FastISel.cpp revision be8cc2a3dedeb7685f07e68cdc4b9502eb97eb2b
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/DebugLoc.h"
51#include "llvm/CodeGen/DwarfWriter.h"
52#include "llvm/Analysis/DebugInfo.h"
53#include "llvm/Target/TargetData.h"
54#include "llvm/Target/TargetInstrInfo.h"
55#include "llvm/Target/TargetLowering.h"
56#include "llvm/Target/TargetMachine.h"
57#include "SelectionDAGBuild.h"
58using namespace llvm;
59
60unsigned FastISel::getRegForValue(Value *V) {
61  MVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
62  // Don't handle non-simple values in FastISel.
63  if (!RealVT.isSimple())
64    return 0;
65
66  // Ignore illegal types. We must do this before looking up the value
67  // in ValueMap because Arguments are given virtual registers regardless
68  // of whether FastISel can handle them.
69  MVT::SimpleValueType VT = RealVT.getSimpleVT();
70  if (!TLI.isTypeLegal(VT)) {
71    // Promote MVT::i1 to a legal type though, because it's common and easy.
72    if (VT == MVT::i1)
73      VT = TLI.getTypeToTransformTo(VT).getSimpleVT();
74    else
75      return 0;
76  }
77
78  // Look up the value to see if we already have a register for it. We
79  // cache values defined by Instructions across blocks, and other values
80  // only locally. This is because Instructions already have the SSA
81  // def-dominatess-use requirement enforced.
82  if (ValueMap.count(V))
83    return ValueMap[V];
84  unsigned Reg = LocalValueMap[V];
85  if (Reg != 0)
86    return Reg;
87
88  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
89    if (CI->getValue().getActiveBits() <= 64)
90      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
91  } else if (isa<AllocaInst>(V)) {
92    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
93  } else if (isa<ConstantPointerNull>(V)) {
94    // Translate this as an integer zero so that it can be
95    // local-CSE'd with actual integer zeros.
96    Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType()));
97  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
98    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
99
100    if (!Reg) {
101      const APFloat &Flt = CF->getValueAPF();
102      MVT IntVT = TLI.getPointerTy();
103
104      uint64_t x[2];
105      uint32_t IntBitWidth = IntVT.getSizeInBits();
106      bool isExact;
107      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
108                                APFloat::rmTowardZero, &isExact);
109      if (isExact) {
110        APInt IntVal(IntBitWidth, 2, x);
111
112        unsigned IntegerReg = getRegForValue(ConstantInt::get(IntVal));
113        if (IntegerReg != 0)
114          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
115      }
116    }
117  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
118    if (!SelectOperator(CE, CE->getOpcode())) return 0;
119    Reg = LocalValueMap[CE];
120  } else if (isa<UndefValue>(V)) {
121    Reg = createResultReg(TLI.getRegClassFor(VT));
122    BuildMI(MBB, DL, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
123  }
124
125  // If target-independent code couldn't handle the value, give target-specific
126  // code a try.
127  if (!Reg && isa<Constant>(V))
128    Reg = TargetMaterializeConstant(cast<Constant>(V));
129
130  // Don't cache constant materializations in the general ValueMap.
131  // To do so would require tracking what uses they dominate.
132  if (Reg != 0)
133    LocalValueMap[V] = Reg;
134  return Reg;
135}
136
137unsigned FastISel::lookUpRegForValue(Value *V) {
138  // Look up the value to see if we already have a register for it. We
139  // cache values defined by Instructions across blocks, and other values
140  // only locally. This is because Instructions already have the SSA
141  // def-dominatess-use requirement enforced.
142  if (ValueMap.count(V))
143    return ValueMap[V];
144  return LocalValueMap[V];
145}
146
147/// UpdateValueMap - Update the value map to include the new mapping for this
148/// instruction, or insert an extra copy to get the result in a previous
149/// determined register.
150/// NOTE: This is only necessary because we might select a block that uses
151/// a value before we select the block that defines the value.  It might be
152/// possible to fix this by selecting blocks in reverse postorder.
153unsigned FastISel::UpdateValueMap(Value* I, unsigned Reg) {
154  if (!isa<Instruction>(I)) {
155    LocalValueMap[I] = Reg;
156    return Reg;
157  }
158
159  unsigned &AssignedReg = ValueMap[I];
160  if (AssignedReg == 0)
161    AssignedReg = Reg;
162  else if (Reg != AssignedReg) {
163    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
164    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
165                     Reg, RegClass, RegClass);
166  }
167  return AssignedReg;
168}
169
170unsigned FastISel::getRegForGEPIndex(Value *Idx) {
171  unsigned IdxN = getRegForValue(Idx);
172  if (IdxN == 0)
173    // Unhandled operand. Halt "fast" selection and bail.
174    return 0;
175
176  // If the index is smaller or larger than intptr_t, truncate or extend it.
177  MVT PtrVT = TLI.getPointerTy();
178  MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
179  if (IdxVT.bitsLT(PtrVT))
180    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
181                      ISD::SIGN_EXTEND, IdxN);
182  else if (IdxVT.bitsGT(PtrVT))
183    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(),
184                      ISD::TRUNCATE, IdxN);
185  return IdxN;
186}
187
188/// SelectBinaryOp - Select and emit code for a binary operator instruction,
189/// which has an opcode which directly corresponds to the given ISD opcode.
190///
191bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
192  MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
193  if (VT == MVT::Other || !VT.isSimple())
194    // Unhandled type. Halt "fast" selection and bail.
195    return false;
196
197  // We only handle legal types. For example, on x86-32 the instruction
198  // selector contains all of the 64-bit instructions from x86-64,
199  // under the assumption that i64 won't be used if the target doesn't
200  // support it.
201  if (!TLI.isTypeLegal(VT)) {
202    // MVT::i1 is special. Allow AND, OR, or XOR because they
203    // don't require additional zeroing, which makes them easy.
204    if (VT == MVT::i1 &&
205        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
206         ISDOpcode == ISD::XOR))
207      VT = TLI.getTypeToTransformTo(VT);
208    else
209      return false;
210  }
211
212  unsigned Op0 = getRegForValue(I->getOperand(0));
213  if (Op0 == 0)
214    // Unhandled operand. Halt "fast" selection and bail.
215    return false;
216
217  // Check if the second operand is a constant and handle it appropriately.
218  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
219    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
220                                     ISDOpcode, Op0, CI->getZExtValue());
221    if (ResultReg != 0) {
222      // We successfully emitted code for the given LLVM Instruction.
223      UpdateValueMap(I, ResultReg);
224      return true;
225    }
226  }
227
228  // Check if the second operand is a constant float.
229  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
230    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
231                                     ISDOpcode, Op0, CF);
232    if (ResultReg != 0) {
233      // We successfully emitted code for the given LLVM Instruction.
234      UpdateValueMap(I, ResultReg);
235      return true;
236    }
237  }
238
239  unsigned Op1 = getRegForValue(I->getOperand(1));
240  if (Op1 == 0)
241    // Unhandled operand. Halt "fast" selection and bail.
242    return false;
243
244  // Now we have both operands in registers. Emit the instruction.
245  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
246                                   ISDOpcode, Op0, Op1);
247  if (ResultReg == 0)
248    // Target-specific code wasn't able to find a machine opcode for
249    // the given ISD opcode and type. Halt "fast" selection and bail.
250    return false;
251
252  // We successfully emitted code for the given LLVM Instruction.
253  UpdateValueMap(I, ResultReg);
254  return true;
255}
256
257bool FastISel::SelectGetElementPtr(User *I) {
258  unsigned N = getRegForValue(I->getOperand(0));
259  if (N == 0)
260    // Unhandled operand. Halt "fast" selection and bail.
261    return false;
262
263  const Type *Ty = I->getOperand(0)->getType();
264  MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
265  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
266       OI != E; ++OI) {
267    Value *Idx = *OI;
268    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
269      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
270      if (Field) {
271        // N = N + Offset
272        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
273        // FIXME: This can be optimized by combining the add with a
274        // subsequent one.
275        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
276        if (N == 0)
277          // Unhandled operand. Halt "fast" selection and bail.
278          return false;
279      }
280      Ty = StTy->getElementType(Field);
281    } else {
282      Ty = cast<SequentialType>(Ty)->getElementType();
283
284      // If this is a constant subscript, handle it quickly.
285      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
286        if (CI->getZExtValue() == 0) continue;
287        uint64_t Offs =
288          TD.getTypePaddedSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
289        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
290        if (N == 0)
291          // Unhandled operand. Halt "fast" selection and bail.
292          return false;
293        continue;
294      }
295
296      // N = N + Idx * ElementSize;
297      uint64_t ElementSize = TD.getTypePaddedSize(Ty);
298      unsigned IdxN = getRegForGEPIndex(Idx);
299      if (IdxN == 0)
300        // Unhandled operand. Halt "fast" selection and bail.
301        return false;
302
303      if (ElementSize != 1) {
304        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
305        if (IdxN == 0)
306          // Unhandled operand. Halt "fast" selection and bail.
307          return false;
308      }
309      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
310      if (N == 0)
311        // Unhandled operand. Halt "fast" selection and bail.
312        return false;
313    }
314  }
315
316  // We successfully emitted code for the given LLVM Instruction.
317  UpdateValueMap(I, N);
318  return true;
319}
320
321bool FastISel::SelectCall(User *I) {
322  Function *F = cast<CallInst>(I)->getCalledFunction();
323  if (!F) return false;
324
325  unsigned IID = F->getIntrinsicID();
326  switch (IID) {
327  default: break;
328  case Intrinsic::dbg_stoppoint: {
329    DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
330    if (DW && DW->ValidDebugInfo(SPI->getContext(), 0)) {
331      DICompileUnit CU(cast<GlobalVariable>(SPI->getContext()));
332      std::string Dir, FN;
333      unsigned SrcFile = DW->getOrCreateSourceID(CU.getDirectory(Dir),
334                                                 CU.getFilename(FN));
335      unsigned Line = SPI->getLine();
336      unsigned Col = SPI->getColumn();
337      unsigned ID = DW->RecordSourceLine(Line, Col, SrcFile);
338      unsigned Idx = MF.getOrCreateDebugLocID(SrcFile, Line, Col);
339      setCurDebugLoc(DebugLoc::get(Idx));
340      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
341      BuildMI(MBB, DL, II).addImm(ID);
342    }
343    return true;
344  }
345  case Intrinsic::dbg_region_start: {
346    DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
347    if (DW && DW->ValidDebugInfo(RSI->getContext(), 0)) {
348      unsigned ID =
349        DW->RecordRegionStart(cast<GlobalVariable>(RSI->getContext()));
350      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
351      BuildMI(MBB, DL, II).addImm(ID);
352    }
353    return true;
354  }
355  case Intrinsic::dbg_region_end: {
356    DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
357    if (DW && DW->ValidDebugInfo(REI->getContext(), 0)) {
358     unsigned ID = 0;
359     DISubprogram Subprogram(cast<GlobalVariable>(REI->getContext()));
360     if (!Subprogram.isNull() && !Subprogram.describes(MF.getFunction())) {
361        // This is end of an inlined function.
362        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
363        ID = DW->RecordInlinedFnEnd(Subprogram);
364        if (ID)
365          // Returned ID is 0 if this is unbalanced "end of inlined
366          // scope". This could happen if optimizer eats dbg intrinsics
367          // or "beginning of inlined scope" is not recoginized due to
368          // missing location info. In such cases, do ignore this region.end.
369          BuildMI(MBB, DL, II).addImm(ID);
370      } else {
371        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
372        ID =  DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext()));
373        BuildMI(MBB, DL, II).addImm(ID);
374      }
375    }
376    return true;
377  }
378  case Intrinsic::dbg_func_start: {
379    if (!DW) return true;
380    DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
381    Value *SP = FSI->getSubprogram();
382
383    if (DW->ValidDebugInfo(SP, 0)) {
384      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is what
385      // (most?) gdb expects.
386      DebugLoc PrevLoc = DL;
387      DISubprogram Subprogram(cast<GlobalVariable>(SP));
388      DICompileUnit CompileUnit = Subprogram.getCompileUnit();
389      std::string Dir, FN;
390      unsigned SrcFile = DW->getOrCreateSourceID(CompileUnit.getDirectory(Dir),
391                                                 CompileUnit.getFilename(FN));
392
393      if (!Subprogram.describes(MF.getFunction())) {
394        // This is a beginning of an inlined function.
395
396        // If llvm.dbg.func.start is seen in a new block before any
397        // llvm.dbg.stoppoint intrinsic then the location info is unknown.
398        // FIXME : Why DebugLoc is reset at the beginning of each block ?
399        if (PrevLoc.isUnknown())
400          return true;
401        // Record the source line.
402        unsigned Line = Subprogram.getLineNumber();
403        unsigned LabelID = DW->RecordSourceLine(Line, 0, SrcFile);
404        setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(SrcFile, Line, 0)));
405
406        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
407        BuildMI(MBB, DL, II).addImm(LabelID);
408        DebugLocTuple PrevLocTpl = MF.getDebugLocTuple(PrevLoc);
409        DW->RecordInlinedFnStart(FSI, Subprogram, LabelID,
410                                 PrevLocTpl.Src,
411                                 PrevLocTpl.Line,
412                                 PrevLocTpl.Col);
413      } else {
414        // Record the source line.
415        unsigned Line = Subprogram.getLineNumber();
416        setCurDebugLoc(DebugLoc::get(MF.getOrCreateDebugLocID(SrcFile, Line, 0)));
417        DW->RecordSourceLine(Line, 0, SrcFile);
418        // llvm.dbg.func_start also defines beginning of function scope.
419        DW->RecordRegionStart(cast<GlobalVariable>(FSI->getSubprogram()));
420      }
421    }
422
423    return true;
424  }
425  case Intrinsic::dbg_declare: {
426    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
427    Value *Variable = DI->getVariable();
428    if (DW && DW->ValidDebugInfo(Variable, 0)) {
429      // Determine the address of the declared object.
430      Value *Address = DI->getAddress();
431      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
432        Address = BCI->getOperand(0);
433      AllocaInst *AI = dyn_cast<AllocaInst>(Address);
434      // Don't handle byval struct arguments or VLAs, for example.
435      if (!AI) break;
436      DenseMap<const AllocaInst*, int>::iterator SI =
437        StaticAllocaMap.find(AI);
438      if (SI == StaticAllocaMap.end()) break; // VLAs.
439      int FI = SI->second;
440
441      // Determine the debug globalvariable.
442      GlobalValue *GV = cast<GlobalVariable>(Variable);
443
444      // Build the DECLARE instruction.
445      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
446      MachineInstr *DeclareMI
447        = BuildMI(MBB, DL, II).addFrameIndex(FI).addGlobalAddress(GV);
448      DIVariable DV(cast<GlobalVariable>(GV));
449      if (!DV.isNull()) {
450        // This is a local variable
451        DW->RecordVariableScope(DV, DeclareMI);
452      }
453    }
454    return true;
455  }
456  case Intrinsic::eh_exception: {
457    MVT VT = TLI.getValueType(I->getType());
458    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
459    default: break;
460    case TargetLowering::Expand: {
461      if (!MBB->isLandingPad()) {
462        // FIXME: Mark exception register as live in.  Hack for PR1508.
463        unsigned Reg = TLI.getExceptionAddressRegister();
464        if (Reg) MBB->addLiveIn(Reg);
465      }
466      unsigned Reg = TLI.getExceptionAddressRegister();
467      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
468      unsigned ResultReg = createResultReg(RC);
469      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
470                                           Reg, RC, RC);
471      assert(InsertedCopy && "Can't copy address registers!");
472      InsertedCopy = InsertedCopy;
473      UpdateValueMap(I, ResultReg);
474      return true;
475    }
476    }
477    break;
478  }
479  case Intrinsic::eh_selector_i32:
480  case Intrinsic::eh_selector_i64: {
481    MVT VT = TLI.getValueType(I->getType());
482    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
483    default: break;
484    case TargetLowering::Expand: {
485      MVT VT = (IID == Intrinsic::eh_selector_i32 ?
486                           MVT::i32 : MVT::i64);
487
488      if (MMI) {
489        if (MBB->isLandingPad())
490          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
491        else {
492#ifndef NDEBUG
493          CatchInfoLost.insert(cast<CallInst>(I));
494#endif
495          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
496          unsigned Reg = TLI.getExceptionSelectorRegister();
497          if (Reg) MBB->addLiveIn(Reg);
498        }
499
500        unsigned Reg = TLI.getExceptionSelectorRegister();
501        const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
502        unsigned ResultReg = createResultReg(RC);
503        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
504                                             Reg, RC, RC);
505        assert(InsertedCopy && "Can't copy address registers!");
506        InsertedCopy = InsertedCopy;
507        UpdateValueMap(I, ResultReg);
508      } else {
509        unsigned ResultReg =
510          getRegForValue(Constant::getNullValue(I->getType()));
511        UpdateValueMap(I, ResultReg);
512      }
513      return true;
514    }
515    }
516    break;
517  }
518  }
519  return false;
520}
521
522bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
523  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
524  MVT DstVT = TLI.getValueType(I->getType());
525
526  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
527      DstVT == MVT::Other || !DstVT.isSimple())
528    // Unhandled type. Halt "fast" selection and bail.
529    return false;
530
531  // Check if the destination type is legal. Or as a special case,
532  // it may be i1 if we're doing a truncate because that's
533  // easy and somewhat common.
534  if (!TLI.isTypeLegal(DstVT))
535    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
536      // Unhandled type. Halt "fast" selection and bail.
537      return false;
538
539  // Check if the source operand is legal. Or as a special case,
540  // it may be i1 if we're doing zero-extension because that's
541  // easy and somewhat common.
542  if (!TLI.isTypeLegal(SrcVT))
543    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
544      // Unhandled type. Halt "fast" selection and bail.
545      return false;
546
547  unsigned InputReg = getRegForValue(I->getOperand(0));
548  if (!InputReg)
549    // Unhandled operand.  Halt "fast" selection and bail.
550    return false;
551
552  // If the operand is i1, arrange for the high bits in the register to be zero.
553  if (SrcVT == MVT::i1) {
554   SrcVT = TLI.getTypeToTransformTo(SrcVT);
555   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
556   if (!InputReg)
557     return false;
558  }
559  // If the result is i1, truncate to the target's type for i1 first.
560  if (DstVT == MVT::i1)
561    DstVT = TLI.getTypeToTransformTo(DstVT);
562
563  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
564                                  DstVT.getSimpleVT(),
565                                  Opcode,
566                                  InputReg);
567  if (!ResultReg)
568    return false;
569
570  UpdateValueMap(I, ResultReg);
571  return true;
572}
573
574bool FastISel::SelectBitCast(User *I) {
575  // If the bitcast doesn't change the type, just use the operand value.
576  if (I->getType() == I->getOperand(0)->getType()) {
577    unsigned Reg = getRegForValue(I->getOperand(0));
578    if (Reg == 0)
579      return false;
580    UpdateValueMap(I, Reg);
581    return true;
582  }
583
584  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
585  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
586  MVT DstVT = TLI.getValueType(I->getType());
587
588  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
589      DstVT == MVT::Other || !DstVT.isSimple() ||
590      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
591    // Unhandled type. Halt "fast" selection and bail.
592    return false;
593
594  unsigned Op0 = getRegForValue(I->getOperand(0));
595  if (Op0 == 0)
596    // Unhandled operand. Halt "fast" selection and bail.
597    return false;
598
599  // First, try to perform the bitcast by inserting a reg-reg copy.
600  unsigned ResultReg = 0;
601  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
602    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
603    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
604    ResultReg = createResultReg(DstClass);
605
606    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
607                                         Op0, DstClass, SrcClass);
608    if (!InsertedCopy)
609      ResultReg = 0;
610  }
611
612  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
613  if (!ResultReg)
614    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
615                           ISD::BIT_CONVERT, Op0);
616
617  if (!ResultReg)
618    return false;
619
620  UpdateValueMap(I, ResultReg);
621  return true;
622}
623
624bool
625FastISel::SelectInstruction(Instruction *I) {
626  return SelectOperator(I, I->getOpcode());
627}
628
629/// FastEmitBranch - Emit an unconditional branch to the given block,
630/// unless it is the immediate (fall-through) successor, and update
631/// the CFG.
632void
633FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
634  MachineFunction::iterator NextMBB =
635     next(MachineFunction::iterator(MBB));
636
637  if (MBB->isLayoutSuccessor(MSucc)) {
638    // The unconditional fall-through case, which needs no instructions.
639  } else {
640    // The unconditional branch case.
641    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
642  }
643  MBB->addSuccessor(MSucc);
644}
645
646bool
647FastISel::SelectOperator(User *I, unsigned Opcode) {
648  switch (Opcode) {
649  case Instruction::Add: {
650    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD;
651    return SelectBinaryOp(I, Opc);
652  }
653  case Instruction::Sub: {
654    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB;
655    return SelectBinaryOp(I, Opc);
656  }
657  case Instruction::Mul: {
658    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL;
659    return SelectBinaryOp(I, Opc);
660  }
661  case Instruction::SDiv:
662    return SelectBinaryOp(I, ISD::SDIV);
663  case Instruction::UDiv:
664    return SelectBinaryOp(I, ISD::UDIV);
665  case Instruction::FDiv:
666    return SelectBinaryOp(I, ISD::FDIV);
667  case Instruction::SRem:
668    return SelectBinaryOp(I, ISD::SREM);
669  case Instruction::URem:
670    return SelectBinaryOp(I, ISD::UREM);
671  case Instruction::FRem:
672    return SelectBinaryOp(I, ISD::FREM);
673  case Instruction::Shl:
674    return SelectBinaryOp(I, ISD::SHL);
675  case Instruction::LShr:
676    return SelectBinaryOp(I, ISD::SRL);
677  case Instruction::AShr:
678    return SelectBinaryOp(I, ISD::SRA);
679  case Instruction::And:
680    return SelectBinaryOp(I, ISD::AND);
681  case Instruction::Or:
682    return SelectBinaryOp(I, ISD::OR);
683  case Instruction::Xor:
684    return SelectBinaryOp(I, ISD::XOR);
685
686  case Instruction::GetElementPtr:
687    return SelectGetElementPtr(I);
688
689  case Instruction::Br: {
690    BranchInst *BI = cast<BranchInst>(I);
691
692    if (BI->isUnconditional()) {
693      BasicBlock *LLVMSucc = BI->getSuccessor(0);
694      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
695      FastEmitBranch(MSucc);
696      return true;
697    }
698
699    // Conditional branches are not handed yet.
700    // Halt "fast" selection and bail.
701    return false;
702  }
703
704  case Instruction::Unreachable:
705    // Nothing to emit.
706    return true;
707
708  case Instruction::PHI:
709    // PHI nodes are already emitted.
710    return true;
711
712  case Instruction::Alloca:
713    // FunctionLowering has the static-sized case covered.
714    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
715      return true;
716
717    // Dynamic-sized alloca is not handled yet.
718    return false;
719
720  case Instruction::Call:
721    return SelectCall(I);
722
723  case Instruction::BitCast:
724    return SelectBitCast(I);
725
726  case Instruction::FPToSI:
727    return SelectCast(I, ISD::FP_TO_SINT);
728  case Instruction::ZExt:
729    return SelectCast(I, ISD::ZERO_EXTEND);
730  case Instruction::SExt:
731    return SelectCast(I, ISD::SIGN_EXTEND);
732  case Instruction::Trunc:
733    return SelectCast(I, ISD::TRUNCATE);
734  case Instruction::SIToFP:
735    return SelectCast(I, ISD::SINT_TO_FP);
736
737  case Instruction::IntToPtr: // Deliberate fall-through.
738  case Instruction::PtrToInt: {
739    MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
740    MVT DstVT = TLI.getValueType(I->getType());
741    if (DstVT.bitsGT(SrcVT))
742      return SelectCast(I, ISD::ZERO_EXTEND);
743    if (DstVT.bitsLT(SrcVT))
744      return SelectCast(I, ISD::TRUNCATE);
745    unsigned Reg = getRegForValue(I->getOperand(0));
746    if (Reg == 0) return false;
747    UpdateValueMap(I, Reg);
748    return true;
749  }
750
751  default:
752    // Unhandled instruction. Halt "fast" selection and bail.
753    return false;
754  }
755}
756
757FastISel::FastISel(MachineFunction &mf,
758                   MachineModuleInfo *mmi,
759                   DwarfWriter *dw,
760                   DenseMap<const Value *, unsigned> &vm,
761                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
762                   DenseMap<const AllocaInst *, int> &am
763#ifndef NDEBUG
764                   , SmallSet<Instruction*, 8> &cil
765#endif
766                   )
767  : MBB(0),
768    ValueMap(vm),
769    MBBMap(bm),
770    StaticAllocaMap(am),
771#ifndef NDEBUG
772    CatchInfoLost(cil),
773#endif
774    MF(mf),
775    MMI(mmi),
776    DW(dw),
777    MRI(MF.getRegInfo()),
778    MFI(*MF.getFrameInfo()),
779    MCP(*MF.getConstantPool()),
780    TM(MF.getTarget()),
781    TD(*TM.getTargetData()),
782    TII(*TM.getInstrInfo()),
783    TLI(*TM.getTargetLowering()) {
784}
785
786FastISel::~FastISel() {}
787
788unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
789                             ISD::NodeType) {
790  return 0;
791}
792
793unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
794                              ISD::NodeType, unsigned /*Op0*/) {
795  return 0;
796}
797
798unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
799                               ISD::NodeType, unsigned /*Op0*/,
800                               unsigned /*Op0*/) {
801  return 0;
802}
803
804unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
805                              ISD::NodeType, uint64_t /*Imm*/) {
806  return 0;
807}
808
809unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
810                              ISD::NodeType, ConstantFP * /*FPImm*/) {
811  return 0;
812}
813
814unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
815                               ISD::NodeType, unsigned /*Op0*/,
816                               uint64_t /*Imm*/) {
817  return 0;
818}
819
820unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
821                               ISD::NodeType, unsigned /*Op0*/,
822                               ConstantFP * /*FPImm*/) {
823  return 0;
824}
825
826unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
827                                ISD::NodeType,
828                                unsigned /*Op0*/, unsigned /*Op1*/,
829                                uint64_t /*Imm*/) {
830  return 0;
831}
832
833/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
834/// to emit an instruction with an immediate operand using FastEmit_ri.
835/// If that fails, it materializes the immediate into a register and try
836/// FastEmit_rr instead.
837unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
838                                unsigned Op0, uint64_t Imm,
839                                MVT::SimpleValueType ImmType) {
840  // First check if immediate type is legal. If not, we can't use the ri form.
841  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
842  if (ResultReg != 0)
843    return ResultReg;
844  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
845  if (MaterialReg == 0)
846    return 0;
847  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
848}
849
850/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
851/// to emit an instruction with a floating-point immediate operand using
852/// FastEmit_rf. If that fails, it materializes the immediate into a register
853/// and try FastEmit_rr instead.
854unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
855                                unsigned Op0, ConstantFP *FPImm,
856                                MVT::SimpleValueType ImmType) {
857  // First check if immediate type is legal. If not, we can't use the rf form.
858  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
859  if (ResultReg != 0)
860    return ResultReg;
861
862  // Materialize the constant in a register.
863  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
864  if (MaterialReg == 0) {
865    // If the target doesn't have a way to directly enter a floating-point
866    // value into a register, use an alternate approach.
867    // TODO: The current approach only supports floating-point constants
868    // that can be constructed by conversion from integer values. This should
869    // be replaced by code that creates a load from a constant-pool entry,
870    // which will require some target-specific work.
871    const APFloat &Flt = FPImm->getValueAPF();
872    MVT IntVT = TLI.getPointerTy();
873
874    uint64_t x[2];
875    uint32_t IntBitWidth = IntVT.getSizeInBits();
876    bool isExact;
877    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
878                             APFloat::rmTowardZero, &isExact);
879    if (!isExact)
880      return 0;
881    APInt IntVal(IntBitWidth, 2, x);
882
883    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
884                                     ISD::Constant, IntVal.getZExtValue());
885    if (IntegerReg == 0)
886      return 0;
887    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
888                             ISD::SINT_TO_FP, IntegerReg);
889    if (MaterialReg == 0)
890      return 0;
891  }
892  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
893}
894
895unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
896  return MRI.createVirtualRegister(RC);
897}
898
899unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
900                                 const TargetRegisterClass* RC) {
901  unsigned ResultReg = createResultReg(RC);
902  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
903
904  BuildMI(MBB, DL, II, ResultReg);
905  return ResultReg;
906}
907
908unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
909                                  const TargetRegisterClass *RC,
910                                  unsigned Op0) {
911  unsigned ResultReg = createResultReg(RC);
912  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
913
914  if (II.getNumDefs() >= 1)
915    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
916  else {
917    BuildMI(MBB, DL, II).addReg(Op0);
918    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
919                                         II.ImplicitDefs[0], RC, RC);
920    if (!InsertedCopy)
921      ResultReg = 0;
922  }
923
924  return ResultReg;
925}
926
927unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
928                                   const TargetRegisterClass *RC,
929                                   unsigned Op0, unsigned Op1) {
930  unsigned ResultReg = createResultReg(RC);
931  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
932
933  if (II.getNumDefs() >= 1)
934    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
935  else {
936    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
937    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
938                                         II.ImplicitDefs[0], RC, RC);
939    if (!InsertedCopy)
940      ResultReg = 0;
941  }
942  return ResultReg;
943}
944
945unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
946                                   const TargetRegisterClass *RC,
947                                   unsigned Op0, uint64_t Imm) {
948  unsigned ResultReg = createResultReg(RC);
949  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
950
951  if (II.getNumDefs() >= 1)
952    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
953  else {
954    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
955    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
956                                         II.ImplicitDefs[0], RC, RC);
957    if (!InsertedCopy)
958      ResultReg = 0;
959  }
960  return ResultReg;
961}
962
963unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
964                                   const TargetRegisterClass *RC,
965                                   unsigned Op0, ConstantFP *FPImm) {
966  unsigned ResultReg = createResultReg(RC);
967  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
968
969  if (II.getNumDefs() >= 1)
970    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
971  else {
972    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
973    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
974                                         II.ImplicitDefs[0], RC, RC);
975    if (!InsertedCopy)
976      ResultReg = 0;
977  }
978  return ResultReg;
979}
980
981unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
982                                    const TargetRegisterClass *RC,
983                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
984  unsigned ResultReg = createResultReg(RC);
985  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
986
987  if (II.getNumDefs() >= 1)
988    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
989  else {
990    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
991    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
992                                         II.ImplicitDefs[0], RC, RC);
993    if (!InsertedCopy)
994      ResultReg = 0;
995  }
996  return ResultReg;
997}
998
999unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1000                                  const TargetRegisterClass *RC,
1001                                  uint64_t Imm) {
1002  unsigned ResultReg = createResultReg(RC);
1003  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
1004
1005  if (II.getNumDefs() >= 1)
1006    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
1007  else {
1008    BuildMI(MBB, DL, II).addImm(Imm);
1009    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1010                                         II.ImplicitDefs[0], RC, RC);
1011    if (!InsertedCopy)
1012      ResultReg = 0;
1013  }
1014  return ResultReg;
1015}
1016
1017unsigned FastISel::FastEmitInst_extractsubreg(MVT::SimpleValueType RetVT,
1018                                              unsigned Op0, uint32_t Idx) {
1019  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
1020
1021  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1022  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
1023
1024  if (II.getNumDefs() >= 1)
1025    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
1026  else {
1027    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
1028    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1029                                         II.ImplicitDefs[0], RC, RC);
1030    if (!InsertedCopy)
1031      ResultReg = 0;
1032  }
1033  return ResultReg;
1034}
1035
1036/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1037/// with all but the least significant bit set to zero.
1038unsigned FastISel::FastEmitZExtFromI1(MVT::SimpleValueType VT, unsigned Op) {
1039  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
1040}
1041