FastISel.cpp revision 9dd43585e4e77ab8e7d3bb7e5d399b210cf1282c
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/Target/TargetData.h"
51#include "llvm/Target/TargetInstrInfo.h"
52#include "llvm/Target/TargetLowering.h"
53#include "llvm/Target/TargetMachine.h"
54#include "SelectionDAGBuild.h"
55using namespace llvm;
56
57unsigned FastISel::getRegForValue(Value *V) {
58  // Look up the value to see if we already have a register for it. We
59  // cache values defined by Instructions across blocks, and other values
60  // only locally. This is because Instructions already have the SSA
61  // def-dominatess-use requirement enforced.
62  if (ValueMap.count(V))
63    return ValueMap[V];
64  unsigned Reg = LocalValueMap[V];
65  if (Reg != 0)
66    return Reg;
67
68  MVT::SimpleValueType VT = TLI.getValueType(V->getType()).getSimpleVT();
69
70  // Ignore illegal types.
71  if (!TLI.isTypeLegal(VT)) {
72    // Promote MVT::i1 to a legal type though, because it's common and easy.
73    if (VT == MVT::i1)
74      VT = TLI.getTypeToTransformTo(VT).getSimpleVT();
75    else
76      return 0;
77  }
78
79  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
80    if (CI->getValue().getActiveBits() <= 64)
81      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
82  } else if (isa<AllocaInst>(V)) {
83    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
84  } else if (isa<ConstantPointerNull>(V)) {
85    // Translate this as an integer zero so that it can be
86    // local-CSE'd with actual integer zeros.
87    Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType()));
88  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
89    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
90
91    if (!Reg) {
92      const APFloat &Flt = CF->getValueAPF();
93      MVT IntVT = TLI.getPointerTy();
94
95      uint64_t x[2];
96      uint32_t IntBitWidth = IntVT.getSizeInBits();
97      bool isExact;
98      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
99                                APFloat::rmTowardZero, &isExact);
100      if (isExact) {
101        APInt IntVal(IntBitWidth, 2, x);
102
103        unsigned IntegerReg = getRegForValue(ConstantInt::get(IntVal));
104        if (IntegerReg != 0)
105          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
106      }
107    }
108  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
109    if (!SelectOperator(CE, CE->getOpcode())) return 0;
110    Reg = LocalValueMap[CE];
111  } else if (isa<UndefValue>(V)) {
112    Reg = createResultReg(TLI.getRegClassFor(VT));
113    BuildMI(MBB, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
114  }
115
116  // If target-independent code couldn't handle the value, give target-specific
117  // code a try.
118  if (!Reg && isa<Constant>(V))
119    Reg = TargetMaterializeConstant(cast<Constant>(V));
120
121  // Don't cache constant materializations in the general ValueMap.
122  // To do so would require tracking what uses they dominate.
123  if (Reg != 0)
124    LocalValueMap[V] = Reg;
125  return Reg;
126}
127
128unsigned FastISel::lookUpRegForValue(Value *V) {
129  // Look up the value to see if we already have a register for it. We
130  // cache values defined by Instructions across blocks, and other values
131  // only locally. This is because Instructions already have the SSA
132  // def-dominatess-use requirement enforced.
133  if (ValueMap.count(V))
134    return ValueMap[V];
135  return LocalValueMap[V];
136}
137
138/// UpdateValueMap - Update the value map to include the new mapping for this
139/// instruction, or insert an extra copy to get the result in a previous
140/// determined register.
141/// NOTE: This is only necessary because we might select a block that uses
142/// a value before we select the block that defines the value.  It might be
143/// possible to fix this by selecting blocks in reverse postorder.
144void FastISel::UpdateValueMap(Value* I, unsigned Reg) {
145  if (!isa<Instruction>(I)) {
146    LocalValueMap[I] = Reg;
147    return;
148  }
149  if (!ValueMap.count(I))
150    ValueMap[I] = Reg;
151  else
152    TII.copyRegToReg(*MBB, MBB->end(), ValueMap[I],
153                     Reg, MRI.getRegClass(Reg), MRI.getRegClass(Reg));
154}
155
156/// SelectBinaryOp - Select and emit code for a binary operator instruction,
157/// which has an opcode which directly corresponds to the given ISD opcode.
158///
159bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
160  MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
161  if (VT == MVT::Other || !VT.isSimple())
162    // Unhandled type. Halt "fast" selection and bail.
163    return false;
164
165  // We only handle legal types. For example, on x86-32 the instruction
166  // selector contains all of the 64-bit instructions from x86-64,
167  // under the assumption that i64 won't be used if the target doesn't
168  // support it.
169  if (!TLI.isTypeLegal(VT)) {
170    // MVT::i1 is special. Allow AND, OR, or XOR because they
171    // don't require additional zeroing, which makes them easy.
172    if (VT == MVT::i1 &&
173        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
174         ISDOpcode == ISD::XOR))
175      VT = TLI.getTypeToTransformTo(VT);
176    else
177      return false;
178  }
179
180  unsigned Op0 = getRegForValue(I->getOperand(0));
181  if (Op0 == 0)
182    // Unhandled operand. Halt "fast" selection and bail.
183    return false;
184
185  // Check if the second operand is a constant and handle it appropriately.
186  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
187    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
188                                     ISDOpcode, Op0, CI->getZExtValue());
189    if (ResultReg != 0) {
190      // We successfully emitted code for the given LLVM Instruction.
191      UpdateValueMap(I, ResultReg);
192      return true;
193    }
194  }
195
196  // Check if the second operand is a constant float.
197  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
198    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
199                                     ISDOpcode, Op0, CF);
200    if (ResultReg != 0) {
201      // We successfully emitted code for the given LLVM Instruction.
202      UpdateValueMap(I, ResultReg);
203      return true;
204    }
205  }
206
207  unsigned Op1 = getRegForValue(I->getOperand(1));
208  if (Op1 == 0)
209    // Unhandled operand. Halt "fast" selection and bail.
210    return false;
211
212  // Now we have both operands in registers. Emit the instruction.
213  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
214                                   ISDOpcode, Op0, Op1);
215  if (ResultReg == 0)
216    // Target-specific code wasn't able to find a machine opcode for
217    // the given ISD opcode and type. Halt "fast" selection and bail.
218    return false;
219
220  // We successfully emitted code for the given LLVM Instruction.
221  UpdateValueMap(I, ResultReg);
222  return true;
223}
224
225bool FastISel::SelectGetElementPtr(User *I) {
226  unsigned N = getRegForValue(I->getOperand(0));
227  if (N == 0)
228    // Unhandled operand. Halt "fast" selection and bail.
229    return false;
230
231  const Type *Ty = I->getOperand(0)->getType();
232  MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
233  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
234       OI != E; ++OI) {
235    Value *Idx = *OI;
236    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
237      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
238      if (Field) {
239        // N = N + Offset
240        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
241        // FIXME: This can be optimized by combining the add with a
242        // subsequent one.
243        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
244        if (N == 0)
245          // Unhandled operand. Halt "fast" selection and bail.
246          return false;
247      }
248      Ty = StTy->getElementType(Field);
249    } else {
250      Ty = cast<SequentialType>(Ty)->getElementType();
251
252      // If this is a constant subscript, handle it quickly.
253      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
254        if (CI->getZExtValue() == 0) continue;
255        uint64_t Offs =
256          TD.getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
257        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
258        if (N == 0)
259          // Unhandled operand. Halt "fast" selection and bail.
260          return false;
261        continue;
262      }
263
264      // N = N + Idx * ElementSize;
265      uint64_t ElementSize = TD.getABITypeSize(Ty);
266      unsigned IdxN = getRegForValue(Idx);
267      if (IdxN == 0)
268        // Unhandled operand. Halt "fast" selection and bail.
269        return false;
270
271      // If the index is smaller or larger than intptr_t, truncate or extend
272      // it.
273      MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
274      if (IdxVT.bitsLT(VT))
275        IdxN = FastEmit_r(IdxVT.getSimpleVT(), VT, ISD::SIGN_EXTEND, IdxN);
276      else if (IdxVT.bitsGT(VT))
277        IdxN = FastEmit_r(IdxVT.getSimpleVT(), VT, ISD::TRUNCATE, IdxN);
278      if (IdxN == 0)
279        // Unhandled operand. Halt "fast" selection and bail.
280        return false;
281
282      if (ElementSize != 1) {
283        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
284        if (IdxN == 0)
285          // Unhandled operand. Halt "fast" selection and bail.
286          return false;
287      }
288      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
289      if (N == 0)
290        // Unhandled operand. Halt "fast" selection and bail.
291        return false;
292    }
293  }
294
295  // We successfully emitted code for the given LLVM Instruction.
296  UpdateValueMap(I, N);
297  return true;
298}
299
300bool FastISel::SelectCall(User *I) {
301  Function *F = cast<CallInst>(I)->getCalledFunction();
302  if (!F) return false;
303
304  unsigned IID = F->getIntrinsicID();
305  switch (IID) {
306  default: break;
307  case Intrinsic::dbg_stoppoint: {
308    DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
309    if (MMI && SPI->getContext() && MMI->Verify(SPI->getContext())) {
310      DebugInfoDesc *DD = MMI->getDescFor(SPI->getContext());
311      assert(DD && "Not a debug information descriptor");
312      const CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
313      unsigned SrcFile = MMI->RecordSource(CompileUnit);
314      unsigned Line = SPI->getLine();
315      unsigned Col = SPI->getColumn();
316      unsigned ID = MMI->RecordSourceLine(Line, Col, SrcFile);
317      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
318      BuildMI(MBB, II).addImm(ID);
319    }
320    return true;
321  }
322  case Intrinsic::dbg_region_start: {
323    DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
324    if (MMI && RSI->getContext() && MMI->Verify(RSI->getContext())) {
325      unsigned ID = MMI->RecordRegionStart(RSI->getContext());
326      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
327      BuildMI(MBB, II).addImm(ID);
328    }
329    return true;
330  }
331  case Intrinsic::dbg_region_end: {
332    DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
333    if (MMI && REI->getContext() && MMI->Verify(REI->getContext())) {
334      unsigned ID = MMI->RecordRegionEnd(REI->getContext());
335      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
336      BuildMI(MBB, II).addImm(ID);
337    }
338    return true;
339  }
340  case Intrinsic::dbg_func_start: {
341    if (!MMI) return true;
342    DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
343    Value *SP = FSI->getSubprogram();
344    if (SP && MMI->Verify(SP)) {
345      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
346      // what (most?) gdb expects.
347      DebugInfoDesc *DD = MMI->getDescFor(SP);
348      assert(DD && "Not a debug information descriptor");
349      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
350      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
351      unsigned SrcFile = MMI->RecordSource(CompileUnit);
352      // Record the source line but does create a label. It will be emitted
353      // at asm emission time.
354      MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
355    }
356    return true;
357  }
358  case Intrinsic::dbg_declare: {
359    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
360    Value *Variable = DI->getVariable();
361    if (MMI && Variable && MMI->Verify(Variable)) {
362      // Determine the address of the declared object.
363      Value *Address = DI->getAddress();
364      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
365        Address = BCI->getOperand(0);
366      AllocaInst *AI = dyn_cast<AllocaInst>(Address);
367      // Don't handle byval struct arguments, for example.
368      if (!AI) break;
369      DenseMap<const AllocaInst*, int>::iterator SI =
370        StaticAllocaMap.find(AI);
371      assert(SI != StaticAllocaMap.end() && "Invalid dbg.declare!");
372      int FI = SI->second;
373
374      // Determine the debug globalvariable.
375      GlobalValue *GV = cast<GlobalVariable>(Variable);
376
377      // Build the DECLARE instruction.
378      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
379      BuildMI(MBB, II).addFrameIndex(FI).addGlobalAddress(GV);
380    }
381    return true;
382  }
383  case Intrinsic::eh_exception: {
384    MVT VT = TLI.getValueType(I->getType());
385    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
386    default: break;
387    case TargetLowering::Expand: {
388      if (!MBB->isLandingPad()) {
389        // FIXME: Mark exception register as live in.  Hack for PR1508.
390        unsigned Reg = TLI.getExceptionAddressRegister();
391        if (Reg) MBB->addLiveIn(Reg);
392      }
393      unsigned Reg = TLI.getExceptionAddressRegister();
394      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
395      unsigned ResultReg = createResultReg(RC);
396      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
397                                           Reg, RC, RC);
398      assert(InsertedCopy && "Can't copy address registers!");
399      UpdateValueMap(I, ResultReg);
400      return true;
401    }
402    }
403    break;
404  }
405  case Intrinsic::eh_selector_i32:
406  case Intrinsic::eh_selector_i64: {
407    MVT VT = TLI.getValueType(I->getType());
408    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
409    default: break;
410    case TargetLowering::Expand: {
411      MVT VT = (IID == Intrinsic::eh_selector_i32 ?
412                           MVT::i32 : MVT::i64);
413
414      if (MMI) {
415        if (MBB->isLandingPad())
416          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
417        else {
418#ifndef NDEBUG
419          CatchInfoLost.insert(cast<CallInst>(I));
420#endif
421          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
422          unsigned Reg = TLI.getExceptionSelectorRegister();
423          if (Reg) MBB->addLiveIn(Reg);
424        }
425
426        unsigned Reg = TLI.getExceptionSelectorRegister();
427        const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
428        unsigned ResultReg = createResultReg(RC);
429        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
430                                             Reg, RC, RC);
431        assert(InsertedCopy && "Can't copy address registers!");
432        UpdateValueMap(I, ResultReg);
433      } else {
434        unsigned ResultReg =
435          getRegForValue(Constant::getNullValue(I->getType()));
436        UpdateValueMap(I, ResultReg);
437      }
438      return true;
439    }
440    }
441    break;
442  }
443  }
444  return false;
445}
446
447bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
448  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
449  MVT DstVT = TLI.getValueType(I->getType());
450
451  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
452      DstVT == MVT::Other || !DstVT.isSimple() ||
453      !TLI.isTypeLegal(DstVT))
454    // Unhandled type. Halt "fast" selection and bail.
455    return false;
456
457  // Check if the source operand is legal. Or as a special case,
458  // it may be i1 if we're doing zero-extension because that's
459  // trivially easy and somewhat common.
460  if (!TLI.isTypeLegal(SrcVT)) {
461    if (SrcVT == MVT::i1 && Opcode == ISD::ZERO_EXTEND)
462      SrcVT = TLI.getTypeToTransformTo(SrcVT);
463    else
464      // Unhandled type. Halt "fast" selection and bail.
465      return false;
466  }
467
468  unsigned InputReg = getRegForValue(I->getOperand(0));
469  if (!InputReg)
470    // Unhandled operand.  Halt "fast" selection and bail.
471    return false;
472
473  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
474                                  DstVT.getSimpleVT(),
475                                  Opcode,
476                                  InputReg);
477  if (!ResultReg)
478    return false;
479
480  UpdateValueMap(I, ResultReg);
481  return true;
482}
483
484bool FastISel::SelectBitCast(User *I) {
485  // If the bitcast doesn't change the type, just use the operand value.
486  if (I->getType() == I->getOperand(0)->getType()) {
487    unsigned Reg = getRegForValue(I->getOperand(0));
488    if (Reg == 0)
489      return false;
490    UpdateValueMap(I, Reg);
491    return true;
492  }
493
494  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
495  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
496  MVT DstVT = TLI.getValueType(I->getType());
497
498  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
499      DstVT == MVT::Other || !DstVT.isSimple() ||
500      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
501    // Unhandled type. Halt "fast" selection and bail.
502    return false;
503
504  unsigned Op0 = getRegForValue(I->getOperand(0));
505  if (Op0 == 0)
506    // Unhandled operand. Halt "fast" selection and bail.
507    return false;
508
509  // First, try to perform the bitcast by inserting a reg-reg copy.
510  unsigned ResultReg = 0;
511  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
512    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
513    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
514    ResultReg = createResultReg(DstClass);
515
516    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
517                                         Op0, DstClass, SrcClass);
518    if (!InsertedCopy)
519      ResultReg = 0;
520  }
521
522  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
523  if (!ResultReg)
524    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
525                           ISD::BIT_CONVERT, Op0);
526
527  if (!ResultReg)
528    return false;
529
530  UpdateValueMap(I, ResultReg);
531  return true;
532}
533
534bool
535FastISel::SelectInstruction(Instruction *I) {
536  return SelectOperator(I, I->getOpcode());
537}
538
539/// FastEmitBranch - Emit an unconditional branch to the given block,
540/// unless it is the immediate (fall-through) successor, and update
541/// the CFG.
542void
543FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
544  MachineFunction::iterator NextMBB =
545     next(MachineFunction::iterator(MBB));
546
547  if (MBB->isLayoutSuccessor(MSucc)) {
548    // The unconditional fall-through case, which needs no instructions.
549  } else {
550    // The unconditional branch case.
551    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
552  }
553  MBB->addSuccessor(MSucc);
554}
555
556bool
557FastISel::SelectOperator(User *I, unsigned Opcode) {
558  switch (Opcode) {
559  case Instruction::Add: {
560    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD;
561    return SelectBinaryOp(I, Opc);
562  }
563  case Instruction::Sub: {
564    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB;
565    return SelectBinaryOp(I, Opc);
566  }
567  case Instruction::Mul: {
568    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL;
569    return SelectBinaryOp(I, Opc);
570  }
571  case Instruction::SDiv:
572    return SelectBinaryOp(I, ISD::SDIV);
573  case Instruction::UDiv:
574    return SelectBinaryOp(I, ISD::UDIV);
575  case Instruction::FDiv:
576    return SelectBinaryOp(I, ISD::FDIV);
577  case Instruction::SRem:
578    return SelectBinaryOp(I, ISD::SREM);
579  case Instruction::URem:
580    return SelectBinaryOp(I, ISD::UREM);
581  case Instruction::FRem:
582    return SelectBinaryOp(I, ISD::FREM);
583  case Instruction::Shl:
584    return SelectBinaryOp(I, ISD::SHL);
585  case Instruction::LShr:
586    return SelectBinaryOp(I, ISD::SRL);
587  case Instruction::AShr:
588    return SelectBinaryOp(I, ISD::SRA);
589  case Instruction::And:
590    return SelectBinaryOp(I, ISD::AND);
591  case Instruction::Or:
592    return SelectBinaryOp(I, ISD::OR);
593  case Instruction::Xor:
594    return SelectBinaryOp(I, ISD::XOR);
595
596  case Instruction::GetElementPtr:
597    return SelectGetElementPtr(I);
598
599  case Instruction::Br: {
600    BranchInst *BI = cast<BranchInst>(I);
601
602    if (BI->isUnconditional()) {
603      BasicBlock *LLVMSucc = BI->getSuccessor(0);
604      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
605      FastEmitBranch(MSucc);
606      return true;
607    }
608
609    // Conditional branches are not handed yet.
610    // Halt "fast" selection and bail.
611    return false;
612  }
613
614  case Instruction::Unreachable:
615    // Nothing to emit.
616    return true;
617
618  case Instruction::PHI:
619    // PHI nodes are already emitted.
620    return true;
621
622  case Instruction::Alloca:
623    // FunctionLowering has the static-sized case covered.
624    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
625      return true;
626
627    // Dynamic-sized alloca is not handled yet.
628    return false;
629
630  case Instruction::Call:
631    return SelectCall(I);
632
633  case Instruction::BitCast:
634    return SelectBitCast(I);
635
636  case Instruction::FPToSI:
637    return SelectCast(I, ISD::FP_TO_SINT);
638  case Instruction::ZExt:
639    return SelectCast(I, ISD::ZERO_EXTEND);
640  case Instruction::SExt:
641    return SelectCast(I, ISD::SIGN_EXTEND);
642  case Instruction::Trunc:
643    return SelectCast(I, ISD::TRUNCATE);
644  case Instruction::SIToFP:
645    return SelectCast(I, ISD::SINT_TO_FP);
646
647  case Instruction::IntToPtr: // Deliberate fall-through.
648  case Instruction::PtrToInt: {
649    MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
650    MVT DstVT = TLI.getValueType(I->getType());
651    if (DstVT.bitsGT(SrcVT))
652      return SelectCast(I, ISD::ZERO_EXTEND);
653    if (DstVT.bitsLT(SrcVT))
654      return SelectCast(I, ISD::TRUNCATE);
655    unsigned Reg = getRegForValue(I->getOperand(0));
656    if (Reg == 0) return false;
657    UpdateValueMap(I, Reg);
658    return true;
659  }
660
661  default:
662    // Unhandled instruction. Halt "fast" selection and bail.
663    return false;
664  }
665}
666
667FastISel::FastISel(MachineFunction &mf,
668                   MachineModuleInfo *mmi,
669                   DenseMap<const Value *, unsigned> &vm,
670                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
671                   DenseMap<const AllocaInst *, int> &am
672#ifndef NDEBUG
673                   , SmallSet<Instruction*, 8> &cil
674#endif
675                   )
676  : MBB(0),
677    ValueMap(vm),
678    MBBMap(bm),
679    StaticAllocaMap(am),
680#ifndef NDEBUG
681    CatchInfoLost(cil),
682#endif
683    MF(mf),
684    MMI(mmi),
685    MRI(MF.getRegInfo()),
686    MFI(*MF.getFrameInfo()),
687    MCP(*MF.getConstantPool()),
688    TM(MF.getTarget()),
689    TD(*TM.getTargetData()),
690    TII(*TM.getInstrInfo()),
691    TLI(*TM.getTargetLowering()) {
692}
693
694FastISel::~FastISel() {}
695
696unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
697                             ISD::NodeType) {
698  return 0;
699}
700
701unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
702                              ISD::NodeType, unsigned /*Op0*/) {
703  return 0;
704}
705
706unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
707                               ISD::NodeType, unsigned /*Op0*/,
708                               unsigned /*Op0*/) {
709  return 0;
710}
711
712unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
713                              ISD::NodeType, uint64_t /*Imm*/) {
714  return 0;
715}
716
717unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
718                              ISD::NodeType, ConstantFP * /*FPImm*/) {
719  return 0;
720}
721
722unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
723                               ISD::NodeType, unsigned /*Op0*/,
724                               uint64_t /*Imm*/) {
725  return 0;
726}
727
728unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
729                               ISD::NodeType, unsigned /*Op0*/,
730                               ConstantFP * /*FPImm*/) {
731  return 0;
732}
733
734unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
735                                ISD::NodeType,
736                                unsigned /*Op0*/, unsigned /*Op1*/,
737                                uint64_t /*Imm*/) {
738  return 0;
739}
740
741/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
742/// to emit an instruction with an immediate operand using FastEmit_ri.
743/// If that fails, it materializes the immediate into a register and try
744/// FastEmit_rr instead.
745unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
746                                unsigned Op0, uint64_t Imm,
747                                MVT::SimpleValueType ImmType) {
748  // First check if immediate type is legal. If not, we can't use the ri form.
749  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
750  if (ResultReg != 0)
751    return ResultReg;
752  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
753  if (MaterialReg == 0)
754    return 0;
755  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
756}
757
758/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
759/// to emit an instruction with a floating-point immediate operand using
760/// FastEmit_rf. If that fails, it materializes the immediate into a register
761/// and try FastEmit_rr instead.
762unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
763                                unsigned Op0, ConstantFP *FPImm,
764                                MVT::SimpleValueType ImmType) {
765  // First check if immediate type is legal. If not, we can't use the rf form.
766  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
767  if (ResultReg != 0)
768    return ResultReg;
769
770  // Materialize the constant in a register.
771  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
772  if (MaterialReg == 0) {
773    // If the target doesn't have a way to directly enter a floating-point
774    // value into a register, use an alternate approach.
775    // TODO: The current approach only supports floating-point constants
776    // that can be constructed by conversion from integer values. This should
777    // be replaced by code that creates a load from a constant-pool entry,
778    // which will require some target-specific work.
779    const APFloat &Flt = FPImm->getValueAPF();
780    MVT IntVT = TLI.getPointerTy();
781
782    uint64_t x[2];
783    uint32_t IntBitWidth = IntVT.getSizeInBits();
784    bool isExact;
785    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
786                             APFloat::rmTowardZero, &isExact);
787    if (!isExact)
788      return 0;
789    APInt IntVal(IntBitWidth, 2, x);
790
791    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
792                                     ISD::Constant, IntVal.getZExtValue());
793    if (IntegerReg == 0)
794      return 0;
795    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
796                             ISD::SINT_TO_FP, IntegerReg);
797    if (MaterialReg == 0)
798      return 0;
799  }
800  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
801}
802
803unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
804  return MRI.createVirtualRegister(RC);
805}
806
807unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
808                                 const TargetRegisterClass* RC) {
809  unsigned ResultReg = createResultReg(RC);
810  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
811
812  BuildMI(MBB, II, ResultReg);
813  return ResultReg;
814}
815
816unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
817                                  const TargetRegisterClass *RC,
818                                  unsigned Op0) {
819  unsigned ResultReg = createResultReg(RC);
820  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
821
822  if (II.getNumDefs() >= 1)
823    BuildMI(MBB, II, ResultReg).addReg(Op0);
824  else {
825    BuildMI(MBB, II).addReg(Op0);
826    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
827                                         II.ImplicitDefs[0], RC, RC);
828    if (!InsertedCopy)
829      ResultReg = 0;
830  }
831
832  return ResultReg;
833}
834
835unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
836                                   const TargetRegisterClass *RC,
837                                   unsigned Op0, unsigned Op1) {
838  unsigned ResultReg = createResultReg(RC);
839  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
840
841  if (II.getNumDefs() >= 1)
842    BuildMI(MBB, II, ResultReg).addReg(Op0).addReg(Op1);
843  else {
844    BuildMI(MBB, II).addReg(Op0).addReg(Op1);
845    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
846                                         II.ImplicitDefs[0], RC, RC);
847    if (!InsertedCopy)
848      ResultReg = 0;
849  }
850  return ResultReg;
851}
852
853unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
854                                   const TargetRegisterClass *RC,
855                                   unsigned Op0, uint64_t Imm) {
856  unsigned ResultReg = createResultReg(RC);
857  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
858
859  if (II.getNumDefs() >= 1)
860    BuildMI(MBB, II, ResultReg).addReg(Op0).addImm(Imm);
861  else {
862    BuildMI(MBB, II).addReg(Op0).addImm(Imm);
863    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
864                                         II.ImplicitDefs[0], RC, RC);
865    if (!InsertedCopy)
866      ResultReg = 0;
867  }
868  return ResultReg;
869}
870
871unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
872                                   const TargetRegisterClass *RC,
873                                   unsigned Op0, ConstantFP *FPImm) {
874  unsigned ResultReg = createResultReg(RC);
875  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
876
877  if (II.getNumDefs() >= 1)
878    BuildMI(MBB, II, ResultReg).addReg(Op0).addFPImm(FPImm);
879  else {
880    BuildMI(MBB, II).addReg(Op0).addFPImm(FPImm);
881    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
882                                         II.ImplicitDefs[0], RC, RC);
883    if (!InsertedCopy)
884      ResultReg = 0;
885  }
886  return ResultReg;
887}
888
889unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
890                                    const TargetRegisterClass *RC,
891                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
892  unsigned ResultReg = createResultReg(RC);
893  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
894
895  if (II.getNumDefs() >= 1)
896    BuildMI(MBB, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
897  else {
898    BuildMI(MBB, II).addReg(Op0).addReg(Op1).addImm(Imm);
899    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
900                                         II.ImplicitDefs[0], RC, RC);
901    if (!InsertedCopy)
902      ResultReg = 0;
903  }
904  return ResultReg;
905}
906
907unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
908                                  const TargetRegisterClass *RC,
909                                  uint64_t Imm) {
910  unsigned ResultReg = createResultReg(RC);
911  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
912
913  if (II.getNumDefs() >= 1)
914    BuildMI(MBB, II, ResultReg).addImm(Imm);
915  else {
916    BuildMI(MBB, II).addImm(Imm);
917    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
918                                         II.ImplicitDefs[0], RC, RC);
919    if (!InsertedCopy)
920      ResultReg = 0;
921  }
922  return ResultReg;
923}
924
925unsigned FastISel::FastEmitInst_extractsubreg(unsigned Op0, uint32_t Idx) {
926  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
927  const TargetRegisterClass* SRC = *(RC->subregclasses_begin()+Idx-1);
928
929  unsigned ResultReg = createResultReg(SRC);
930  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
931
932  if (II.getNumDefs() >= 1)
933    BuildMI(MBB, II, ResultReg).addReg(Op0).addImm(Idx);
934  else {
935    BuildMI(MBB, II).addReg(Op0).addImm(Idx);
936    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
937                                         II.ImplicitDefs[0], RC, RC);
938    if (!InsertedCopy)
939      ResultReg = 0;
940  }
941  return ResultReg;
942}
943