FastISel.cpp revision 8c5f55f3e68092a732e6d3fa0dac6de724461a44
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/DwarfWriter.h"
51#include "llvm/Analysis/DebugInfo.h"
52#include "llvm/Target/TargetData.h"
53#include "llvm/Target/TargetInstrInfo.h"
54#include "llvm/Target/TargetLowering.h"
55#include "llvm/Target/TargetMachine.h"
56#include "SelectionDAGBuild.h"
57using namespace llvm;
58
59unsigned FastISel::getRegForValue(Value *V) {
60  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
61  // Don't handle non-simple values in FastISel.
62  if (!RealVT.isSimple())
63    return 0;
64
65  // Ignore illegal types. We must do this before looking up the value
66  // in ValueMap because Arguments are given virtual registers regardless
67  // of whether FastISel can handle them.
68  MVT VT = RealVT.getSimpleVT();
69  if (!TLI.isTypeLegal(VT)) {
70    // Promote MVT::i1 to a legal type though, because it's common and easy.
71    if (VT == MVT::i1)
72      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
73    else
74      return 0;
75  }
76
77  // Look up the value to see if we already have a register for it. We
78  // cache values defined by Instructions across blocks, and other values
79  // only locally. This is because Instructions already have the SSA
80  // def-dominatess-use requirement enforced.
81  if (ValueMap.count(V))
82    return ValueMap[V];
83  unsigned Reg = LocalValueMap[V];
84  if (Reg != 0)
85    return Reg;
86
87  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
88    if (CI->getValue().getActiveBits() <= 64)
89      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
90  } else if (isa<AllocaInst>(V)) {
91    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
92  } else if (isa<ConstantPointerNull>(V)) {
93    // Translate this as an integer zero so that it can be
94    // local-CSE'd with actual integer zeros.
95    Reg =
96      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
97  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
98    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
99
100    if (!Reg) {
101      const APFloat &Flt = CF->getValueAPF();
102      EVT IntVT = TLI.getPointerTy();
103
104      uint64_t x[2];
105      uint32_t IntBitWidth = IntVT.getSizeInBits();
106      bool isExact;
107      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
108                                APFloat::rmTowardZero, &isExact);
109      if (isExact) {
110        APInt IntVal(IntBitWidth, 2, x);
111
112        unsigned IntegerReg =
113          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
114        if (IntegerReg != 0)
115          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
116      }
117    }
118  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
119    if (!SelectOperator(CE, CE->getOpcode())) return 0;
120    Reg = LocalValueMap[CE];
121  } else if (isa<UndefValue>(V)) {
122    Reg = createResultReg(TLI.getRegClassFor(VT));
123    BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
124  }
125
126  // If target-independent code couldn't handle the value, give target-specific
127  // code a try.
128  if (!Reg && isa<Constant>(V))
129    Reg = TargetMaterializeConstant(cast<Constant>(V));
130
131  // Don't cache constant materializations in the general ValueMap.
132  // To do so would require tracking what uses they dominate.
133  if (Reg != 0)
134    LocalValueMap[V] = Reg;
135  return Reg;
136}
137
138unsigned FastISel::lookUpRegForValue(Value *V) {
139  // Look up the value to see if we already have a register for it. We
140  // cache values defined by Instructions across blocks, and other values
141  // only locally. This is because Instructions already have the SSA
142  // def-dominatess-use requirement enforced.
143  if (ValueMap.count(V))
144    return ValueMap[V];
145  return LocalValueMap[V];
146}
147
148/// UpdateValueMap - Update the value map to include the new mapping for this
149/// instruction, or insert an extra copy to get the result in a previous
150/// determined register.
151/// NOTE: This is only necessary because we might select a block that uses
152/// a value before we select the block that defines the value.  It might be
153/// possible to fix this by selecting blocks in reverse postorder.
154unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
155  if (!isa<Instruction>(I)) {
156    LocalValueMap[I] = Reg;
157    return Reg;
158  }
159
160  unsigned &AssignedReg = ValueMap[I];
161  if (AssignedReg == 0)
162    AssignedReg = Reg;
163  else if (Reg != AssignedReg) {
164    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
165    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
166                     Reg, RegClass, RegClass);
167  }
168  return AssignedReg;
169}
170
171unsigned FastISel::getRegForGEPIndex(Value *Idx) {
172  unsigned IdxN = getRegForValue(Idx);
173  if (IdxN == 0)
174    // Unhandled operand. Halt "fast" selection and bail.
175    return 0;
176
177  // If the index is smaller or larger than intptr_t, truncate or extend it.
178  MVT PtrVT = TLI.getPointerTy();
179  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
180  if (IdxVT.bitsLT(PtrVT))
181    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
182  else if (IdxVT.bitsGT(PtrVT))
183    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
184  return IdxN;
185}
186
187/// SelectBinaryOp - Select and emit code for a binary operator instruction,
188/// which has an opcode which directly corresponds to the given ISD opcode.
189///
190bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
191  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
192  if (VT == MVT::Other || !VT.isSimple())
193    // Unhandled type. Halt "fast" selection and bail.
194    return false;
195
196  // We only handle legal types. For example, on x86-32 the instruction
197  // selector contains all of the 64-bit instructions from x86-64,
198  // under the assumption that i64 won't be used if the target doesn't
199  // support it.
200  if (!TLI.isTypeLegal(VT)) {
201    // MVT::i1 is special. Allow AND, OR, or XOR because they
202    // don't require additional zeroing, which makes them easy.
203    if (VT == MVT::i1 &&
204        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
205         ISDOpcode == ISD::XOR))
206      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
207    else
208      return false;
209  }
210
211  unsigned Op0 = getRegForValue(I->getOperand(0));
212  if (Op0 == 0)
213    // Unhandled operand. Halt "fast" selection and bail.
214    return false;
215
216  // Check if the second operand is a constant and handle it appropriately.
217  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
218    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
219                                     ISDOpcode, Op0, CI->getZExtValue());
220    if (ResultReg != 0) {
221      // We successfully emitted code for the given LLVM Instruction.
222      UpdateValueMap(I, ResultReg);
223      return true;
224    }
225  }
226
227  // Check if the second operand is a constant float.
228  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
229    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
230                                     ISDOpcode, Op0, CF);
231    if (ResultReg != 0) {
232      // We successfully emitted code for the given LLVM Instruction.
233      UpdateValueMap(I, ResultReg);
234      return true;
235    }
236  }
237
238  unsigned Op1 = getRegForValue(I->getOperand(1));
239  if (Op1 == 0)
240    // Unhandled operand. Halt "fast" selection and bail.
241    return false;
242
243  // Now we have both operands in registers. Emit the instruction.
244  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
245                                   ISDOpcode, Op0, Op1);
246  if (ResultReg == 0)
247    // Target-specific code wasn't able to find a machine opcode for
248    // the given ISD opcode and type. Halt "fast" selection and bail.
249    return false;
250
251  // We successfully emitted code for the given LLVM Instruction.
252  UpdateValueMap(I, ResultReg);
253  return true;
254}
255
256bool FastISel::SelectGetElementPtr(User *I) {
257  unsigned N = getRegForValue(I->getOperand(0));
258  if (N == 0)
259    // Unhandled operand. Halt "fast" selection and bail.
260    return false;
261
262  const Type *Ty = I->getOperand(0)->getType();
263  MVT VT = TLI.getPointerTy();
264  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
265       OI != E; ++OI) {
266    Value *Idx = *OI;
267    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
268      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
269      if (Field) {
270        // N = N + Offset
271        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
272        // FIXME: This can be optimized by combining the add with a
273        // subsequent one.
274        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
275        if (N == 0)
276          // Unhandled operand. Halt "fast" selection and bail.
277          return false;
278      }
279      Ty = StTy->getElementType(Field);
280    } else {
281      Ty = cast<SequentialType>(Ty)->getElementType();
282
283      // If this is a constant subscript, handle it quickly.
284      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
285        if (CI->getZExtValue() == 0) continue;
286        uint64_t Offs =
287          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
288        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
289        if (N == 0)
290          // Unhandled operand. Halt "fast" selection and bail.
291          return false;
292        continue;
293      }
294
295      // N = N + Idx * ElementSize;
296      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
297      unsigned IdxN = getRegForGEPIndex(Idx);
298      if (IdxN == 0)
299        // Unhandled operand. Halt "fast" selection and bail.
300        return false;
301
302      if (ElementSize != 1) {
303        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
304        if (IdxN == 0)
305          // Unhandled operand. Halt "fast" selection and bail.
306          return false;
307      }
308      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
309      if (N == 0)
310        // Unhandled operand. Halt "fast" selection and bail.
311        return false;
312    }
313  }
314
315  // We successfully emitted code for the given LLVM Instruction.
316  UpdateValueMap(I, N);
317  return true;
318}
319
320bool FastISel::SelectCall(User *I) {
321  Function *F = cast<CallInst>(I)->getCalledFunction();
322  if (!F) return false;
323
324  unsigned IID = F->getIntrinsicID();
325  switch (IID) {
326  default: break;
327  case Intrinsic::dbg_stoppoint: {
328    DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
329    if (isValidDebugInfoIntrinsic(*SPI, CodeGenOpt::None))
330      setCurDebugLoc(ExtractDebugLocation(*SPI, MF.getDebugLocInfo()));
331    return true;
332  }
333  case Intrinsic::dbg_region_start: {
334    DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
335    if (isValidDebugInfoIntrinsic(*RSI, CodeGenOpt::None) && DW
336        && DW->ShouldEmitDwarfDebug()) {
337      unsigned ID =
338        DW->RecordRegionStart(RSI->getContext());
339      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
340      BuildMI(MBB, DL, II).addImm(ID);
341    }
342    return true;
343  }
344  case Intrinsic::dbg_region_end: {
345    DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
346    if (isValidDebugInfoIntrinsic(*REI, CodeGenOpt::None) && DW
347        && DW->ShouldEmitDwarfDebug()) {
348     unsigned ID = 0;
349     DISubprogram Subprogram(REI->getContext());
350     if (isInlinedFnEnd(*REI, MF.getFunction())) {
351        // This is end of an inlined function.
352        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
353        ID = DW->RecordInlinedFnEnd(Subprogram);
354        if (ID)
355          // Returned ID is 0 if this is unbalanced "end of inlined
356          // scope". This could happen if optimizer eats dbg intrinsics
357          // or "beginning of inlined scope" is not recoginized due to
358          // missing location info. In such cases, ignore this region.end.
359          BuildMI(MBB, DL, II).addImm(ID);
360      } else {
361        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
362        ID =  DW->RecordRegionEnd(REI->getContext());
363        BuildMI(MBB, DL, II).addImm(ID);
364      }
365    }
366    return true;
367  }
368  case Intrinsic::dbg_func_start: {
369    DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
370    if (!isValidDebugInfoIntrinsic(*FSI, CodeGenOpt::None) || !DW
371        || !DW->ShouldEmitDwarfDebug())
372      return true;
373
374    if (isInlinedFnStart(*FSI, MF.getFunction())) {
375      // This is a beginning of an inlined function.
376
377      // If llvm.dbg.func.start is seen in a new block before any
378      // llvm.dbg.stoppoint intrinsic then the location info is unknown.
379      // FIXME : Why DebugLoc is reset at the beginning of each block ?
380      DebugLoc PrevLoc = DL;
381      if (PrevLoc.isUnknown())
382        return true;
383      // Record the source line.
384      setCurDebugLoc(ExtractDebugLocation(*FSI, MF.getDebugLocInfo()));
385
386      DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
387      DISubprogram SP(FSI->getSubprogram());
388      unsigned LabelID = DW->RecordInlinedFnStart(SP,
389                                                  DICompileUnit(PrevLocTpl.CompileUnit),
390                                                  PrevLocTpl.Line,
391                                                  PrevLocTpl.Col);
392      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
393      BuildMI(MBB, DL, II).addImm(LabelID);
394      return true;
395    }
396
397    // This is a beginning of a new function.
398    MF.setDefaultDebugLoc(ExtractDebugLocation(*FSI, MF.getDebugLocInfo()));
399
400    // llvm.dbg.func_start also defines beginning of function scope.
401    DW->RecordRegionStart(FSI->getSubprogram());
402    return true;
403  }
404  case Intrinsic::dbg_declare: {
405    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
406    if (!isValidDebugInfoIntrinsic(*DI, CodeGenOpt::None) || !DW
407        || !DW->ShouldEmitDwarfDebug())
408      return true;
409
410    Value *Variable = DI->getVariable();
411    Value *Address = DI->getAddress();
412    if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
413      Address = BCI->getOperand(0);
414    AllocaInst *AI = dyn_cast<AllocaInst>(Address);
415    // Don't handle byval struct arguments or VLAs, for example.
416    if (!AI) break;
417    DenseMap<const AllocaInst*, int>::iterator SI =
418      StaticAllocaMap.find(AI);
419    if (SI == StaticAllocaMap.end()) break; // VLAs.
420    int FI = SI->second;
421
422    DW->RecordVariable(cast<MDNode>(Variable), FI);
423    return true;
424  }
425  case Intrinsic::eh_exception: {
426    EVT VT = TLI.getValueType(I->getType());
427    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
428    default: break;
429    case TargetLowering::Expand: {
430      assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
431      unsigned Reg = TLI.getExceptionAddressRegister();
432      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
433      unsigned ResultReg = createResultReg(RC);
434      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
435                                           Reg, RC, RC);
436      assert(InsertedCopy && "Can't copy address registers!");
437      InsertedCopy = InsertedCopy;
438      UpdateValueMap(I, ResultReg);
439      return true;
440    }
441    }
442    break;
443  }
444  case Intrinsic::eh_selector_i32:
445  case Intrinsic::eh_selector_i64: {
446    EVT VT = TLI.getValueType(I->getType());
447    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
448    default: break;
449    case TargetLowering::Expand: {
450      EVT VT = (IID == Intrinsic::eh_selector_i32 ?
451                           MVT::i32 : MVT::i64);
452
453      if (MMI) {
454        if (MBB->isLandingPad())
455          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
456        else {
457#ifndef NDEBUG
458          CatchInfoLost.insert(cast<CallInst>(I));
459#endif
460          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
461          unsigned Reg = TLI.getExceptionSelectorRegister();
462          if (Reg) MBB->addLiveIn(Reg);
463        }
464
465        unsigned Reg = TLI.getExceptionSelectorRegister();
466        const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
467        unsigned ResultReg = createResultReg(RC);
468        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
469                                             Reg, RC, RC);
470        assert(InsertedCopy && "Can't copy address registers!");
471        InsertedCopy = InsertedCopy;
472        UpdateValueMap(I, ResultReg);
473      } else {
474        unsigned ResultReg =
475          getRegForValue(Constant::getNullValue(I->getType()));
476        UpdateValueMap(I, ResultReg);
477      }
478      return true;
479    }
480    }
481    break;
482  }
483  }
484  return false;
485}
486
487bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
488  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
489  EVT DstVT = TLI.getValueType(I->getType());
490
491  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
492      DstVT == MVT::Other || !DstVT.isSimple())
493    // Unhandled type. Halt "fast" selection and bail.
494    return false;
495
496  // Check if the destination type is legal. Or as a special case,
497  // it may be i1 if we're doing a truncate because that's
498  // easy and somewhat common.
499  if (!TLI.isTypeLegal(DstVT))
500    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
501      // Unhandled type. Halt "fast" selection and bail.
502      return false;
503
504  // Check if the source operand is legal. Or as a special case,
505  // it may be i1 if we're doing zero-extension because that's
506  // easy and somewhat common.
507  if (!TLI.isTypeLegal(SrcVT))
508    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
509      // Unhandled type. Halt "fast" selection and bail.
510      return false;
511
512  unsigned InputReg = getRegForValue(I->getOperand(0));
513  if (!InputReg)
514    // Unhandled operand.  Halt "fast" selection and bail.
515    return false;
516
517  // If the operand is i1, arrange for the high bits in the register to be zero.
518  if (SrcVT == MVT::i1) {
519   SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
520   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
521   if (!InputReg)
522     return false;
523  }
524  // If the result is i1, truncate to the target's type for i1 first.
525  if (DstVT == MVT::i1)
526    DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
527
528  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
529                                  DstVT.getSimpleVT(),
530                                  Opcode,
531                                  InputReg);
532  if (!ResultReg)
533    return false;
534
535  UpdateValueMap(I, ResultReg);
536  return true;
537}
538
539bool FastISel::SelectBitCast(User *I) {
540  // If the bitcast doesn't change the type, just use the operand value.
541  if (I->getType() == I->getOperand(0)->getType()) {
542    unsigned Reg = getRegForValue(I->getOperand(0));
543    if (Reg == 0)
544      return false;
545    UpdateValueMap(I, Reg);
546    return true;
547  }
548
549  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
550  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
551  EVT DstVT = TLI.getValueType(I->getType());
552
553  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
554      DstVT == MVT::Other || !DstVT.isSimple() ||
555      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
556    // Unhandled type. Halt "fast" selection and bail.
557    return false;
558
559  unsigned Op0 = getRegForValue(I->getOperand(0));
560  if (Op0 == 0)
561    // Unhandled operand. Halt "fast" selection and bail.
562    return false;
563
564  // First, try to perform the bitcast by inserting a reg-reg copy.
565  unsigned ResultReg = 0;
566  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
567    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
568    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
569    ResultReg = createResultReg(DstClass);
570
571    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
572                                         Op0, DstClass, SrcClass);
573    if (!InsertedCopy)
574      ResultReg = 0;
575  }
576
577  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
578  if (!ResultReg)
579    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
580                           ISD::BIT_CONVERT, Op0);
581
582  if (!ResultReg)
583    return false;
584
585  UpdateValueMap(I, ResultReg);
586  return true;
587}
588
589bool
590FastISel::SelectInstruction(Instruction *I) {
591  return SelectOperator(I, I->getOpcode());
592}
593
594/// FastEmitBranch - Emit an unconditional branch to the given block,
595/// unless it is the immediate (fall-through) successor, and update
596/// the CFG.
597void
598FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
599  MachineFunction::iterator NextMBB =
600     next(MachineFunction::iterator(MBB));
601
602  if (MBB->isLayoutSuccessor(MSucc)) {
603    // The unconditional fall-through case, which needs no instructions.
604  } else {
605    // The unconditional branch case.
606    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
607  }
608  MBB->addSuccessor(MSucc);
609}
610
611/// SelectFNeg - Emit an FNeg operation.
612///
613bool
614FastISel::SelectFNeg(User *I) {
615  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
616  if (OpReg == 0) return false;
617
618  // If the target has ISD::FNEG, use it.
619  EVT VT = TLI.getValueType(I->getType());
620  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
621                                  ISD::FNEG, OpReg);
622  if (ResultReg != 0) {
623    UpdateValueMap(I, ResultReg);
624    return true;
625  }
626
627  // Bitcast the value to integer, twiddle the sign bit with xor,
628  // and then bitcast it back to floating-point.
629  if (VT.getSizeInBits() > 64) return false;
630  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
631  if (!TLI.isTypeLegal(IntVT))
632    return false;
633
634  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
635                               ISD::BIT_CONVERT, OpReg);
636  if (IntReg == 0)
637    return false;
638
639  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, IntReg,
640                                       UINT64_C(1) << (VT.getSizeInBits()-1),
641                                       IntVT.getSimpleVT());
642  if (IntResultReg == 0)
643    return false;
644
645  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
646                         ISD::BIT_CONVERT, IntResultReg);
647  if (ResultReg == 0)
648    return false;
649
650  UpdateValueMap(I, ResultReg);
651  return true;
652}
653
654bool
655FastISel::SelectOperator(User *I, unsigned Opcode) {
656  switch (Opcode) {
657  case Instruction::Add:
658    return SelectBinaryOp(I, ISD::ADD);
659  case Instruction::FAdd:
660    return SelectBinaryOp(I, ISD::FADD);
661  case Instruction::Sub:
662    return SelectBinaryOp(I, ISD::SUB);
663  case Instruction::FSub:
664    // FNeg is currently represented in LLVM IR as a special case of FSub.
665    if (BinaryOperator::isFNeg(I))
666      return SelectFNeg(I);
667    return SelectBinaryOp(I, ISD::FSUB);
668  case Instruction::Mul:
669    return SelectBinaryOp(I, ISD::MUL);
670  case Instruction::FMul:
671    return SelectBinaryOp(I, ISD::FMUL);
672  case Instruction::SDiv:
673    return SelectBinaryOp(I, ISD::SDIV);
674  case Instruction::UDiv:
675    return SelectBinaryOp(I, ISD::UDIV);
676  case Instruction::FDiv:
677    return SelectBinaryOp(I, ISD::FDIV);
678  case Instruction::SRem:
679    return SelectBinaryOp(I, ISD::SREM);
680  case Instruction::URem:
681    return SelectBinaryOp(I, ISD::UREM);
682  case Instruction::FRem:
683    return SelectBinaryOp(I, ISD::FREM);
684  case Instruction::Shl:
685    return SelectBinaryOp(I, ISD::SHL);
686  case Instruction::LShr:
687    return SelectBinaryOp(I, ISD::SRL);
688  case Instruction::AShr:
689    return SelectBinaryOp(I, ISD::SRA);
690  case Instruction::And:
691    return SelectBinaryOp(I, ISD::AND);
692  case Instruction::Or:
693    return SelectBinaryOp(I, ISD::OR);
694  case Instruction::Xor:
695    return SelectBinaryOp(I, ISD::XOR);
696
697  case Instruction::GetElementPtr:
698    return SelectGetElementPtr(I);
699
700  case Instruction::Br: {
701    BranchInst *BI = cast<BranchInst>(I);
702
703    if (BI->isUnconditional()) {
704      BasicBlock *LLVMSucc = BI->getSuccessor(0);
705      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
706      FastEmitBranch(MSucc);
707      return true;
708    }
709
710    // Conditional branches are not handed yet.
711    // Halt "fast" selection and bail.
712    return false;
713  }
714
715  case Instruction::Unreachable:
716    // Nothing to emit.
717    return true;
718
719  case Instruction::PHI:
720    // PHI nodes are already emitted.
721    return true;
722
723  case Instruction::Alloca:
724    // FunctionLowering has the static-sized case covered.
725    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
726      return true;
727
728    // Dynamic-sized alloca is not handled yet.
729    return false;
730
731  case Instruction::Call:
732    return SelectCall(I);
733
734  case Instruction::BitCast:
735    return SelectBitCast(I);
736
737  case Instruction::FPToSI:
738    return SelectCast(I, ISD::FP_TO_SINT);
739  case Instruction::ZExt:
740    return SelectCast(I, ISD::ZERO_EXTEND);
741  case Instruction::SExt:
742    return SelectCast(I, ISD::SIGN_EXTEND);
743  case Instruction::Trunc:
744    return SelectCast(I, ISD::TRUNCATE);
745  case Instruction::SIToFP:
746    return SelectCast(I, ISD::SINT_TO_FP);
747
748  case Instruction::IntToPtr: // Deliberate fall-through.
749  case Instruction::PtrToInt: {
750    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
751    EVT DstVT = TLI.getValueType(I->getType());
752    if (DstVT.bitsGT(SrcVT))
753      return SelectCast(I, ISD::ZERO_EXTEND);
754    if (DstVT.bitsLT(SrcVT))
755      return SelectCast(I, ISD::TRUNCATE);
756    unsigned Reg = getRegForValue(I->getOperand(0));
757    if (Reg == 0) return false;
758    UpdateValueMap(I, Reg);
759    return true;
760  }
761
762  default:
763    // Unhandled instruction. Halt "fast" selection and bail.
764    return false;
765  }
766}
767
768FastISel::FastISel(MachineFunction &mf,
769                   MachineModuleInfo *mmi,
770                   DwarfWriter *dw,
771                   DenseMap<const Value *, unsigned> &vm,
772                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
773                   DenseMap<const AllocaInst *, int> &am
774#ifndef NDEBUG
775                   , SmallSet<Instruction*, 8> &cil
776#endif
777                   )
778  : MBB(0),
779    ValueMap(vm),
780    MBBMap(bm),
781    StaticAllocaMap(am),
782#ifndef NDEBUG
783    CatchInfoLost(cil),
784#endif
785    MF(mf),
786    MMI(mmi),
787    DW(dw),
788    MRI(MF.getRegInfo()),
789    MFI(*MF.getFrameInfo()),
790    MCP(*MF.getConstantPool()),
791    TM(MF.getTarget()),
792    TD(*TM.getTargetData()),
793    TII(*TM.getInstrInfo()),
794    TLI(*TM.getTargetLowering()) {
795}
796
797FastISel::~FastISel() {}
798
799unsigned FastISel::FastEmit_(MVT, MVT,
800                             ISD::NodeType) {
801  return 0;
802}
803
804unsigned FastISel::FastEmit_r(MVT, MVT,
805                              ISD::NodeType, unsigned /*Op0*/) {
806  return 0;
807}
808
809unsigned FastISel::FastEmit_rr(MVT, MVT,
810                               ISD::NodeType, unsigned /*Op0*/,
811                               unsigned /*Op0*/) {
812  return 0;
813}
814
815unsigned FastISel::FastEmit_i(MVT, MVT, ISD::NodeType, uint64_t /*Imm*/) {
816  return 0;
817}
818
819unsigned FastISel::FastEmit_f(MVT, MVT,
820                              ISD::NodeType, ConstantFP * /*FPImm*/) {
821  return 0;
822}
823
824unsigned FastISel::FastEmit_ri(MVT, MVT,
825                               ISD::NodeType, unsigned /*Op0*/,
826                               uint64_t /*Imm*/) {
827  return 0;
828}
829
830unsigned FastISel::FastEmit_rf(MVT, MVT,
831                               ISD::NodeType, unsigned /*Op0*/,
832                               ConstantFP * /*FPImm*/) {
833  return 0;
834}
835
836unsigned FastISel::FastEmit_rri(MVT, MVT,
837                                ISD::NodeType,
838                                unsigned /*Op0*/, unsigned /*Op1*/,
839                                uint64_t /*Imm*/) {
840  return 0;
841}
842
843/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
844/// to emit an instruction with an immediate operand using FastEmit_ri.
845/// If that fails, it materializes the immediate into a register and try
846/// FastEmit_rr instead.
847unsigned FastISel::FastEmit_ri_(MVT VT, ISD::NodeType Opcode,
848                                unsigned Op0, uint64_t Imm,
849                                MVT ImmType) {
850  // First check if immediate type is legal. If not, we can't use the ri form.
851  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
852  if (ResultReg != 0)
853    return ResultReg;
854  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
855  if (MaterialReg == 0)
856    return 0;
857  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
858}
859
860/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
861/// to emit an instruction with a floating-point immediate operand using
862/// FastEmit_rf. If that fails, it materializes the immediate into a register
863/// and try FastEmit_rr instead.
864unsigned FastISel::FastEmit_rf_(MVT VT, ISD::NodeType Opcode,
865                                unsigned Op0, ConstantFP *FPImm,
866                                MVT ImmType) {
867  // First check if immediate type is legal. If not, we can't use the rf form.
868  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
869  if (ResultReg != 0)
870    return ResultReg;
871
872  // Materialize the constant in a register.
873  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
874  if (MaterialReg == 0) {
875    // If the target doesn't have a way to directly enter a floating-point
876    // value into a register, use an alternate approach.
877    // TODO: The current approach only supports floating-point constants
878    // that can be constructed by conversion from integer values. This should
879    // be replaced by code that creates a load from a constant-pool entry,
880    // which will require some target-specific work.
881    const APFloat &Flt = FPImm->getValueAPF();
882    EVT IntVT = TLI.getPointerTy();
883
884    uint64_t x[2];
885    uint32_t IntBitWidth = IntVT.getSizeInBits();
886    bool isExact;
887    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
888                             APFloat::rmTowardZero, &isExact);
889    if (!isExact)
890      return 0;
891    APInt IntVal(IntBitWidth, 2, x);
892
893    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
894                                     ISD::Constant, IntVal.getZExtValue());
895    if (IntegerReg == 0)
896      return 0;
897    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
898                             ISD::SINT_TO_FP, IntegerReg);
899    if (MaterialReg == 0)
900      return 0;
901  }
902  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
903}
904
905unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
906  return MRI.createVirtualRegister(RC);
907}
908
909unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
910                                 const TargetRegisterClass* RC) {
911  unsigned ResultReg = createResultReg(RC);
912  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
913
914  BuildMI(MBB, DL, II, ResultReg);
915  return ResultReg;
916}
917
918unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
919                                  const TargetRegisterClass *RC,
920                                  unsigned Op0) {
921  unsigned ResultReg = createResultReg(RC);
922  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
923
924  if (II.getNumDefs() >= 1)
925    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
926  else {
927    BuildMI(MBB, DL, II).addReg(Op0);
928    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
929                                         II.ImplicitDefs[0], RC, RC);
930    if (!InsertedCopy)
931      ResultReg = 0;
932  }
933
934  return ResultReg;
935}
936
937unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
938                                   const TargetRegisterClass *RC,
939                                   unsigned Op0, unsigned Op1) {
940  unsigned ResultReg = createResultReg(RC);
941  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
942
943  if (II.getNumDefs() >= 1)
944    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
945  else {
946    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
947    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
948                                         II.ImplicitDefs[0], RC, RC);
949    if (!InsertedCopy)
950      ResultReg = 0;
951  }
952  return ResultReg;
953}
954
955unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
956                                   const TargetRegisterClass *RC,
957                                   unsigned Op0, uint64_t Imm) {
958  unsigned ResultReg = createResultReg(RC);
959  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
960
961  if (II.getNumDefs() >= 1)
962    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
963  else {
964    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
965    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
966                                         II.ImplicitDefs[0], RC, RC);
967    if (!InsertedCopy)
968      ResultReg = 0;
969  }
970  return ResultReg;
971}
972
973unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
974                                   const TargetRegisterClass *RC,
975                                   unsigned Op0, ConstantFP *FPImm) {
976  unsigned ResultReg = createResultReg(RC);
977  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
978
979  if (II.getNumDefs() >= 1)
980    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
981  else {
982    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
983    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
984                                         II.ImplicitDefs[0], RC, RC);
985    if (!InsertedCopy)
986      ResultReg = 0;
987  }
988  return ResultReg;
989}
990
991unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
992                                    const TargetRegisterClass *RC,
993                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
994  unsigned ResultReg = createResultReg(RC);
995  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
996
997  if (II.getNumDefs() >= 1)
998    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
999  else {
1000    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
1001    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1002                                         II.ImplicitDefs[0], RC, RC);
1003    if (!InsertedCopy)
1004      ResultReg = 0;
1005  }
1006  return ResultReg;
1007}
1008
1009unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1010                                  const TargetRegisterClass *RC,
1011                                  uint64_t Imm) {
1012  unsigned ResultReg = createResultReg(RC);
1013  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1014
1015  if (II.getNumDefs() >= 1)
1016    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
1017  else {
1018    BuildMI(MBB, DL, II).addImm(Imm);
1019    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1020                                         II.ImplicitDefs[0], RC, RC);
1021    if (!InsertedCopy)
1022      ResultReg = 0;
1023  }
1024  return ResultReg;
1025}
1026
1027unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1028                                              unsigned Op0, uint32_t Idx) {
1029  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
1030
1031  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1032  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
1033
1034  if (II.getNumDefs() >= 1)
1035    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
1036  else {
1037    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
1038    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1039                                         II.ImplicitDefs[0], RC, RC);
1040    if (!InsertedCopy)
1041      ResultReg = 0;
1042  }
1043  return ResultReg;
1044}
1045
1046/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1047/// with all but the least significant bit set to zero.
1048unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op) {
1049  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
1050}
1051