FastISel.cpp revision a82ffb5c9866520ace26792d8d15094c3ea520e9
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/DwarfWriter.h"
51#include "llvm/Analysis/DebugInfo.h"
52#include "llvm/Target/TargetData.h"
53#include "llvm/Target/TargetInstrInfo.h"
54#include "llvm/Target/TargetLowering.h"
55#include "llvm/Target/TargetMachine.h"
56#include "SelectionDAGBuild.h"
57using namespace llvm;
58
59unsigned FastISel::getRegForValue(Value *V) {
60  MVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
61  // Don't handle non-simple values in FastISel.
62  if (!RealVT.isSimple())
63    return 0;
64
65  // Ignore illegal types. We must do this before looking up the value
66  // in ValueMap because Arguments are given virtual registers regardless
67  // of whether FastISel can handle them.
68  MVT::SimpleValueType VT = RealVT.getSimpleVT();
69  if (!TLI.isTypeLegal(VT)) {
70    // Promote MVT::i1 to a legal type though, because it's common and easy.
71    if (VT == MVT::i1)
72      VT = TLI.getTypeToTransformTo(VT).getSimpleVT();
73    else
74      return 0;
75  }
76
77  // Look up the value to see if we already have a register for it. We
78  // cache values defined by Instructions across blocks, and other values
79  // only locally. This is because Instructions already have the SSA
80  // def-dominatess-use requirement enforced.
81  if (ValueMap.count(V))
82    return ValueMap[V];
83  unsigned Reg = LocalValueMap[V];
84  if (Reg != 0)
85    return Reg;
86
87  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
88    if (CI->getValue().getActiveBits() <= 64)
89      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
90  } else if (isa<AllocaInst>(V)) {
91    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
92  } else if (isa<ConstantPointerNull>(V)) {
93    // Translate this as an integer zero so that it can be
94    // local-CSE'd with actual integer zeros.
95    Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType()));
96  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
97    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
98
99    if (!Reg) {
100      const APFloat &Flt = CF->getValueAPF();
101      MVT IntVT = TLI.getPointerTy();
102
103      uint64_t x[2];
104      uint32_t IntBitWidth = IntVT.getSizeInBits();
105      bool isExact;
106      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
107                                APFloat::rmTowardZero, &isExact);
108      if (isExact) {
109        APInt IntVal(IntBitWidth, 2, x);
110
111        unsigned IntegerReg = getRegForValue(ConstantInt::get(IntVal));
112        if (IntegerReg != 0)
113          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
114      }
115    }
116  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
117    if (!SelectOperator(CE, CE->getOpcode())) return 0;
118    Reg = LocalValueMap[CE];
119  } else if (isa<UndefValue>(V)) {
120    Reg = createResultReg(TLI.getRegClassFor(VT));
121    BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
122  }
123
124  // If target-independent code couldn't handle the value, give target-specific
125  // code a try.
126  if (!Reg && isa<Constant>(V))
127    Reg = TargetMaterializeConstant(cast<Constant>(V));
128
129  // Don't cache constant materializations in the general ValueMap.
130  // To do so would require tracking what uses they dominate.
131  if (Reg != 0)
132    LocalValueMap[V] = Reg;
133  return Reg;
134}
135
136unsigned FastISel::lookUpRegForValue(Value *V) {
137  // Look up the value to see if we already have a register for it. We
138  // cache values defined by Instructions across blocks, and other values
139  // only locally. This is because Instructions already have the SSA
140  // def-dominatess-use requirement enforced.
141  if (ValueMap.count(V))
142    return ValueMap[V];
143  return LocalValueMap[V];
144}
145
146/// UpdateValueMap - Update the value map to include the new mapping for this
147/// instruction, or insert an extra copy to get the result in a previous
148/// determined register.
149/// NOTE: This is only necessary because we might select a block that uses
150/// a value before we select the block that defines the value.  It might be
151/// possible to fix this by selecting blocks in reverse postorder.
152void FastISel::UpdateValueMap(Value* I, unsigned Reg) {
153  if (!isa<Instruction>(I)) {
154    LocalValueMap[I] = Reg;
155    return;
156  }
157  if (!ValueMap.count(I))
158    ValueMap[I] = Reg;
159  else
160    TII.copyRegToReg(*MBB, MBB->end(), ValueMap[I],
161                     Reg, MRI.getRegClass(Reg), MRI.getRegClass(Reg));
162}
163
164unsigned FastISel::getRegForGEPIndex(Value *Idx) {
165  unsigned IdxN = getRegForValue(Idx);
166  if (IdxN == 0)
167    // Unhandled operand. Halt "fast" selection and bail.
168    return 0;
169
170  // If the index is smaller or larger than intptr_t, truncate or extend it.
171  MVT PtrVT = TLI.getPointerTy();
172  MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
173  if (IdxVT.bitsLT(PtrVT))
174    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
175                      ISD::SIGN_EXTEND, IdxN);
176  else if (IdxVT.bitsGT(PtrVT))
177    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
178                      ISD::TRUNCATE, IdxN);
179  return IdxN;
180}
181
182/// SelectBinaryOp - Select and emit code for a binary operator instruction,
183/// which has an opcode which directly corresponds to the given ISD opcode.
184///
185bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
186  MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
187  if (VT == MVT::Other || !VT.isSimple())
188    // Unhandled type. Halt "fast" selection and bail.
189    return false;
190
191  // We only handle legal types. For example, on x86-32 the instruction
192  // selector contains all of the 64-bit instructions from x86-64,
193  // under the assumption that i64 won't be used if the target doesn't
194  // support it.
195  if (!TLI.isTypeLegal(VT)) {
196    // MVT::i1 is special. Allow AND, OR, or XOR because they
197    // don't require additional zeroing, which makes them easy.
198    if (VT == MVT::i1 &&
199        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
200         ISDOpcode == ISD::XOR))
201      VT = TLI.getTypeToTransformTo(VT);
202    else
203      return false;
204  }
205
206  unsigned Op0 = getRegForValue(I->getOperand(0));
207  if (Op0 == 0)
208    // Unhandled operand. Halt "fast" selection and bail.
209    return false;
210
211  // Check if the second operand is a constant and handle it appropriately.
212  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
213    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
214                                     ISDOpcode, Op0, CI->getZExtValue());
215    if (ResultReg != 0) {
216      // We successfully emitted code for the given LLVM Instruction.
217      UpdateValueMap(I, ResultReg);
218      return true;
219    }
220  }
221
222  // Check if the second operand is a constant float.
223  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
224    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
225                                     ISDOpcode, Op0, CF);
226    if (ResultReg != 0) {
227      // We successfully emitted code for the given LLVM Instruction.
228      UpdateValueMap(I, ResultReg);
229      return true;
230    }
231  }
232
233  unsigned Op1 = getRegForValue(I->getOperand(1));
234  if (Op1 == 0)
235    // Unhandled operand. Halt "fast" selection and bail.
236    return false;
237
238  // Now we have both operands in registers. Emit the instruction.
239  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
240                                   ISDOpcode, Op0, Op1);
241  if (ResultReg == 0)
242    // Target-specific code wasn't able to find a machine opcode for
243    // the given ISD opcode and type. Halt "fast" selection and bail.
244    return false;
245
246  // We successfully emitted code for the given LLVM Instruction.
247  UpdateValueMap(I, ResultReg);
248  return true;
249}
250
251bool FastISel::SelectGetElementPtr(User *I) {
252  unsigned N = getRegForValue(I->getOperand(0));
253  if (N == 0)
254    // Unhandled operand. Halt "fast" selection and bail.
255    return false;
256
257  const Type *Ty = I->getOperand(0)->getType();
258  MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
259  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
260       OI != E; ++OI) {
261    Value *Idx = *OI;
262    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
263      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
264      if (Field) {
265        // N = N + Offset
266        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
267        // FIXME: This can be optimized by combining the add with a
268        // subsequent one.
269        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
270        if (N == 0)
271          // Unhandled operand. Halt "fast" selection and bail.
272          return false;
273      }
274      Ty = StTy->getElementType(Field);
275    } else {
276      Ty = cast<SequentialType>(Ty)->getElementType();
277
278      // If this is a constant subscript, handle it quickly.
279      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
280        if (CI->getZExtValue() == 0) continue;
281        uint64_t Offs =
282          TD.getTypePaddedSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
283        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
284        if (N == 0)
285          // Unhandled operand. Halt "fast" selection and bail.
286          return false;
287        continue;
288      }
289
290      // N = N + Idx * ElementSize;
291      uint64_t ElementSize = TD.getTypePaddedSize(Ty);
292      unsigned IdxN = getRegForGEPIndex(Idx);
293      if (IdxN == 0)
294        // Unhandled operand. Halt "fast" selection and bail.
295        return false;
296
297      if (ElementSize != 1) {
298        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
299        if (IdxN == 0)
300          // Unhandled operand. Halt "fast" selection and bail.
301          return false;
302      }
303      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
304      if (N == 0)
305        // Unhandled operand. Halt "fast" selection and bail.
306        return false;
307    }
308  }
309
310  // We successfully emitted code for the given LLVM Instruction.
311  UpdateValueMap(I, N);
312  return true;
313}
314
315bool FastISel::SelectCall(User *I) {
316  Function *F = cast<CallInst>(I)->getCalledFunction();
317  if (!F) return false;
318
319  unsigned IID = F->getIntrinsicID();
320  switch (IID) {
321  default: break;
322  case Intrinsic::dbg_stoppoint: {
323    DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
324    if (DW && DW->ValidDebugInfo(SPI->getContext())) {
325      DICompileUnit CU(cast<GlobalVariable>(SPI->getContext()));
326      std::string Dir, FN;
327      unsigned SrcFile = DW->getOrCreateSourceID(CU.getDirectory(Dir),
328                                                 CU.getFilename(FN));
329      unsigned Line = SPI->getLine();
330      unsigned Col = SPI->getColumn();
331      unsigned ID = DW->RecordSourceLine(Line, Col, SrcFile);
332      unsigned Idx = MF.getOrCreateDebugLocID(SrcFile, Line, Col);
333      setCurDebugLoc(DebugLoc::get(Idx));
334      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
335      BuildMI(MBB, DL, II).addImm(ID);
336    }
337    return true;
338  }
339  case Intrinsic::dbg_region_start: {
340    DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
341    if (DW && DW->ValidDebugInfo(RSI->getContext())) {
342      unsigned ID =
343        DW->RecordRegionStart(cast<GlobalVariable>(RSI->getContext()));
344      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
345      BuildMI(MBB, DL, II).addImm(ID);
346    }
347    return true;
348  }
349  case Intrinsic::dbg_region_end: {
350    DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
351    if (DW && DW->ValidDebugInfo(REI->getContext())) {
352      unsigned ID =
353        DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext()));
354      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
355      BuildMI(MBB, DL, II).addImm(ID);
356    }
357    return true;
358  }
359  case Intrinsic::dbg_func_start: {
360    if (!DW) return true;
361    DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
362    Value *SP = FSI->getSubprogram();
363
364    if (DW->ValidDebugInfo(SP)) {
365      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what
366      // (most?) gdb expects.
367      DISubprogram Subprogram(cast<GlobalVariable>(SP));
368      DICompileUnit CompileUnit = Subprogram.getCompileUnit();
369      std::string Dir, FN;
370      unsigned SrcFile = DW->getOrCreateSourceID(CompileUnit.getDirectory(Dir),
371                                                 CompileUnit.getFilename(FN));
372
373      // Record the source line.
374      unsigned Line = Subprogram.getLineNumber();
375      DW->RecordSourceLine(Line, 0, SrcFile);
376      setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(SrcFile, Line, 0)));
377
378      // llvm.dbg.func_start also defines beginning of function scope.
379      DW->RecordRegionStart(cast<GlobalVariable>(FSI->getSubprogram()));
380    }
381
382    return true;
383  }
384  case Intrinsic::dbg_declare: {
385    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
386    Value *Variable = DI->getVariable();
387    if (DW && DW->ValidDebugInfo(Variable)) {
388      // Determine the address of the declared object.
389      Value *Address = DI->getAddress();
390      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
391        Address = BCI->getOperand(0);
392      AllocaInst *AI = dyn_cast<AllocaInst>(Address);
393      // Don't handle byval struct arguments or VLAs, for example.
394      if (!AI) break;
395      DenseMap<const AllocaInst*, int>::iterator SI =
396        StaticAllocaMap.find(AI);
397      if (SI == StaticAllocaMap.end()) break; // VLAs.
398      int FI = SI->second;
399
400      // Determine the debug globalvariable.
401      GlobalValue *GV = cast<GlobalVariable>(Variable);
402
403      // Build the DECLARE instruction.
404      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
405      BuildMI(MBB, DL, II).addFrameIndex(FI).addGlobalAddress(GV);
406    }
407    return true;
408  }
409  case Intrinsic::eh_exception: {
410    MVT VT = TLI.getValueType(I->getType());
411    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
412    default: break;
413    case TargetLowering::Expand: {
414      if (!MBB->isLandingPad()) {
415        // FIXME: Mark exception register as live in.  Hack for PR1508.
416        unsigned Reg = TLI.getExceptionAddressRegister();
417        if (Reg) MBB->addLiveIn(Reg);
418      }
419      unsigned Reg = TLI.getExceptionAddressRegister();
420      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
421      unsigned ResultReg = createResultReg(RC);
422      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
423                                           Reg, RC, RC);
424      assert(InsertedCopy && "Can't copy address registers!");
425      InsertedCopy = InsertedCopy;
426      UpdateValueMap(I, ResultReg);
427      return true;
428    }
429    }
430    break;
431  }
432  case Intrinsic::eh_selector_i32:
433  case Intrinsic::eh_selector_i64: {
434    MVT VT = TLI.getValueType(I->getType());
435    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
436    default: break;
437    case TargetLowering::Expand: {
438      MVT VT = (IID == Intrinsic::eh_selector_i32 ?
439                           MVT::i32 : MVT::i64);
440
441      if (MMI) {
442        if (MBB->isLandingPad())
443          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
444        else {
445#ifndef NDEBUG
446          CatchInfoLost.insert(cast<CallInst>(I));
447#endif
448          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
449          unsigned Reg = TLI.getExceptionSelectorRegister();
450          if (Reg) MBB->addLiveIn(Reg);
451        }
452
453        unsigned Reg = TLI.getExceptionSelectorRegister();
454        const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
455        unsigned ResultReg = createResultReg(RC);
456        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
457                                             Reg, RC, RC);
458        assert(InsertedCopy && "Can't copy address registers!");
459        InsertedCopy = InsertedCopy;
460        UpdateValueMap(I, ResultReg);
461      } else {
462        unsigned ResultReg =
463          getRegForValue(Constant::getNullValue(I->getType()));
464        UpdateValueMap(I, ResultReg);
465      }
466      return true;
467    }
468    }
469    break;
470  }
471  }
472  return false;
473}
474
475bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
476  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
477  MVT DstVT = TLI.getValueType(I->getType());
478
479  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
480      DstVT == MVT::Other || !DstVT.isSimple())
481    // Unhandled type. Halt "fast" selection and bail.
482    return false;
483
484  // Check if the destination type is legal. Or as a special case,
485  // it may be i1 if we're doing a truncate because that's
486  // easy and somewhat common.
487  if (!TLI.isTypeLegal(DstVT))
488    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
489      // Unhandled type. Halt "fast" selection and bail.
490      return false;
491
492  // Check if the source operand is legal. Or as a special case,
493  // it may be i1 if we're doing zero-extension because that's
494  // easy and somewhat common.
495  if (!TLI.isTypeLegal(SrcVT))
496    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
497      // Unhandled type. Halt "fast" selection and bail.
498      return false;
499
500  unsigned InputReg = getRegForValue(I->getOperand(0));
501  if (!InputReg)
502    // Unhandled operand.  Halt "fast" selection and bail.
503    return false;
504
505  // If the operand is i1, arrange for the high bits in the register to be zero.
506  if (SrcVT == MVT::i1) {
507   SrcVT = TLI.getTypeToTransformTo(SrcVT);
508   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
509   if (!InputReg)
510     return false;
511  }
512  // If the result is i1, truncate to the target's type for i1 first.
513  if (DstVT == MVT::i1)
514    DstVT = TLI.getTypeToTransformTo(DstVT);
515
516  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
517                                  DstVT.getSimpleVT(),
518                                  Opcode,
519                                  InputReg);
520  if (!ResultReg)
521    return false;
522
523  UpdateValueMap(I, ResultReg);
524  return true;
525}
526
527bool FastISel::SelectBitCast(User *I) {
528  // If the bitcast doesn't change the type, just use the operand value.
529  if (I->getType() == I->getOperand(0)->getType()) {
530    unsigned Reg = getRegForValue(I->getOperand(0));
531    if (Reg == 0)
532      return false;
533    UpdateValueMap(I, Reg);
534    return true;
535  }
536
537  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
538  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
539  MVT DstVT = TLI.getValueType(I->getType());
540
541  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
542      DstVT == MVT::Other || !DstVT.isSimple() ||
543      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
544    // Unhandled type. Halt "fast" selection and bail.
545    return false;
546
547  unsigned Op0 = getRegForValue(I->getOperand(0));
548  if (Op0 == 0)
549    // Unhandled operand. Halt "fast" selection and bail.
550    return false;
551
552  // First, try to perform the bitcast by inserting a reg-reg copy.
553  unsigned ResultReg = 0;
554  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
555    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
556    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
557    ResultReg = createResultReg(DstClass);
558
559    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
560                                         Op0, DstClass, SrcClass);
561    if (!InsertedCopy)
562      ResultReg = 0;
563  }
564
565  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
566  if (!ResultReg)
567    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
568                           ISD::BIT_CONVERT, Op0);
569
570  if (!ResultReg)
571    return false;
572
573  UpdateValueMap(I, ResultReg);
574  return true;
575}
576
577bool
578FastISel::SelectInstruction(Instruction *I) {
579  return SelectOperator(I, I->getOpcode());
580}
581
582/// FastEmitBranch - Emit an unconditional branch to the given block,
583/// unless it is the immediate (fall-through) successor, and update
584/// the CFG.
585void
586FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
587  MachineFunction::iterator NextMBB =
588     next(MachineFunction::iterator(MBB));
589
590  if (MBB->isLayoutSuccessor(MSucc)) {
591    // The unconditional fall-through case, which needs no instructions.
592  } else {
593    // The unconditional branch case.
594    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
595  }
596  MBB->addSuccessor(MSucc);
597}
598
599bool
600FastISel::SelectOperator(User *I, unsigned Opcode) {
601  switch (Opcode) {
602  case Instruction::Add: {
603    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD;
604    return SelectBinaryOp(I, Opc);
605  }
606  case Instruction::Sub: {
607    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB;
608    return SelectBinaryOp(I, Opc);
609  }
610  case Instruction::Mul: {
611    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL;
612    return SelectBinaryOp(I, Opc);
613  }
614  case Instruction::SDiv:
615    return SelectBinaryOp(I, ISD::SDIV);
616  case Instruction::UDiv:
617    return SelectBinaryOp(I, ISD::UDIV);
618  case Instruction::FDiv:
619    return SelectBinaryOp(I, ISD::FDIV);
620  case Instruction::SRem:
621    return SelectBinaryOp(I, ISD::SREM);
622  case Instruction::URem:
623    return SelectBinaryOp(I, ISD::UREM);
624  case Instruction::FRem:
625    return SelectBinaryOp(I, ISD::FREM);
626  case Instruction::Shl:
627    return SelectBinaryOp(I, ISD::SHL);
628  case Instruction::LShr:
629    return SelectBinaryOp(I, ISD::SRL);
630  case Instruction::AShr:
631    return SelectBinaryOp(I, ISD::SRA);
632  case Instruction::And:
633    return SelectBinaryOp(I, ISD::AND);
634  case Instruction::Or:
635    return SelectBinaryOp(I, ISD::OR);
636  case Instruction::Xor:
637    return SelectBinaryOp(I, ISD::XOR);
638
639  case Instruction::GetElementPtr:
640    return SelectGetElementPtr(I);
641
642  case Instruction::Br: {
643    BranchInst *BI = cast<BranchInst>(I);
644
645    if (BI->isUnconditional()) {
646      BasicBlock *LLVMSucc = BI->getSuccessor(0);
647      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
648      FastEmitBranch(MSucc);
649      return true;
650    }
651
652    // Conditional branches are not handed yet.
653    // Halt "fast" selection and bail.
654    return false;
655  }
656
657  case Instruction::Unreachable:
658    // Nothing to emit.
659    return true;
660
661  case Instruction::PHI:
662    // PHI nodes are already emitted.
663    return true;
664
665  case Instruction::Alloca:
666    // FunctionLowering has the static-sized case covered.
667    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
668      return true;
669
670    // Dynamic-sized alloca is not handled yet.
671    return false;
672
673  case Instruction::Call:
674    return SelectCall(I);
675
676  case Instruction::BitCast:
677    return SelectBitCast(I);
678
679  case Instruction::FPToSI:
680    return SelectCast(I, ISD::FP_TO_SINT);
681  case Instruction::ZExt:
682    return SelectCast(I, ISD::ZERO_EXTEND);
683  case Instruction::SExt:
684    return SelectCast(I, ISD::SIGN_EXTEND);
685  case Instruction::Trunc:
686    return SelectCast(I, ISD::TRUNCATE);
687  case Instruction::SIToFP:
688    return SelectCast(I, ISD::SINT_TO_FP);
689
690  case Instruction::IntToPtr: // Deliberate fall-through.
691  case Instruction::PtrToInt: {
692    MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
693    MVT DstVT = TLI.getValueType(I->getType());
694    if (DstVT.bitsGT(SrcVT))
695      return SelectCast(I, ISD::ZERO_EXTEND);
696    if (DstVT.bitsLT(SrcVT))
697      return SelectCast(I, ISD::TRUNCATE);
698    unsigned Reg = getRegForValue(I->getOperand(0));
699    if (Reg == 0) return false;
700    UpdateValueMap(I, Reg);
701    return true;
702  }
703
704  default:
705    // Unhandled instruction. Halt "fast" selection and bail.
706    return false;
707  }
708}
709
710FastISel::FastISel(MachineFunction &mf,
711                   MachineModuleInfo *mmi,
712                   DwarfWriter *dw,
713                   DenseMap<const Value *, unsigned> &vm,
714                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
715                   DenseMap<const AllocaInst *, int> &am
716#ifndef NDEBUG
717                   , SmallSet<Instruction*, 8> &cil
718#endif
719                   )
720  : MBB(0),
721    ValueMap(vm),
722    MBBMap(bm),
723    StaticAllocaMap(am),
724#ifndef NDEBUG
725    CatchInfoLost(cil),
726#endif
727    MF(mf),
728    MMI(mmi),
729    DW(dw),
730    MRI(MF.getRegInfo()),
731    MFI(*MF.getFrameInfo()),
732    MCP(*MF.getConstantPool()),
733    TM(MF.getTarget()),
734    TD(*TM.getTargetData()),
735    TII(*TM.getInstrInfo()),
736    TLI(*TM.getTargetLowering()) {
737}
738
739FastISel::~FastISel() {}
740
741unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
742                             ISD::NodeType) {
743  return 0;
744}
745
746unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
747                              ISD::NodeType, unsigned /*Op0*/) {
748  return 0;
749}
750
751unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
752                               ISD::NodeType, unsigned /*Op0*/,
753                               unsigned /*Op0*/) {
754  return 0;
755}
756
757unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
758                              ISD::NodeType, uint64_t /*Imm*/) {
759  return 0;
760}
761
762unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
763                              ISD::NodeType, ConstantFP * /*FPImm*/) {
764  return 0;
765}
766
767unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
768                               ISD::NodeType, unsigned /*Op0*/,
769                               uint64_t /*Imm*/) {
770  return 0;
771}
772
773unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
774                               ISD::NodeType, unsigned /*Op0*/,
775                               ConstantFP * /*FPImm*/) {
776  return 0;
777}
778
779unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
780                                ISD::NodeType,
781                                unsigned /*Op0*/, unsigned /*Op1*/,
782                                uint64_t /*Imm*/) {
783  return 0;
784}
785
786/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
787/// to emit an instruction with an immediate operand using FastEmit_ri.
788/// If that fails, it materializes the immediate into a register and try
789/// FastEmit_rr instead.
790unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
791                                unsigned Op0, uint64_t Imm,
792                                MVT::SimpleValueType ImmType) {
793  // First check if immediate type is legal. If not, we can't use the ri form.
794  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
795  if (ResultReg != 0)
796    return ResultReg;
797  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
798  if (MaterialReg == 0)
799    return 0;
800  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
801}
802
803/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
804/// to emit an instruction with a floating-point immediate operand using
805/// FastEmit_rf. If that fails, it materializes the immediate into a register
806/// and try FastEmit_rr instead.
807unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
808                                unsigned Op0, ConstantFP *FPImm,
809                                MVT::SimpleValueType ImmType) {
810  // First check if immediate type is legal. If not, we can't use the rf form.
811  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
812  if (ResultReg != 0)
813    return ResultReg;
814
815  // Materialize the constant in a register.
816  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
817  if (MaterialReg == 0) {
818    // If the target doesn't have a way to directly enter a floating-point
819    // value into a register, use an alternate approach.
820    // TODO: The current approach only supports floating-point constants
821    // that can be constructed by conversion from integer values. This should
822    // be replaced by code that creates a load from a constant-pool entry,
823    // which will require some target-specific work.
824    const APFloat &Flt = FPImm->getValueAPF();
825    MVT IntVT = TLI.getPointerTy();
826
827    uint64_t x[2];
828    uint32_t IntBitWidth = IntVT.getSizeInBits();
829    bool isExact;
830    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
831                             APFloat::rmTowardZero, &isExact);
832    if (!isExact)
833      return 0;
834    APInt IntVal(IntBitWidth, 2, x);
835
836    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
837                                     ISD::Constant, IntVal.getZExtValue());
838    if (IntegerReg == 0)
839      return 0;
840    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
841                             ISD::SINT_TO_FP, IntegerReg);
842    if (MaterialReg == 0)
843      return 0;
844  }
845  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
846}
847
848unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
849  return MRI.createVirtualRegister(RC);
850}
851
852unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
853                                 const TargetRegisterClass* RC) {
854  unsigned ResultReg = createResultReg(RC);
855  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
856
857  BuildMI(MBB, DL, II, ResultReg);
858  return ResultReg;
859}
860
861unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
862                                  const TargetRegisterClass *RC,
863                                  unsigned Op0) {
864  unsigned ResultReg = createResultReg(RC);
865  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
866
867  if (II.getNumDefs() >= 1)
868    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
869  else {
870    BuildMI(MBB, DL, II).addReg(Op0);
871    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
872                                         II.ImplicitDefs[0], RC, RC);
873    if (!InsertedCopy)
874      ResultReg = 0;
875  }
876
877  return ResultReg;
878}
879
880unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
881                                   const TargetRegisterClass *RC,
882                                   unsigned Op0, unsigned Op1) {
883  unsigned ResultReg = createResultReg(RC);
884  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
885
886  if (II.getNumDefs() >= 1)
887    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
888  else {
889    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
890    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
891                                         II.ImplicitDefs[0], RC, RC);
892    if (!InsertedCopy)
893      ResultReg = 0;
894  }
895  return ResultReg;
896}
897
898unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
899                                   const TargetRegisterClass *RC,
900                                   unsigned Op0, uint64_t Imm) {
901  unsigned ResultReg = createResultReg(RC);
902  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
903
904  if (II.getNumDefs() >= 1)
905    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
906  else {
907    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
908    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
909                                         II.ImplicitDefs[0], RC, RC);
910    if (!InsertedCopy)
911      ResultReg = 0;
912  }
913  return ResultReg;
914}
915
916unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
917                                   const TargetRegisterClass *RC,
918                                   unsigned Op0, ConstantFP *FPImm) {
919  unsigned ResultReg = createResultReg(RC);
920  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
921
922  if (II.getNumDefs() >= 1)
923    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
924  else {
925    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
926    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
927                                         II.ImplicitDefs[0], RC, RC);
928    if (!InsertedCopy)
929      ResultReg = 0;
930  }
931  return ResultReg;
932}
933
934unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
935                                    const TargetRegisterClass *RC,
936                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
937  unsigned ResultReg = createResultReg(RC);
938  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
939
940  if (II.getNumDefs() >= 1)
941    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
942  else {
943    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
944    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
945                                         II.ImplicitDefs[0], RC, RC);
946    if (!InsertedCopy)
947      ResultReg = 0;
948  }
949  return ResultReg;
950}
951
952unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
953                                  const TargetRegisterClass *RC,
954                                  uint64_t Imm) {
955  unsigned ResultReg = createResultReg(RC);
956  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
957
958  if (II.getNumDefs() >= 1)
959    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
960  else {
961    BuildMI(MBB, DL, II).addImm(Imm);
962    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
963                                         II.ImplicitDefs[0], RC, RC);
964    if (!InsertedCopy)
965      ResultReg = 0;
966  }
967  return ResultReg;
968}
969
970unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT,
971                                              unsigned Op0, uint32_t Idx) {
972  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
973
974  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
975  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
976
977  if (II.getNumDefs() >= 1)
978    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
979  else {
980    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
981    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
982                                         II.ImplicitDefs[0], RC, RC);
983    if (!InsertedCopy)
984      ResultReg = 0;
985  }
986  return ResultReg;
987}
988
989/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
990/// with all but the least significant bit set to zero.
991unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT, unsigned Op) {
992  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
993}
994