FastISel.cpp revision b435aa2c1de2ff28e51b1ce881e9f10f8b51d8e3
1//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#define DEBUG_TYPE "isel"
43#include "llvm/Function.h"
44#include "llvm/GlobalVariable.h"
45#include "llvm/Instructions.h"
46#include "llvm/IntrinsicInst.h"
47#include "llvm/Operator.h"
48#include "llvm/CodeGen/Analysis.h"
49#include "llvm/CodeGen/FastISel.h"
50#include "llvm/CodeGen/FunctionLoweringInfo.h"
51#include "llvm/CodeGen/MachineInstrBuilder.h"
52#include "llvm/CodeGen/MachineModuleInfo.h"
53#include "llvm/CodeGen/MachineRegisterInfo.h"
54#include "llvm/Analysis/DebugInfo.h"
55#include "llvm/Analysis/Loads.h"
56#include "llvm/Target/TargetData.h"
57#include "llvm/Target/TargetInstrInfo.h"
58#include "llvm/Target/TargetLowering.h"
59#include "llvm/Target/TargetMachine.h"
60#include "llvm/Support/ErrorHandling.h"
61#include "llvm/Support/Debug.h"
62#include "llvm/ADT/Statistic.h"
63using namespace llvm;
64
65STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
66          "target-independent selector");
67STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
68          "target-specific selector");
69STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
70
71/// startNewBlock - Set the current block to which generated machine
72/// instructions will be appended, and clear the local CSE map.
73///
74void FastISel::startNewBlock() {
75  LocalValueMap.clear();
76
77  EmitStartPt = 0;
78
79  // Advance the emit start point past any EH_LABEL instructions.
80  MachineBasicBlock::iterator
81    I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
82  while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
83    EmitStartPt = I;
84    ++I;
85  }
86  LastLocalValue = EmitStartPt;
87}
88
89void FastISel::flushLocalValueMap() {
90  LocalValueMap.clear();
91  LastLocalValue = EmitStartPt;
92  recomputeInsertPt();
93}
94
95bool FastISel::hasTrivialKill(const Value *V) const {
96  // Don't consider constants or arguments to have trivial kills.
97  const Instruction *I = dyn_cast<Instruction>(V);
98  if (!I)
99    return false;
100
101  // No-op casts are trivially coalesced by fast-isel.
102  if (const CastInst *Cast = dyn_cast<CastInst>(I))
103    if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
104        !hasTrivialKill(Cast->getOperand(0)))
105      return false;
106
107  // GEPs with all zero indices are trivially coalesced by fast-isel.
108  if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
109    if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
110      return false;
111
112  // Only instructions with a single use in the same basic block are considered
113  // to have trivial kills.
114  return I->hasOneUse() &&
115         !(I->getOpcode() == Instruction::BitCast ||
116           I->getOpcode() == Instruction::PtrToInt ||
117           I->getOpcode() == Instruction::IntToPtr) &&
118         cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
119}
120
121unsigned FastISel::getRegForValue(const Value *V) {
122  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
123  // Don't handle non-simple values in FastISel.
124  if (!RealVT.isSimple())
125    return 0;
126
127  // Ignore illegal types. We must do this before looking up the value
128  // in ValueMap because Arguments are given virtual registers regardless
129  // of whether FastISel can handle them.
130  MVT VT = RealVT.getSimpleVT();
131  if (!TLI.isTypeLegal(VT)) {
132    // Handle integer promotions, though, because they're common and easy.
133    if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
134      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
135    else
136      return 0;
137  }
138
139  // Look up the value to see if we already have a register for it. We
140  // cache values defined by Instructions across blocks, and other values
141  // only locally. This is because Instructions already have the SSA
142  // def-dominates-use requirement enforced.
143  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
144  if (I != FuncInfo.ValueMap.end())
145    return I->second;
146
147  unsigned Reg = LocalValueMap[V];
148  if (Reg != 0)
149    return Reg;
150
151  // In bottom-up mode, just create the virtual register which will be used
152  // to hold the value. It will be materialized later.
153  if (isa<Instruction>(V) &&
154      (!isa<AllocaInst>(V) ||
155       !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
156    return FuncInfo.InitializeRegForValue(V);
157
158  SavePoint SaveInsertPt = enterLocalValueArea();
159
160  // Materialize the value in a register. Emit any instructions in the
161  // local value area.
162  Reg = materializeRegForValue(V, VT);
163
164  leaveLocalValueArea(SaveInsertPt);
165
166  return Reg;
167}
168
169/// materializeRegForValue - Helper for getRegForValue. This function is
170/// called when the value isn't already available in a register and must
171/// be materialized with new instructions.
172unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
173  unsigned Reg = 0;
174
175  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
176    if (CI->getValue().getActiveBits() <= 64)
177      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
178  } else if (isa<AllocaInst>(V)) {
179    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
180  } else if (isa<ConstantPointerNull>(V)) {
181    // Translate this as an integer zero so that it can be
182    // local-CSE'd with actual integer zeros.
183    Reg =
184      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
185  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
186    if (CF->isNullValue()) {
187      Reg = TargetMaterializeFloatZero(CF);
188    } else {
189      // Try to emit the constant directly.
190      Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
191    }
192
193    if (!Reg) {
194      // Try to emit the constant by using an integer constant with a cast.
195      const APFloat &Flt = CF->getValueAPF();
196      EVT IntVT = TLI.getPointerTy();
197
198      uint64_t x[2];
199      uint32_t IntBitWidth = IntVT.getSizeInBits();
200      bool isExact;
201      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
202                                APFloat::rmTowardZero, &isExact);
203      if (isExact) {
204        APInt IntVal(IntBitWidth, x);
205
206        unsigned IntegerReg =
207          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
208        if (IntegerReg != 0)
209          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
210                           IntegerReg, /*Kill=*/false);
211      }
212    }
213  } else if (const Operator *Op = dyn_cast<Operator>(V)) {
214    if (!SelectOperator(Op, Op->getOpcode()))
215      if (!isa<Instruction>(Op) ||
216          !TargetSelectInstruction(cast<Instruction>(Op)))
217        return 0;
218    Reg = lookUpRegForValue(Op);
219  } else if (isa<UndefValue>(V)) {
220    Reg = createResultReg(TLI.getRegClassFor(VT));
221    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
222            TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
223  }
224
225  // If target-independent code couldn't handle the value, give target-specific
226  // code a try.
227  if (!Reg && isa<Constant>(V))
228    Reg = TargetMaterializeConstant(cast<Constant>(V));
229
230  // Don't cache constant materializations in the general ValueMap.
231  // To do so would require tracking what uses they dominate.
232  if (Reg != 0) {
233    LocalValueMap[V] = Reg;
234    LastLocalValue = MRI.getVRegDef(Reg);
235  }
236  return Reg;
237}
238
239unsigned FastISel::lookUpRegForValue(const Value *V) {
240  // Look up the value to see if we already have a register for it. We
241  // cache values defined by Instructions across blocks, and other values
242  // only locally. This is because Instructions already have the SSA
243  // def-dominates-use requirement enforced.
244  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
245  if (I != FuncInfo.ValueMap.end())
246    return I->second;
247  return LocalValueMap[V];
248}
249
250/// UpdateValueMap - Update the value map to include the new mapping for this
251/// instruction, or insert an extra copy to get the result in a previous
252/// determined register.
253/// NOTE: This is only necessary because we might select a block that uses
254/// a value before we select the block that defines the value.  It might be
255/// possible to fix this by selecting blocks in reverse postorder.
256void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
257  if (!isa<Instruction>(I)) {
258    LocalValueMap[I] = Reg;
259    return;
260  }
261
262  unsigned &AssignedReg = FuncInfo.ValueMap[I];
263  if (AssignedReg == 0)
264    // Use the new register.
265    AssignedReg = Reg;
266  else if (Reg != AssignedReg) {
267    // Arrange for uses of AssignedReg to be replaced by uses of Reg.
268    for (unsigned i = 0; i < NumRegs; i++)
269      FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
270
271    AssignedReg = Reg;
272  }
273}
274
275std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
276  unsigned IdxN = getRegForValue(Idx);
277  if (IdxN == 0)
278    // Unhandled operand. Halt "fast" selection and bail.
279    return std::pair<unsigned, bool>(0, false);
280
281  bool IdxNIsKill = hasTrivialKill(Idx);
282
283  // If the index is smaller or larger than intptr_t, truncate or extend it.
284  MVT PtrVT = TLI.getPointerTy();
285  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
286  if (IdxVT.bitsLT(PtrVT)) {
287    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
288                      IdxN, IdxNIsKill);
289    IdxNIsKill = true;
290  }
291  else if (IdxVT.bitsGT(PtrVT)) {
292    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
293                      IdxN, IdxNIsKill);
294    IdxNIsKill = true;
295  }
296  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
297}
298
299void FastISel::recomputeInsertPt() {
300  if (getLastLocalValue()) {
301    FuncInfo.InsertPt = getLastLocalValue();
302    FuncInfo.MBB = FuncInfo.InsertPt->getParent();
303    ++FuncInfo.InsertPt;
304  } else
305    FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
306
307  // Now skip past any EH_LABELs, which must remain at the beginning.
308  while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
309         FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
310    ++FuncInfo.InsertPt;
311}
312
313void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
314                              MachineBasicBlock::iterator E) {
315  assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!");
316  while (I != E) {
317    MachineInstr *Dead = &*I;
318    ++I;
319    Dead->eraseFromParent();
320    ++NumFastIselDead;
321  }
322  recomputeInsertPt();
323}
324
325FastISel::SavePoint FastISel::enterLocalValueArea() {
326  MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
327  DebugLoc OldDL = DL;
328  recomputeInsertPt();
329  DL = DebugLoc();
330  SavePoint SP = { OldInsertPt, OldDL };
331  return SP;
332}
333
334void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
335  if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
336    LastLocalValue = llvm::prior(FuncInfo.InsertPt);
337
338  // Restore the previous insert position.
339  FuncInfo.InsertPt = OldInsertPt.InsertPt;
340  DL = OldInsertPt.DL;
341}
342
343/// SelectBinaryOp - Select and emit code for a binary operator instruction,
344/// which has an opcode which directly corresponds to the given ISD opcode.
345///
346bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
347  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
348  if (VT == MVT::Other || !VT.isSimple())
349    // Unhandled type. Halt "fast" selection and bail.
350    return false;
351
352  // We only handle legal types. For example, on x86-32 the instruction
353  // selector contains all of the 64-bit instructions from x86-64,
354  // under the assumption that i64 won't be used if the target doesn't
355  // support it.
356  if (!TLI.isTypeLegal(VT)) {
357    // MVT::i1 is special. Allow AND, OR, or XOR because they
358    // don't require additional zeroing, which makes them easy.
359    if (VT == MVT::i1 &&
360        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
361         ISDOpcode == ISD::XOR))
362      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
363    else
364      return false;
365  }
366
367  // Check if the first operand is a constant, and handle it as "ri".  At -O0,
368  // we don't have anything that canonicalizes operand order.
369  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
370    if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
371      unsigned Op1 = getRegForValue(I->getOperand(1));
372      if (Op1 == 0) return false;
373
374      bool Op1IsKill = hasTrivialKill(I->getOperand(1));
375
376      unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
377                                        Op1IsKill, CI->getZExtValue(),
378                                        VT.getSimpleVT());
379      if (ResultReg == 0) return false;
380
381      // We successfully emitted code for the given LLVM Instruction.
382      UpdateValueMap(I, ResultReg);
383      return true;
384    }
385
386
387  unsigned Op0 = getRegForValue(I->getOperand(0));
388  if (Op0 == 0)   // Unhandled operand. Halt "fast" selection and bail.
389    return false;
390
391  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
392
393  // Check if the second operand is a constant and handle it appropriately.
394  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
395    uint64_t Imm = CI->getZExtValue();
396
397    // Transform "sdiv exact X, 8" -> "sra X, 3".
398    if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
399        cast<BinaryOperator>(I)->isExact() &&
400        isPowerOf2_64(Imm)) {
401      Imm = Log2_64(Imm);
402      ISDOpcode = ISD::SRA;
403    }
404
405    unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
406                                      Op0IsKill, Imm, VT.getSimpleVT());
407    if (ResultReg == 0) return false;
408
409    // We successfully emitted code for the given LLVM Instruction.
410    UpdateValueMap(I, ResultReg);
411    return true;
412  }
413
414  // Check if the second operand is a constant float.
415  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
416    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
417                                     ISDOpcode, Op0, Op0IsKill, CF);
418    if (ResultReg != 0) {
419      // We successfully emitted code for the given LLVM Instruction.
420      UpdateValueMap(I, ResultReg);
421      return true;
422    }
423  }
424
425  unsigned Op1 = getRegForValue(I->getOperand(1));
426  if (Op1 == 0)
427    // Unhandled operand. Halt "fast" selection and bail.
428    return false;
429
430  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
431
432  // Now we have both operands in registers. Emit the instruction.
433  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
434                                   ISDOpcode,
435                                   Op0, Op0IsKill,
436                                   Op1, Op1IsKill);
437  if (ResultReg == 0)
438    // Target-specific code wasn't able to find a machine opcode for
439    // the given ISD opcode and type. Halt "fast" selection and bail.
440    return false;
441
442  // We successfully emitted code for the given LLVM Instruction.
443  UpdateValueMap(I, ResultReg);
444  return true;
445}
446
447bool FastISel::SelectGetElementPtr(const User *I) {
448  unsigned N = getRegForValue(I->getOperand(0));
449  if (N == 0)
450    // Unhandled operand. Halt "fast" selection and bail.
451    return false;
452
453  bool NIsKill = hasTrivialKill(I->getOperand(0));
454
455  // Keep a running tab of the total offset to coalesce multiple N = N + Offset
456  // into a single N = N + TotalOffset.
457  uint64_t TotalOffs = 0;
458  // FIXME: What's a good SWAG number for MaxOffs?
459  uint64_t MaxOffs = 2048;
460  Type *Ty = I->getOperand(0)->getType();
461  MVT VT = TLI.getPointerTy();
462  for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
463       E = I->op_end(); OI != E; ++OI) {
464    const Value *Idx = *OI;
465    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
466      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
467      if (Field) {
468        // N = N + Offset
469        TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field);
470        if (TotalOffs >= MaxOffs) {
471          N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
472          if (N == 0)
473            // Unhandled operand. Halt "fast" selection and bail.
474            return false;
475          NIsKill = true;
476          TotalOffs = 0;
477        }
478      }
479      Ty = StTy->getElementType(Field);
480    } else {
481      Ty = cast<SequentialType>(Ty)->getElementType();
482
483      // If this is a constant subscript, handle it quickly.
484      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
485        if (CI->isZero()) continue;
486        // N = N + Offset
487        TotalOffs +=
488          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
489        if (TotalOffs >= MaxOffs) {
490          N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
491          if (N == 0)
492            // Unhandled operand. Halt "fast" selection and bail.
493            return false;
494          NIsKill = true;
495          TotalOffs = 0;
496        }
497        continue;
498      }
499      if (TotalOffs) {
500        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
501        if (N == 0)
502          // Unhandled operand. Halt "fast" selection and bail.
503          return false;
504        NIsKill = true;
505        TotalOffs = 0;
506      }
507
508      // N = N + Idx * ElementSize;
509      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
510      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
511      unsigned IdxN = Pair.first;
512      bool IdxNIsKill = Pair.second;
513      if (IdxN == 0)
514        // Unhandled operand. Halt "fast" selection and bail.
515        return false;
516
517      if (ElementSize != 1) {
518        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
519        if (IdxN == 0)
520          // Unhandled operand. Halt "fast" selection and bail.
521          return false;
522        IdxNIsKill = true;
523      }
524      N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
525      if (N == 0)
526        // Unhandled operand. Halt "fast" selection and bail.
527        return false;
528    }
529  }
530  if (TotalOffs) {
531    N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
532    if (N == 0)
533      // Unhandled operand. Halt "fast" selection and bail.
534      return false;
535  }
536
537  // We successfully emitted code for the given LLVM Instruction.
538  UpdateValueMap(I, N);
539  return true;
540}
541
542bool FastISel::SelectCall(const User *I) {
543  const CallInst *Call = cast<CallInst>(I);
544
545  // Handle simple inline asms.
546  if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
547    // Don't attempt to handle constraints.
548    if (!IA->getConstraintString().empty())
549      return false;
550
551    unsigned ExtraInfo = 0;
552    if (IA->hasSideEffects())
553      ExtraInfo |= InlineAsm::Extra_HasSideEffects;
554    if (IA->isAlignStack())
555      ExtraInfo |= InlineAsm::Extra_IsAlignStack;
556
557    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
558            TII.get(TargetOpcode::INLINEASM))
559      .addExternalSymbol(IA->getAsmString().c_str())
560      .addImm(ExtraInfo);
561    return true;
562  }
563
564  const Function *F = Call->getCalledFunction();
565  if (!F) return false;
566
567  // Handle selected intrinsic function calls.
568  switch (F->getIntrinsicID()) {
569  default: break;
570  case Intrinsic::dbg_declare: {
571    const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
572    if (!DIVariable(DI->getVariable()).Verify() ||
573        !FuncInfo.MF->getMMI().hasDebugInfo())
574      return true;
575
576    const Value *Address = DI->getAddress();
577    if (!Address || isa<UndefValue>(Address) || isa<AllocaInst>(Address))
578      return true;
579
580    unsigned Reg = 0;
581    unsigned Offset = 0;
582    if (const Argument *Arg = dyn_cast<Argument>(Address)) {
583      // Some arguments' frame index is recorded during argument lowering.
584      Offset = FuncInfo.getArgumentFrameIndex(Arg);
585      if (Offset)
586	Reg = TRI.getFrameRegister(*FuncInfo.MF);
587    }
588    if (!Reg)
589      Reg = getRegForValue(Address);
590
591    if (Reg)
592      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
593              TII.get(TargetOpcode::DBG_VALUE))
594        .addReg(Reg, RegState::Debug).addImm(Offset)
595        .addMetadata(DI->getVariable());
596    return true;
597  }
598  case Intrinsic::dbg_value: {
599    // This form of DBG_VALUE is target-independent.
600    const DbgValueInst *DI = cast<DbgValueInst>(Call);
601    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
602    const Value *V = DI->getValue();
603    if (!V) {
604      // Currently the optimizer can produce this; insert an undef to
605      // help debugging.  Probably the optimizer should not do this.
606      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
607        .addReg(0U).addImm(DI->getOffset())
608        .addMetadata(DI->getVariable());
609    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
610      if (CI->getBitWidth() > 64)
611        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
612          .addCImm(CI).addImm(DI->getOffset())
613          .addMetadata(DI->getVariable());
614      else
615        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
616          .addImm(CI->getZExtValue()).addImm(DI->getOffset())
617          .addMetadata(DI->getVariable());
618    } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
619      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
620        .addFPImm(CF).addImm(DI->getOffset())
621        .addMetadata(DI->getVariable());
622    } else if (unsigned Reg = lookUpRegForValue(V)) {
623      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
624        .addReg(Reg, RegState::Debug).addImm(DI->getOffset())
625        .addMetadata(DI->getVariable());
626    } else {
627      // We can't yet handle anything else here because it would require
628      // generating code, thus altering codegen because of debug info.
629      DEBUG(dbgs() << "Dropping debug info for " << DI);
630    }
631    return true;
632  }
633  case Intrinsic::eh_exception: {
634    EVT VT = TLI.getValueType(Call->getType());
635    if (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)!=TargetLowering::Expand)
636      break;
637
638    assert(FuncInfo.MBB->isLandingPad() &&
639           "Call to eh.exception not in landing pad!");
640    unsigned Reg = TLI.getExceptionAddressRegister();
641    const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
642    unsigned ResultReg = createResultReg(RC);
643    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
644            ResultReg).addReg(Reg);
645    UpdateValueMap(Call, ResultReg);
646    return true;
647  }
648  case Intrinsic::eh_selector: {
649    EVT VT = TLI.getValueType(Call->getType());
650    if (TLI.getOperationAction(ISD::EHSELECTION, VT) != TargetLowering::Expand)
651      break;
652    if (FuncInfo.MBB->isLandingPad())
653      AddCatchInfo(*Call, &FuncInfo.MF->getMMI(), FuncInfo.MBB);
654    else {
655#ifndef NDEBUG
656      FuncInfo.CatchInfoLost.insert(Call);
657#endif
658      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
659      unsigned Reg = TLI.getExceptionSelectorRegister();
660      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
661    }
662
663    unsigned Reg = TLI.getExceptionSelectorRegister();
664    EVT SrcVT = TLI.getPointerTy();
665    const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
666    unsigned ResultReg = createResultReg(RC);
667    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
668            ResultReg).addReg(Reg);
669
670    bool ResultRegIsKill = hasTrivialKill(Call);
671
672    // Cast the register to the type of the selector.
673    if (SrcVT.bitsGT(MVT::i32))
674      ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
675                             ResultReg, ResultRegIsKill);
676    else if (SrcVT.bitsLT(MVT::i32))
677      ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
678                             ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill);
679    if (ResultReg == 0)
680      // Unhandled operand. Halt "fast" selection and bail.
681      return false;
682
683    UpdateValueMap(Call, ResultReg);
684
685    return true;
686  }
687  case Intrinsic::objectsize: {
688    ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
689    unsigned long long Res = CI->isZero() ? -1ULL : 0;
690    Constant *ResCI = ConstantInt::get(Call->getType(), Res);
691    unsigned ResultReg = getRegForValue(ResCI);
692    if (ResultReg == 0)
693      return false;
694    UpdateValueMap(Call, ResultReg);
695    return true;
696  }
697  }
698
699  // Usually, it does not make sense to initialize a value,
700  // make an unrelated function call and use the value, because
701  // it tends to be spilled on the stack. So, we move the pointer
702  // to the last local value to the beginning of the block, so that
703  // all the values which have already been materialized,
704  // appear after the call. It also makes sense to skip intrinsics
705  // since they tend to be inlined.
706  if (!isa<IntrinsicInst>(F))
707    flushLocalValueMap();
708
709  // An arbitrary call. Bail.
710  return false;
711}
712
713bool FastISel::SelectCast(const User *I, unsigned Opcode) {
714  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
715  EVT DstVT = TLI.getValueType(I->getType());
716
717  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
718      DstVT == MVT::Other || !DstVT.isSimple())
719    // Unhandled type. Halt "fast" selection and bail.
720    return false;
721
722  // Check if the destination type is legal.
723  if (!TLI.isTypeLegal(DstVT))
724    return false;
725
726  // Check if the source operand is legal.
727  if (!TLI.isTypeLegal(SrcVT))
728    return false;
729
730  unsigned InputReg = getRegForValue(I->getOperand(0));
731  if (!InputReg)
732    // Unhandled operand.  Halt "fast" selection and bail.
733    return false;
734
735  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
736
737  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
738                                  DstVT.getSimpleVT(),
739                                  Opcode,
740                                  InputReg, InputRegIsKill);
741  if (!ResultReg)
742    return false;
743
744  UpdateValueMap(I, ResultReg);
745  return true;
746}
747
748bool FastISel::SelectBitCast(const User *I) {
749  // If the bitcast doesn't change the type, just use the operand value.
750  if (I->getType() == I->getOperand(0)->getType()) {
751    unsigned Reg = getRegForValue(I->getOperand(0));
752    if (Reg == 0)
753      return false;
754    UpdateValueMap(I, Reg);
755    return true;
756  }
757
758  // Bitcasts of other values become reg-reg copies or BITCAST operators.
759  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
760  EVT DstVT = TLI.getValueType(I->getType());
761
762  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
763      DstVT == MVT::Other || !DstVT.isSimple() ||
764      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
765    // Unhandled type. Halt "fast" selection and bail.
766    return false;
767
768  unsigned Op0 = getRegForValue(I->getOperand(0));
769  if (Op0 == 0)
770    // Unhandled operand. Halt "fast" selection and bail.
771    return false;
772
773  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
774
775  // First, try to perform the bitcast by inserting a reg-reg copy.
776  unsigned ResultReg = 0;
777  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
778    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
779    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
780    // Don't attempt a cross-class copy. It will likely fail.
781    if (SrcClass == DstClass) {
782      ResultReg = createResultReg(DstClass);
783      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
784              ResultReg).addReg(Op0);
785    }
786  }
787
788  // If the reg-reg copy failed, select a BITCAST opcode.
789  if (!ResultReg)
790    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
791                           ISD::BITCAST, Op0, Op0IsKill);
792
793  if (!ResultReg)
794    return false;
795
796  UpdateValueMap(I, ResultReg);
797  return true;
798}
799
800bool
801FastISel::SelectInstruction(const Instruction *I) {
802  // Just before the terminator instruction, insert instructions to
803  // feed PHI nodes in successor blocks.
804  if (isa<TerminatorInst>(I))
805    if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
806      return false;
807
808  DL = I->getDebugLoc();
809
810  MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt;
811
812  // First, try doing target-independent selection.
813  if (SelectOperator(I, I->getOpcode())) {
814    ++NumFastIselSuccessIndependent;
815    DL = DebugLoc();
816    return true;
817  }
818  // Remove dead code.  However, ignore call instructions since we've flushed
819  // the local value map and recomputed the insert point.
820  if (!isa<CallInst>(I)) {
821    recomputeInsertPt();
822    if (SavedInsertPt != FuncInfo.InsertPt)
823      removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
824  }
825
826  // Next, try calling the target to attempt to handle the instruction.
827  SavedInsertPt = FuncInfo.InsertPt;
828  if (TargetSelectInstruction(I)) {
829    ++NumFastIselSuccessTarget;
830    DL = DebugLoc();
831    return true;
832  }
833  // Check for dead code and remove as necessary.
834  recomputeInsertPt();
835  if (SavedInsertPt != FuncInfo.InsertPt)
836    removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
837
838  DL = DebugLoc();
839  return false;
840}
841
842/// FastEmitBranch - Emit an unconditional branch to the given block,
843/// unless it is the immediate (fall-through) successor, and update
844/// the CFG.
845void
846FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
847  if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
848    // The unconditional fall-through case, which needs no instructions.
849  } else {
850    // The unconditional branch case.
851    TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
852                     SmallVector<MachineOperand, 0>(), DL);
853  }
854  FuncInfo.MBB->addSuccessor(MSucc);
855}
856
857/// SelectFNeg - Emit an FNeg operation.
858///
859bool
860FastISel::SelectFNeg(const User *I) {
861  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
862  if (OpReg == 0) return false;
863
864  bool OpRegIsKill = hasTrivialKill(I);
865
866  // If the target has ISD::FNEG, use it.
867  EVT VT = TLI.getValueType(I->getType());
868  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
869                                  ISD::FNEG, OpReg, OpRegIsKill);
870  if (ResultReg != 0) {
871    UpdateValueMap(I, ResultReg);
872    return true;
873  }
874
875  // Bitcast the value to integer, twiddle the sign bit with xor,
876  // and then bitcast it back to floating-point.
877  if (VT.getSizeInBits() > 64) return false;
878  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
879  if (!TLI.isTypeLegal(IntVT))
880    return false;
881
882  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
883                               ISD::BITCAST, OpReg, OpRegIsKill);
884  if (IntReg == 0)
885    return false;
886
887  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
888                                       IntReg, /*Kill=*/true,
889                                       UINT64_C(1) << (VT.getSizeInBits()-1),
890                                       IntVT.getSimpleVT());
891  if (IntResultReg == 0)
892    return false;
893
894  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
895                         ISD::BITCAST, IntResultReg, /*Kill=*/true);
896  if (ResultReg == 0)
897    return false;
898
899  UpdateValueMap(I, ResultReg);
900  return true;
901}
902
903bool
904FastISel::SelectExtractValue(const User *U) {
905  const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
906  if (!EVI)
907    return false;
908
909  // Make sure we only try to handle extracts with a legal result.  But also
910  // allow i1 because it's easy.
911  EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
912  if (!RealVT.isSimple())
913    return false;
914  MVT VT = RealVT.getSimpleVT();
915  if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
916    return false;
917
918  const Value *Op0 = EVI->getOperand(0);
919  Type *AggTy = Op0->getType();
920
921  // Get the base result register.
922  unsigned ResultReg;
923  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
924  if (I != FuncInfo.ValueMap.end())
925    ResultReg = I->second;
926  else if (isa<Instruction>(Op0))
927    ResultReg = FuncInfo.InitializeRegForValue(Op0);
928  else
929    return false; // fast-isel can't handle aggregate constants at the moment
930
931  // Get the actual result register, which is an offset from the base register.
932  unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
933
934  SmallVector<EVT, 4> AggValueVTs;
935  ComputeValueVTs(TLI, AggTy, AggValueVTs);
936
937  for (unsigned i = 0; i < VTIndex; i++)
938    ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
939
940  UpdateValueMap(EVI, ResultReg);
941  return true;
942}
943
944bool
945FastISel::SelectInsertValue(const User *U) {
946  const InsertValueInst *IVI = dyn_cast<InsertValueInst>(U);
947  if (!IVI)
948    return false;
949
950  // Only try to handle inserts of legal types.  But also allow i16/i8/i1 because
951  // they're easy.
952  const Value *Val = IVI->getOperand(1);
953  Type *ValTy = Val->getType();
954  EVT ValVT = TLI.getValueType(ValTy, /*AllowUnknown=*/true);
955  if (!ValVT.isSimple())
956    return false;
957  MVT VT = ValVT.getSimpleVT();
958  if (!TLI.isTypeLegal(VT) && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
959    return false;
960
961  // Get the Val register.
962  unsigned ValReg = getRegForValue(Val);
963  if (ValReg == 0) return false;
964
965  const Value *Agg = IVI->getOperand(0);
966  Type *AggTy = Agg->getType();
967
968  // TODO: Is there a better way to do this?  For each insertvalue we allocate
969  // a new set of virtual registers, which results in a large number of
970  // loads/stores from/to the stack that copies the aggregate all over the place
971  // and results in lots of spill code.  I believe this is necessary to preserve
972  // SSA form, but maybe there's something we could do to improve this.
973
974  // Get the Aggregate base register.
975  unsigned AggBaseReg;
976  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Agg);
977  if (I != FuncInfo.ValueMap.end())
978    AggBaseReg = I->second;
979  else if (isa<Instruction>(Agg))
980    AggBaseReg = FuncInfo.InitializeRegForValue(Agg);
981  else if (isa<UndefValue>(Agg))
982    // In this case we don't need to allocate a new set of register that will
983    // never be defined.  Just copy Val into the proper result registers.
984    AggBaseReg = 0;
985  else
986    return false; // fast-isel can't handle aggregate constants at the moment
987
988  // Create result register(s).
989  unsigned ResultBaseReg = FuncInfo.CreateRegs(AggTy);
990
991  // Get the actual result register, which is an offset from the base register.
992  unsigned LinearIndex = ComputeLinearIndex(Agg->getType(), IVI->getIndices());
993
994  SmallVector<EVT, 4> AggValueVTs;
995  ComputeValueVTs(TLI, AggTy, AggValueVTs);
996
997  // Copy the beginning value(s) from the original aggregate.
998  unsigned SrcReg;
999  unsigned DestReg;
1000  unsigned BaseRegOff = 0;
1001  unsigned i = 0;
1002  for (; i != LinearIndex; ++i) {
1003    unsigned NRE = TLI.getNumRegisters(FuncInfo.Fn->getContext(),
1004                                       AggValueVTs[i]);
1005    for (unsigned NRI = 0; NRI != NRE; NRI++) {
1006      if (AggBaseReg) {
1007        SrcReg = AggBaseReg + BaseRegOff + NRI;
1008        DestReg = ResultBaseReg + BaseRegOff + NRI;
1009        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1010                DestReg).addReg(SrcReg);
1011      }
1012    }
1013    BaseRegOff += NRE;
1014  }
1015
1016  // FIXME: Handle aggregate inserts.  Haven't seen these in practice, but..
1017  // Copy value(s) from the inserted value(s).
1018  DestReg = ResultBaseReg + BaseRegOff;
1019  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1020          DestReg).addReg(ValReg);
1021  ++BaseRegOff;
1022  ++i;
1023
1024  // Copy remaining value(s) from the original aggregate.
1025  if (AggBaseReg) {
1026    for (unsigned NumAggValues = AggValueVTs.size(); i != NumAggValues; ++i) {
1027      unsigned NRE = TLI.getNumRegisters(FuncInfo.Fn->getContext(),
1028                                         AggValueVTs[i]);
1029      for (unsigned NRI = 0; NRI != NRE; NRI++) {
1030        SrcReg = AggBaseReg + BaseRegOff + NRI;
1031        DestReg = ResultBaseReg + BaseRegOff + NRI;
1032        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1033                DestReg).addReg(SrcReg);
1034
1035      }
1036      BaseRegOff += NRE;
1037    }
1038  }
1039  UpdateValueMap(IVI, ResultBaseReg);
1040  return true;
1041}
1042
1043bool
1044FastISel::SelectOperator(const User *I, unsigned Opcode) {
1045  switch (Opcode) {
1046  case Instruction::Add:
1047    return SelectBinaryOp(I, ISD::ADD);
1048  case Instruction::FAdd:
1049    return SelectBinaryOp(I, ISD::FADD);
1050  case Instruction::Sub:
1051    return SelectBinaryOp(I, ISD::SUB);
1052  case Instruction::FSub:
1053    // FNeg is currently represented in LLVM IR as a special case of FSub.
1054    if (BinaryOperator::isFNeg(I))
1055      return SelectFNeg(I);
1056    return SelectBinaryOp(I, ISD::FSUB);
1057  case Instruction::Mul:
1058    return SelectBinaryOp(I, ISD::MUL);
1059  case Instruction::FMul:
1060    return SelectBinaryOp(I, ISD::FMUL);
1061  case Instruction::SDiv:
1062    return SelectBinaryOp(I, ISD::SDIV);
1063  case Instruction::UDiv:
1064    return SelectBinaryOp(I, ISD::UDIV);
1065  case Instruction::FDiv:
1066    return SelectBinaryOp(I, ISD::FDIV);
1067  case Instruction::SRem:
1068    return SelectBinaryOp(I, ISD::SREM);
1069  case Instruction::URem:
1070    return SelectBinaryOp(I, ISD::UREM);
1071  case Instruction::FRem:
1072    return SelectBinaryOp(I, ISD::FREM);
1073  case Instruction::Shl:
1074    return SelectBinaryOp(I, ISD::SHL);
1075  case Instruction::LShr:
1076    return SelectBinaryOp(I, ISD::SRL);
1077  case Instruction::AShr:
1078    return SelectBinaryOp(I, ISD::SRA);
1079  case Instruction::And:
1080    return SelectBinaryOp(I, ISD::AND);
1081  case Instruction::Or:
1082    return SelectBinaryOp(I, ISD::OR);
1083  case Instruction::Xor:
1084    return SelectBinaryOp(I, ISD::XOR);
1085
1086  case Instruction::GetElementPtr:
1087    return SelectGetElementPtr(I);
1088
1089  case Instruction::Br: {
1090    const BranchInst *BI = cast<BranchInst>(I);
1091
1092    if (BI->isUnconditional()) {
1093      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
1094      MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
1095      FastEmitBranch(MSucc, BI->getDebugLoc());
1096      return true;
1097    }
1098
1099    // Conditional branches are not handed yet.
1100    // Halt "fast" selection and bail.
1101    return false;
1102  }
1103
1104  case Instruction::Unreachable:
1105    // Nothing to emit.
1106    return true;
1107
1108  case Instruction::Alloca:
1109    // FunctionLowering has the static-sized case covered.
1110    if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
1111      return true;
1112
1113    // Dynamic-sized alloca is not handled yet.
1114    return false;
1115
1116  case Instruction::Call:
1117    return SelectCall(I);
1118
1119  case Instruction::BitCast:
1120    return SelectBitCast(I);
1121
1122  case Instruction::FPToSI:
1123    return SelectCast(I, ISD::FP_TO_SINT);
1124  case Instruction::ZExt:
1125    return SelectCast(I, ISD::ZERO_EXTEND);
1126  case Instruction::SExt:
1127    return SelectCast(I, ISD::SIGN_EXTEND);
1128  case Instruction::Trunc:
1129    return SelectCast(I, ISD::TRUNCATE);
1130  case Instruction::SIToFP:
1131    return SelectCast(I, ISD::SINT_TO_FP);
1132
1133  case Instruction::IntToPtr: // Deliberate fall-through.
1134  case Instruction::PtrToInt: {
1135    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
1136    EVT DstVT = TLI.getValueType(I->getType());
1137    if (DstVT.bitsGT(SrcVT))
1138      return SelectCast(I, ISD::ZERO_EXTEND);
1139    if (DstVT.bitsLT(SrcVT))
1140      return SelectCast(I, ISD::TRUNCATE);
1141    unsigned Reg = getRegForValue(I->getOperand(0));
1142    if (Reg == 0) return false;
1143    UpdateValueMap(I, Reg);
1144    return true;
1145  }
1146
1147  case Instruction::ExtractValue:
1148    return SelectExtractValue(I);
1149
1150  case Instruction::InsertValue:
1151    return SelectInsertValue(I);
1152
1153  case Instruction::PHI:
1154    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1155
1156  default:
1157    // Unhandled instruction. Halt "fast" selection and bail.
1158    return false;
1159  }
1160}
1161
1162FastISel::FastISel(FunctionLoweringInfo &funcInfo)
1163  : FuncInfo(funcInfo),
1164    MRI(FuncInfo.MF->getRegInfo()),
1165    MFI(*FuncInfo.MF->getFrameInfo()),
1166    MCP(*FuncInfo.MF->getConstantPool()),
1167    TM(FuncInfo.MF->getTarget()),
1168    TD(*TM.getTargetData()),
1169    TII(*TM.getInstrInfo()),
1170    TLI(*TM.getTargetLowering()),
1171    TRI(*TM.getRegisterInfo()) {
1172}
1173
1174FastISel::~FastISel() {}
1175
1176unsigned FastISel::FastEmit_(MVT, MVT,
1177                             unsigned) {
1178  return 0;
1179}
1180
1181unsigned FastISel::FastEmit_r(MVT, MVT,
1182                              unsigned,
1183                              unsigned /*Op0*/, bool /*Op0IsKill*/) {
1184  return 0;
1185}
1186
1187unsigned FastISel::FastEmit_rr(MVT, MVT,
1188                               unsigned,
1189                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1190                               unsigned /*Op1*/, bool /*Op1IsKill*/) {
1191  return 0;
1192}
1193
1194unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1195  return 0;
1196}
1197
1198unsigned FastISel::FastEmit_f(MVT, MVT,
1199                              unsigned, const ConstantFP * /*FPImm*/) {
1200  return 0;
1201}
1202
1203unsigned FastISel::FastEmit_ri(MVT, MVT,
1204                               unsigned,
1205                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1206                               uint64_t /*Imm*/) {
1207  return 0;
1208}
1209
1210unsigned FastISel::FastEmit_rf(MVT, MVT,
1211                               unsigned,
1212                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1213                               const ConstantFP * /*FPImm*/) {
1214  return 0;
1215}
1216
1217unsigned FastISel::FastEmit_rri(MVT, MVT,
1218                                unsigned,
1219                                unsigned /*Op0*/, bool /*Op0IsKill*/,
1220                                unsigned /*Op1*/, bool /*Op1IsKill*/,
1221                                uint64_t /*Imm*/) {
1222  return 0;
1223}
1224
1225/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
1226/// to emit an instruction with an immediate operand using FastEmit_ri.
1227/// If that fails, it materializes the immediate into a register and try
1228/// FastEmit_rr instead.
1229unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
1230                                unsigned Op0, bool Op0IsKill,
1231                                uint64_t Imm, MVT ImmType) {
1232  // If this is a multiply by a power of two, emit this as a shift left.
1233  if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1234    Opcode = ISD::SHL;
1235    Imm = Log2_64(Imm);
1236  } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1237    // div x, 8 -> srl x, 3
1238    Opcode = ISD::SRL;
1239    Imm = Log2_64(Imm);
1240  }
1241
1242  // Horrible hack (to be removed), check to make sure shift amounts are
1243  // in-range.
1244  if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1245      Imm >= VT.getSizeInBits())
1246    return 0;
1247
1248  // First check if immediate type is legal. If not, we can't use the ri form.
1249  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1250  if (ResultReg != 0)
1251    return ResultReg;
1252  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1253  if (MaterialReg == 0) {
1254    // This is a bit ugly/slow, but failing here means falling out of
1255    // fast-isel, which would be very slow.
1256    IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
1257                                              VT.getSizeInBits());
1258    MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1259  }
1260  return FastEmit_rr(VT, VT, Opcode,
1261                     Op0, Op0IsKill,
1262                     MaterialReg, /*Kill=*/true);
1263}
1264
1265unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
1266  return MRI.createVirtualRegister(RC);
1267}
1268
1269unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1270                                 const TargetRegisterClass* RC) {
1271  unsigned ResultReg = createResultReg(RC);
1272  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1273
1274  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
1275  return ResultReg;
1276}
1277
1278unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1279                                  const TargetRegisterClass *RC,
1280                                  unsigned Op0, bool Op0IsKill) {
1281  unsigned ResultReg = createResultReg(RC);
1282  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1283
1284  if (II.getNumDefs() >= 1)
1285    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1286      .addReg(Op0, Op0IsKill * RegState::Kill);
1287  else {
1288    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1289      .addReg(Op0, Op0IsKill * RegState::Kill);
1290    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1291            ResultReg).addReg(II.ImplicitDefs[0]);
1292  }
1293
1294  return ResultReg;
1295}
1296
1297unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1298                                   const TargetRegisterClass *RC,
1299                                   unsigned Op0, bool Op0IsKill,
1300                                   unsigned Op1, bool Op1IsKill) {
1301  unsigned ResultReg = createResultReg(RC);
1302  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1303
1304  if (II.getNumDefs() >= 1)
1305    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1306      .addReg(Op0, Op0IsKill * RegState::Kill)
1307      .addReg(Op1, Op1IsKill * RegState::Kill);
1308  else {
1309    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1310      .addReg(Op0, Op0IsKill * RegState::Kill)
1311      .addReg(Op1, Op1IsKill * RegState::Kill);
1312    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1313            ResultReg).addReg(II.ImplicitDefs[0]);
1314  }
1315  return ResultReg;
1316}
1317
1318unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
1319                                   const TargetRegisterClass *RC,
1320                                   unsigned Op0, bool Op0IsKill,
1321                                   unsigned Op1, bool Op1IsKill,
1322                                   unsigned Op2, bool Op2IsKill) {
1323  unsigned ResultReg = createResultReg(RC);
1324  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1325
1326  if (II.getNumDefs() >= 1)
1327    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1328      .addReg(Op0, Op0IsKill * RegState::Kill)
1329      .addReg(Op1, Op1IsKill * RegState::Kill)
1330      .addReg(Op2, Op2IsKill * RegState::Kill);
1331  else {
1332    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1333      .addReg(Op0, Op0IsKill * RegState::Kill)
1334      .addReg(Op1, Op1IsKill * RegState::Kill)
1335      .addReg(Op2, Op2IsKill * RegState::Kill);
1336    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1337            ResultReg).addReg(II.ImplicitDefs[0]);
1338  }
1339  return ResultReg;
1340}
1341
1342unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1343                                   const TargetRegisterClass *RC,
1344                                   unsigned Op0, bool Op0IsKill,
1345                                   uint64_t Imm) {
1346  unsigned ResultReg = createResultReg(RC);
1347  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1348
1349  if (II.getNumDefs() >= 1)
1350    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1351      .addReg(Op0, Op0IsKill * RegState::Kill)
1352      .addImm(Imm);
1353  else {
1354    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1355      .addReg(Op0, Op0IsKill * RegState::Kill)
1356      .addImm(Imm);
1357    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1358            ResultReg).addReg(II.ImplicitDefs[0]);
1359  }
1360  return ResultReg;
1361}
1362
1363unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
1364                                   const TargetRegisterClass *RC,
1365                                   unsigned Op0, bool Op0IsKill,
1366                                   uint64_t Imm1, uint64_t Imm2) {
1367  unsigned ResultReg = createResultReg(RC);
1368  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1369
1370  if (II.getNumDefs() >= 1)
1371    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1372      .addReg(Op0, Op0IsKill * RegState::Kill)
1373      .addImm(Imm1)
1374      .addImm(Imm2);
1375  else {
1376    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1377      .addReg(Op0, Op0IsKill * RegState::Kill)
1378      .addImm(Imm1)
1379      .addImm(Imm2);
1380    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1381            ResultReg).addReg(II.ImplicitDefs[0]);
1382  }
1383  return ResultReg;
1384}
1385
1386unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1387                                   const TargetRegisterClass *RC,
1388                                   unsigned Op0, bool Op0IsKill,
1389                                   const ConstantFP *FPImm) {
1390  unsigned ResultReg = createResultReg(RC);
1391  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1392
1393  if (II.getNumDefs() >= 1)
1394    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1395      .addReg(Op0, Op0IsKill * RegState::Kill)
1396      .addFPImm(FPImm);
1397  else {
1398    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1399      .addReg(Op0, Op0IsKill * RegState::Kill)
1400      .addFPImm(FPImm);
1401    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1402            ResultReg).addReg(II.ImplicitDefs[0]);
1403  }
1404  return ResultReg;
1405}
1406
1407unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1408                                    const TargetRegisterClass *RC,
1409                                    unsigned Op0, bool Op0IsKill,
1410                                    unsigned Op1, bool Op1IsKill,
1411                                    uint64_t Imm) {
1412  unsigned ResultReg = createResultReg(RC);
1413  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1414
1415  if (II.getNumDefs() >= 1)
1416    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1417      .addReg(Op0, Op0IsKill * RegState::Kill)
1418      .addReg(Op1, Op1IsKill * RegState::Kill)
1419      .addImm(Imm);
1420  else {
1421    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1422      .addReg(Op0, Op0IsKill * RegState::Kill)
1423      .addReg(Op1, Op1IsKill * RegState::Kill)
1424      .addImm(Imm);
1425    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1426            ResultReg).addReg(II.ImplicitDefs[0]);
1427  }
1428  return ResultReg;
1429}
1430
1431unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1432                                  const TargetRegisterClass *RC,
1433                                  uint64_t Imm) {
1434  unsigned ResultReg = createResultReg(RC);
1435  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1436
1437  if (II.getNumDefs() >= 1)
1438    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
1439  else {
1440    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
1441    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1442            ResultReg).addReg(II.ImplicitDefs[0]);
1443  }
1444  return ResultReg;
1445}
1446
1447unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
1448                                  const TargetRegisterClass *RC,
1449                                  uint64_t Imm1, uint64_t Imm2) {
1450  unsigned ResultReg = createResultReg(RC);
1451  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1452
1453  if (II.getNumDefs() >= 1)
1454    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1455      .addImm(Imm1).addImm(Imm2);
1456  else {
1457    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
1458    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1459            ResultReg).addReg(II.ImplicitDefs[0]);
1460  }
1461  return ResultReg;
1462}
1463
1464unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1465                                              unsigned Op0, bool Op0IsKill,
1466                                              uint32_t Idx) {
1467  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1468  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1469         "Cannot yet extract from physregs");
1470  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1471          DL, TII.get(TargetOpcode::COPY), ResultReg)
1472    .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1473  return ResultReg;
1474}
1475
1476/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1477/// with all but the least significant bit set to zero.
1478unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1479  return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1480}
1481
1482/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1483/// Emit code to ensure constants are copied into registers when needed.
1484/// Remember the virtual registers that need to be added to the Machine PHI
1485/// nodes as input.  We cannot just directly add them, because expansion
1486/// might result in multiple MBB's for one BB.  As such, the start of the
1487/// BB might correspond to a different MBB than the end.
1488bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1489  const TerminatorInst *TI = LLVMBB->getTerminator();
1490
1491  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1492  unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1493
1494  // Check successor nodes' PHI nodes that expect a constant to be available
1495  // from this block.
1496  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1497    const BasicBlock *SuccBB = TI->getSuccessor(succ);
1498    if (!isa<PHINode>(SuccBB->begin())) continue;
1499    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1500
1501    // If this terminator has multiple identical successors (common for
1502    // switches), only handle each succ once.
1503    if (!SuccsHandled.insert(SuccMBB)) continue;
1504
1505    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1506
1507    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1508    // nodes and Machine PHI nodes, but the incoming operands have not been
1509    // emitted yet.
1510    for (BasicBlock::const_iterator I = SuccBB->begin();
1511         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1512
1513      // Ignore dead phi's.
1514      if (PN->use_empty()) continue;
1515
1516      // Only handle legal types. Two interesting things to note here. First,
1517      // by bailing out early, we may leave behind some dead instructions,
1518      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1519      // own moves. Second, this check is necessary because FastISel doesn't
1520      // use CreateRegs to create registers, so it always creates
1521      // exactly one register for each non-void instruction.
1522      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1523      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1524        // Promote MVT::i1.
1525        if (VT == MVT::i1)
1526          VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1527        else {
1528          FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1529          return false;
1530        }
1531      }
1532
1533      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1534
1535      // Set the DebugLoc for the copy. Prefer the location of the operand
1536      // if there is one; use the location of the PHI otherwise.
1537      DL = PN->getDebugLoc();
1538      if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1539        DL = Inst->getDebugLoc();
1540
1541      unsigned Reg = getRegForValue(PHIOp);
1542      if (Reg == 0) {
1543        FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1544        return false;
1545      }
1546      FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1547      DL = DebugLoc();
1548    }
1549  }
1550
1551  return true;
1552}
1553