) {
882  const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
883  if (!EVI)
884    return false;
885
886  // Make sure we only try to handle extracts with a legal result.  But also
887  // allow i1 because it's easy.
888  EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
889  if (!RealVT.isSimple())
890    return false;
891  MVT VT = RealVT.getSimpleVT();
892  if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
893    return false;
894
895  const Value *Op0 = EVI->getOperand(0);
896  Type *AggTy = Op0->getType();
897
898  // Get the base result register.
899  unsigned ResultReg;
900  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
901  if (I != FuncInfo.ValueMap.end())
902    ResultReg = I->second;
903  else if (isa<Instruction>(Op0))
904    ResultReg = FuncInfo.InitializeRegForValue(Op0);
905  else
906    return false; // fast-isel can't handle aggregate constants at the moment
907
908  // Get the actual result register, which is an offset from the base register.
909  unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
910
911  SmallVector<EVT, 4> AggValueVTs;
912  ComputeValueVTs(TLI, AggTy, AggValueVTs);
913
914  for (unsigned i = 0; i < VTIndex; i++)
915    ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
916
917  UpdateValueMap(EVI, ResultReg);
918  return true;
919}
920
921bool
922FastISel::SelectOperator(const User *I, unsigned Opcode) {
923  switch (Opcode) {
924  case Instruction::Add:
925    return SelectBinaryOp(I, ISD::ADD);
926  case Instruction::FAdd:
927    return SelectBinaryOp(I, ISD::FADD);
928  case Instruction::Sub:
929    return SelectBinaryOp(I, ISD::SUB);
930  case Instruction::FSub:
931    // FNeg is currently represented in LLVM IR as a special case of FSub.
932    if (BinaryOperator::isFNeg(I))
933      return SelectFNeg(I);
934    return SelectBinaryOp(I, ISD::FSUB);
935  case Instruction::Mul:
936    return SelectBinaryOp(I, ISD::MUL);
937  case Instruction::FMul:
938    return SelectBinaryOp(I, ISD::FMUL);
939  case Instruction::SDiv:
940    return SelectBinaryOp(I, ISD::SDIV);
941  case Instruction::UDiv:
942    return SelectBinaryOp(I, ISD::UDIV);
943  case Instruction::FDiv:
944    return SelectBinaryOp(I, ISD::FDIV);
945  case Instruction::SRem:
946    return SelectBinaryOp(I, ISD::SREM);
947  case Instruction::URem:
948    return SelectBinaryOp(I, ISD::UREM);
949  case Instruction::FRem:
950    return SelectBinaryOp(I, ISD::FREM);
951  case Instruction::Shl:
952    return SelectBinaryOp(I, ISD::SHL);
953  case Instruction::LShr:
954    return SelectBinaryOp(I, ISD::SRL);
955  case Instruction::AShr:
956    return SelectBinaryOp(I, ISD::SRA);
957  case Instruction::And:
958    return SelectBinaryOp(I, ISD::AND);
959  case Instruction::Or:
960    return SelectBinaryOp(I, ISD::OR);
961  case Instruction::Xor:
962    return SelectBinaryOp(I, ISD::XOR);
963
964  case Instruction::GetElementPtr:
965    return SelectGetElementPtr(I);
966
967  case Instruction::Br: {
968    const BranchInst *BI = cast<BranchInst>(I);
969
970    if (BI->isUnconditional()) {
971      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
972      MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
973      FastEmitBranch(MSucc, BI->getDebugLoc());
974      return true;
975    }
976
977    // Conditional branches are not handed yet.
978    // Halt "fast" selection and bail.
979    return false;
980  }
981
982  case Instruction::Unreachable:
983    // Nothing to emit.
984    return true;
985
986  case Instruction::Alloca:
987    // FunctionLowering has the static-sized case covered.
988    if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
989      return true;
990
991    // Dynamic-sized alloca is not handled yet.
992    return false;
993
994  case Instruction::Call:
995    return SelectCall(I);
996
997  case Instruction::BitCast:
998    return SelectBitCast(I);
999
1000  case Instruction::FPToSI:
1001    return SelectCast(I, ISD::FP_TO_SINT);
1002  case Instruction::ZExt:
1003    return SelectCast(I, ISD::ZERO_EXTEND);
1004  case Instruction::SExt:
1005    return SelectCast(I, ISD::SIGN_EXTEND);
1006  case Instruction::Trunc:
1007    return SelectCast(I, ISD::TRUNCATE);
1008  case Instruction::SIToFP:
1009    return SelectCast(I, ISD::SINT_TO_FP);
1010
1011  case Instruction::IntToPtr: // Deliberate fall-through.
1012  case Instruction::PtrToInt: {
1013    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1014    EVT DstVT = TLI.getValueType(I->getType());
1015    if (DstVT.bitsGT(SrcVT))
1016      return SelectCast(I, ISD::ZERO_EXTEND);
1017    if (DstVT.bitsLT(SrcVT))
1018      return SelectCast(I, ISD::TRUNCATE);
1019    unsigned Reg = getRegForValue(I->getOperand(0));
1020    if (Reg == 0) return false;
1021    UpdateValueMap(I, Reg);
1022    return true;
1023  }
1024
1025  case Instruction::ExtractValue:
1026    return SelectExtractValue(I);
1027
1028  case Instruction::PHI:
1029    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1030
1031  default:
1032    // Unhandled instruction. Halt "fast" selection and bail.
1033    return false;
1034  }
1035}
1036
1037FastISel::FastISel(FunctionLoweringInfo &funcInfo)
1038  : FuncInfo(funcInfo),
1039    MRI(FuncInfo.MF->getRegInfo()),
1040    MFI(*FuncInfo.MF->getFrameInfo()),
1041    MCP(*FuncInfo.MF->getConstantPool()),
1042    TM(FuncInfo.MF->getTarget()),
1043    TD(*TM.getTargetData()),
1044    TII(*TM.getInstrInfo()),
1045    TLI(*TM.getTargetLowering()),
1046    TRI(*TM.getRegisterInfo()) {
1047}
1048
1049FastISel::~FastISel() {}
1050
1051unsigned FastISel::FastEmit_(MVT, MVT,
1052                             unsigned) {
1053  return 0;
1054}
1055
1056unsigned FastISel::FastEmit_r(MVT, MVT,
1057                              unsigned,
1058                              unsigned /*Op0*/, bool /*Op0IsKill*/) {
1059  return 0;
1060}
1061
1062unsigned FastISel::FastEmit_rr(MVT, MVT,
1063                               unsigned,
1064                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1065                               unsigned /*Op1*/, bool /*Op1IsKill*/) {
1066  return 0;
1067}
1068
1069unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1070  return 0;
1071}
1072
1073unsigned FastISel::FastEmit_f(MVT, MVT,
1074                              unsigned, const ConstantFP * /*FPImm*/) {
1075  return 0;
1076}
1077
1078unsigned FastISel::FastEmit_ri(MVT, MVT,
1079                               unsigned,
1080                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1081                               uint64_t /*Imm*/) {
1082  return 0;
1083}
1084
1085unsigned FastISel::FastEmit_rf(MVT, MVT,
1086                               unsigned,
1087                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1088                               const ConstantFP * /*FPImm*/) {
1089  return 0;
1090}
1091
1092unsigned FastISel::FastEmit_rri(MVT, MVT,
1093                                unsigned,
1094                                unsigned /*Op0*/, bool /*Op0IsKill*/,
1095                                unsigned /*Op1*/, bool /*Op1IsKill*/,
1096                                uint64_t /*Imm*/) {
1097  return 0;
1098}
1099
1100/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
1101/// to emit an instruction with an immediate operand using FastEmit_ri.
1102/// If that fails, it materializes the immediate into a register and try
1103/// FastEmit_rr instead.
1104unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
1105                                unsigned Op0, bool Op0IsKill,
1106                                uint64_t Imm, MVT ImmType) {
1107  // If this is a multiply by a power of two, emit this as a shift left.
1108  if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1109    Opcode = ISD::SHL;
1110    Imm = Log2_64(Imm);
1111  } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1112    // div x, 8 -> srl x, 3
1113    Opcode = ISD::SRL;
1114    Imm = Log2_64(Imm);
1115  }
1116
1117  // Horrible hack (to be removed), check to make sure shift amounts are
1118  // in-range.
1119  if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1120      Imm >= VT.getSizeInBits())
1121    return 0;
1122
1123  // First check if immediate type is legal. If not, we can't use the ri form.
1124  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1125  if (ResultReg != 0)
1126    return ResultReg;
1127  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1128  if (MaterialReg == 0) {
1129    // This is a bit ugly/slow, but failing here means falling out of
1130    // fast-isel, which would be very slow.
1131    IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
1132                                              VT.getSizeInBits());
1133    MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1134  }
1135  return FastEmit_rr(VT, VT, Opcode,
1136                     Op0, Op0IsKill,
1137                     MaterialReg, /*Kill=*/true);
1138}
1139
1140unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
1141  return MRI.createVirtualRegister(RC);
1142}
1143
1144unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1145                                 const TargetRegisterClass* RC) {
1146  unsigned ResultReg = createResultReg(RC);
1147  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1148
1149  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
1150  return ResultReg;
1151}
1152
1153unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1154                                  const TargetRegisterClass *RC,
1155                                  unsigned Op0, bool Op0IsKill) {
1156  unsigned ResultReg = createResultReg(RC);
1157  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1158
1159  if (II.getNumDefs() >= 1)
1160    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1161      .addReg(Op0, Op0IsKill * RegState::Kill);
1162  else {
1163    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1164      .addReg(Op0, Op0IsKill * RegState::Kill);
1165    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1166            ResultReg).addReg(II.ImplicitDefs[0]);
1167  }
1168
1169  return ResultReg;
1170}
1171
1172unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1173                                   const TargetRegisterClass *RC,
1174                                   unsigned Op0, bool Op0IsKill,
1175                                   unsigned Op1, bool Op1IsKill) {
1176  unsigned ResultReg = createResultReg(RC);
1177  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1178
1179  if (II.getNumDefs() >= 1)
1180    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1181      .addReg(Op0, Op0IsKill * RegState::Kill)
1182      .addReg(Op1, Op1IsKill * RegState::Kill);
1183  else {
1184    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1185      .addReg(Op0, Op0IsKill * RegState::Kill)
1186      .addReg(Op1, Op1IsKill * RegState::Kill);
1187    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1188            ResultReg).addReg(II.ImplicitDefs[0]);
1189  }
1190  return ResultReg;
1191}
1192
1193unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
1194                                   const TargetRegisterClass *RC,
1195                                   unsigned Op0, bool Op0IsKill,
1196                                   unsigned Op1, bool Op1IsKill,
1197                                   unsigned Op2, bool Op2IsKill) {
1198  unsigned ResultReg = createResultReg(RC);
1199  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1200
1201  if (II.getNumDefs() >= 1)
1202    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1203      .addReg(Op0, Op0IsKill * RegState::Kill)
1204      .addReg(Op1, Op1IsKill * RegState::Kill)
1205      .addReg(Op2, Op2IsKill * RegState::Kill);
1206  else {
1207    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1208      .addReg(Op0, Op0IsKill * RegState::Kill)
1209      .addReg(Op1, Op1IsKill * RegState::Kill)
1210      .addReg(Op2, Op2IsKill * RegState::Kill);
1211    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1212            ResultReg).addReg(II.ImplicitDefs[0]);
1213  }
1214  return ResultReg;
1215}
1216
1217unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1218                                   const TargetRegisterClass *RC,
1219                                   unsigned Op0, bool Op0IsKill,
1220                                   uint64_t Imm) {
1221  unsigned ResultReg = createResultReg(RC);
1222  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1223
1224  if (II.getNumDefs() >= 1)
1225    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1226      .addReg(Op0, Op0IsKill * RegState::Kill)
1227      .addImm(Imm);
1228  else {
1229    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1230      .addReg(Op0, Op0IsKill * RegState::Kill)
1231      .addImm(Imm);
1232    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1233            ResultReg).addReg(II.ImplicitDefs[0]);
1234  }
1235  return ResultReg;
1236}
1237
1238unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
1239                                   const TargetRegisterClass *RC,
1240                                   unsigned Op0, bool Op0IsKill,
1241                                   uint64_t Imm1, uint64_t Imm2) {
1242  unsigned ResultReg = createResultReg(RC);
1243  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1244
1245  if (II.getNumDefs() >= 1)
1246    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1247      .addReg(Op0, Op0IsKill * RegState::Kill)
1248      .addImm(Imm1)
1249      .addImm(Imm2);
1250  else {
1251    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1252      .addReg(Op0, Op0IsKill * RegState::Kill)
1253      .addImm(Imm1)
1254      .addImm(Imm2);
1255    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1256            ResultReg).addReg(II.ImplicitDefs[0]);
1257  }
1258  return ResultReg;
1259}
1260
1261unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1262                                   const TargetRegisterClass *RC,
1263                                   unsigned Op0, bool Op0IsKill,
1264                                   const ConstantFP *FPImm) {
1265  unsigned ResultReg = createResultReg(RC);
1266  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1267
1268  if (II.getNumDefs() >= 1)
1269    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1270      .addReg(Op0, Op0IsKill * RegState::Kill)
1271      .addFPImm(FPImm);
1272  else {
1273    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1274      .addReg(Op0, Op0IsKill * RegState::Kill)
1275      .addFPImm(FPImm);
1276    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1277            ResultReg).addReg(II.ImplicitDefs[0]);
1278  }
1279  return ResultReg;
1280}
1281
1282unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1283                                    const TargetRegisterClass *RC,
1284                                    unsigned Op0, bool Op0IsKill,
1285                                    unsigned Op1, bool Op1IsKill,
1286                                    uint64_t Imm) {
1287  unsigned ResultReg = createResultReg(RC);
1288  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1289
1290  if (II.getNumDefs() >= 1)
1291    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1292      .addReg(Op0, Op0IsKill * RegState::Kill)
1293      .addReg(Op1, Op1IsKill * RegState::Kill)
1294      .addImm(Imm);
1295  else {
1296    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1297      .addReg(Op0, Op0IsKill * RegState::Kill)
1298      .addReg(Op1, Op1IsKill * RegState::Kill)
1299      .addImm(Imm);
1300    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1301            ResultReg).addReg(II.ImplicitDefs[0]);
1302  }
1303  return ResultReg;
1304}
1305
1306unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1307                                  const TargetRegisterClass *RC,
1308                                  uint64_t Imm) {
1309  unsigned ResultReg = createResultReg(RC);
1310  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1311
1312  if (II.getNumDefs() >= 1)
1313    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
1314  else {
1315    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
1316    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1317            ResultReg).addReg(II.ImplicitDefs[0]);
1318  }
1319  return ResultReg;
1320}
1321
1322unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
1323                                  const TargetRegisterClass *RC,
1324                                  uint64_t Imm1, uint64_t Imm2) {
1325  unsigned ResultReg = createResultReg(RC);
1326  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1327
1328  if (II.getNumDefs() >= 1)
1329    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1330      .addImm(Imm1).addImm(Imm2);
1331  else {
1332    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
1333    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1334            ResultReg).addReg(II.ImplicitDefs[0]);
1335  }
1336  return ResultReg;
1337}
1338
1339unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1340                                              unsigned Op0, bool Op0IsKill,
1341                                              uint32_t Idx) {
1342  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1343  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1344         "Cannot yet extract from physregs");
1345  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1346          DL, TII.get(TargetOpcode::COPY), ResultReg)
1347    .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1348  return ResultReg;
1349}
1350
1351/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1352/// with all but the least significant bit set to zero.
1353unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1354  return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1355}
1356
1357/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1358/// Emit code to ensure constants are copied into registers when needed.
1359/// Remember the virtual registers that need to be added to the Machine PHI
1360/// nodes as input.  We cannot just directly add them, because expansion
1361/// might result in multiple MBB's for one BB.  As such, the start of the
1362/// BB might correspond to a different MBB than the end.
1363bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1364  const TerminatorInst *TI = LLVMBB->getTerminator();
1365
1366  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1367  unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1368
1369  // Check successor nodes' PHI nodes that expect a constant to be available
1370  // from this block.
1371  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1372    const BasicBlock *SuccBB = TI->getSuccessor(succ);
1373    if (!isa<PHINode>(SuccBB->begin())) continue;
1374    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1375
1376    // If this terminator has multiple identical successors (common for
1377    // switches), only handle each succ once.
1378    if (!SuccsHandled.insert(SuccMBB)) continue;
1379
1380    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1381
1382    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1383    // nodes and Machine PHI nodes, but the incoming operands have not been
1384    // emitted yet.
1385    for (BasicBlock::const_iterator I = SuccBB->begin();
1386         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1387
1388      // Ignore dead phi's.
1389      if (PN->use_empty()) continue;
1390
1391      // Only handle legal types. Two interesting things to note here. First,
1392      // by bailing out early, we may leave behind some dead instructions,
1393      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1394      // own moves. Second, this check is necessary because FastISel doesn't
1395      // use CreateRegs to create registers, so it always creates
1396      // exactly one register for each non-void instruction.
1397      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1398      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1399        // Handle integer promotions, though, because they're common and easy.
1400        if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
1401          VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1402        else {
1403          FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1404          return false;
1405        }
1406      }
1407
1408      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1409
1410      // Set the DebugLoc for the copy. Prefer the location of the operand
1411      // if there is one; use the location of the PHI otherwise.
1412      DL = PN->getDebugLoc();
1413      if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1414        DL = Inst->getDebugLoc();
1415
1416      unsigned Reg = getRegForValue(PHIOp);
1417      if (Reg == 0) {
1418        FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1419        return false;
1420      }
1421      FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1422      DL = DebugLoc();
1423    }
1424  }
1425
1426  return true;
1427}
1428