FastISel.cpp revision ccaea7dc0bbc75e5d4ee92fb8cc6af0f928d056f
1//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#define DEBUG_TYPE "isel"
43#include "llvm/Function.h"
44#include "llvm/GlobalVariable.h"
45#include "llvm/Instructions.h"
46#include "llvm/IntrinsicInst.h"
47#include "llvm/Operator.h"
48#include "llvm/CodeGen/Analysis.h"
49#include "llvm/CodeGen/FastISel.h"
50#include "llvm/CodeGen/FunctionLoweringInfo.h"
51#include "llvm/CodeGen/MachineInstrBuilder.h"
52#include "llvm/CodeGen/MachineModuleInfo.h"
53#include "llvm/CodeGen/MachineRegisterInfo.h"
54#include "llvm/Analysis/DebugInfo.h"
55#include "llvm/Analysis/Loads.h"
56#include "llvm/Target/TargetData.h"
57#include "llvm/Target/TargetInstrInfo.h"
58#include "llvm/Target/TargetLowering.h"
59#include "llvm/Target/TargetMachine.h"
60#include "llvm/Support/ErrorHandling.h"
61#include "llvm/Support/Debug.h"
62#include "llvm/ADT/Statistic.h"
63using namespace llvm;
64
65STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by "
66          "target-independent selector");
67STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by "
68          "target-specific selector");
69STATISTIC(NumFastIselDead, "Number of dead insts removed on failure");
70
71/// startNewBlock - Set the current block to which generated machine
72/// instructions will be appended, and clear the local CSE map.
73///
74void FastISel::startNewBlock() {
75  LocalValueMap.clear();
76
77  EmitStartPt = 0;
78
79  // Advance the emit start point past any EH_LABEL instructions.
80  MachineBasicBlock::iterator
81    I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
82  while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
83    EmitStartPt = I;
84    ++I;
85  }
86  LastLocalValue = EmitStartPt;
87}
88
89void FastISel::flushLocalValueMap() {
90  LocalValueMap.clear();
91  LastLocalValue = EmitStartPt;
92  recomputeInsertPt();
93}
94
95bool FastISel::hasTrivialKill(const Value *V) const {
96  // Don't consider constants or arguments to have trivial kills.
97  const Instruction *I = dyn_cast<Instruction>(V);
98  if (!I)
99    return false;
100
101  // No-op casts are trivially coalesced by fast-isel.
102  if (const CastInst *Cast = dyn_cast<CastInst>(I))
103    if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
104        !hasTrivialKill(Cast->getOperand(0)))
105      return false;
106
107  // GEPs with all zero indices are trivially coalesced by fast-isel.
108  if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I))
109    if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0)))
110      return false;
111
112  // Only instructions with a single use in the same basic block are considered
113  // to have trivial kills.
114  return I->hasOneUse() &&
115         !(I->getOpcode() == Instruction::BitCast ||
116           I->getOpcode() == Instruction::PtrToInt ||
117           I->getOpcode() == Instruction::IntToPtr) &&
118         cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
119}
120
121unsigned FastISel::getRegForValue(const Value *V) {
122  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
123  // Don't handle non-simple values in FastISel.
124  if (!RealVT.isSimple())
125    return 0;
126
127  // Ignore illegal types. We must do this before looking up the value
128  // in ValueMap because Arguments are given virtual registers regardless
129  // of whether FastISel can handle them.
130  MVT VT = RealVT.getSimpleVT();
131  if (!TLI.isTypeLegal(VT)) {
132    // Handle integer promotions, though, because they're common and easy.
133    if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
134      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
135    else
136      return 0;
137  }
138
139  // Look up the value to see if we already have a register for it. We
140  // cache values defined by Instructions across blocks, and other values
141  // only locally. This is because Instructions already have the SSA
142  // def-dominates-use requirement enforced.
143  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
144  if (I != FuncInfo.ValueMap.end())
145    return I->second;
146
147  unsigned Reg = LocalValueMap[V];
148  if (Reg != 0)
149    return Reg;
150
151  // In bottom-up mode, just create the virtual register which will be used
152  // to hold the value. It will be materialized later.
153  if (isa<Instruction>(V) &&
154      (!isa<AllocaInst>(V) ||
155       !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
156    return FuncInfo.InitializeRegForValue(V);
157
158  SavePoint SaveInsertPt = enterLocalValueArea();
159
160  // Materialize the value in a register. Emit any instructions in the
161  // local value area.
162  Reg = materializeRegForValue(V, VT);
163
164  leaveLocalValueArea(SaveInsertPt);
165
166  return Reg;
167}
168
169/// materializeRegForValue - Helper for getRegForValue. This function is
170/// called when the value isn't already available in a register and must
171/// be materialized with new instructions.
172unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
173  unsigned Reg = 0;
174
175  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
176    if (CI->getValue().getActiveBits() <= 64)
177      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
178  } else if (isa<AllocaInst>(V)) {
179    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
180  } else if (isa<ConstantPointerNull>(V)) {
181    // Translate this as an integer zero so that it can be
182    // local-CSE'd with actual integer zeros.
183    Reg =
184      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
185  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
186    if (CF->isNullValue()) {
187      Reg = TargetMaterializeFloatZero(CF);
188    } else {
189      // Try to emit the constant directly.
190      Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
191    }
192
193    if (!Reg) {
194      // Try to emit the constant by using an integer constant with a cast.
195      const APFloat &Flt = CF->getValueAPF();
196      EVT IntVT = TLI.getPointerTy();
197
198      uint64_t x[2];
199      uint32_t IntBitWidth = IntVT.getSizeInBits();
200      bool isExact;
201      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
202                                APFloat::rmTowardZero, &isExact);
203      if (isExact) {
204        APInt IntVal(IntBitWidth, x);
205
206        unsigned IntegerReg =
207          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
208        if (IntegerReg != 0)
209          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
210                           IntegerReg, /*Kill=*/false);
211      }
212    }
213  } else if (const Operator *Op = dyn_cast<Operator>(V)) {
214    if (!SelectOperator(Op, Op->getOpcode()))
215      if (!isa<Instruction>(Op) ||
216          !TargetSelectInstruction(cast<Instruction>(Op)))
217        return 0;
218    Reg = lookUpRegForValue(Op);
219  } else if (isa<UndefValue>(V)) {
220    Reg = createResultReg(TLI.getRegClassFor(VT));
221    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
222            TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
223  }
224
225  // If target-independent code couldn't handle the value, give target-specific
226  // code a try.
227  if (!Reg && isa<Constant>(V))
228    Reg = TargetMaterializeConstant(cast<Constant>(V));
229
230  // Don't cache constant materializations in the general ValueMap.
231  // To do so would require tracking what uses they dominate.
232  if (Reg != 0) {
233    LocalValueMap[V] = Reg;
234    LastLocalValue = MRI.getVRegDef(Reg);
235  }
236  return Reg;
237}
238
239unsigned FastISel::lookUpRegForValue(const Value *V) {
240  // Look up the value to see if we already have a register for it. We
241  // cache values defined by Instructions across blocks, and other values
242  // only locally. This is because Instructions already have the SSA
243  // def-dominates-use requirement enforced.
244  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
245  if (I != FuncInfo.ValueMap.end())
246    return I->second;
247  return LocalValueMap[V];
248}
249
250/// UpdateValueMap - Update the value map to include the new mapping for this
251/// instruction, or insert an extra copy to get the result in a previous
252/// determined register.
253/// NOTE: This is only necessary because we might select a block that uses
254/// a value before we select the block that defines the value.  It might be
255/// possible to fix this by selecting blocks in reverse postorder.
256void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
257  if (!isa<Instruction>(I)) {
258    LocalValueMap[I] = Reg;
259    return;
260  }
261
262  unsigned &AssignedReg = FuncInfo.ValueMap[I];
263  if (AssignedReg == 0)
264    // Use the new register.
265    AssignedReg = Reg;
266  else if (Reg != AssignedReg) {
267    // Arrange for uses of AssignedReg to be replaced by uses of Reg.
268    for (unsigned i = 0; i < NumRegs; i++)
269      FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
270
271    AssignedReg = Reg;
272  }
273}
274
275std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
276  unsigned IdxN = getRegForValue(Idx);
277  if (IdxN == 0)
278    // Unhandled operand. Halt "fast" selection and bail.
279    return std::pair<unsigned, bool>(0, false);
280
281  bool IdxNIsKill = hasTrivialKill(Idx);
282
283  // If the index is smaller or larger than intptr_t, truncate or extend it.
284  MVT PtrVT = TLI.getPointerTy();
285  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
286  if (IdxVT.bitsLT(PtrVT)) {
287    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
288                      IdxN, IdxNIsKill);
289    IdxNIsKill = true;
290  }
291  else if (IdxVT.bitsGT(PtrVT)) {
292    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
293                      IdxN, IdxNIsKill);
294    IdxNIsKill = true;
295  }
296  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
297}
298
299void FastISel::recomputeInsertPt() {
300  if (getLastLocalValue()) {
301    FuncInfo.InsertPt = getLastLocalValue();
302    FuncInfo.MBB = FuncInfo.InsertPt->getParent();
303    ++FuncInfo.InsertPt;
304  } else
305    FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
306
307  // Now skip past any EH_LABELs, which must remain at the beginning.
308  while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
309         FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
310    ++FuncInfo.InsertPt;
311}
312
313void FastISel::removeDeadCode(MachineBasicBlock::iterator I,
314                              MachineBasicBlock::iterator E) {
315  assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!");
316  while (I != E) {
317    MachineInstr *Dead = &*I;
318    ++I;
319    Dead->eraseFromParent();
320    ++NumFastIselDead;
321  }
322  recomputeInsertPt();
323}
324
325FastISel::SavePoint FastISel::enterLocalValueArea() {
326  MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
327  DebugLoc OldDL = DL;
328  recomputeInsertPt();
329  DL = DebugLoc();
330  SavePoint SP = { OldInsertPt, OldDL };
331  return SP;
332}
333
334void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
335  if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
336    LastLocalValue = llvm::prior(FuncInfo.InsertPt);
337
338  // Restore the previous insert position.
339  FuncInfo.InsertPt = OldInsertPt.InsertPt;
340  DL = OldInsertPt.DL;
341}
342
343/// SelectBinaryOp - Select and emit code for a binary operator instruction,
344/// which has an opcode which directly corresponds to the given ISD opcode.
345///
346bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
347  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
348  if (VT == MVT::Other || !VT.isSimple())
349    // Unhandled type. Halt "fast" selection and bail.
350    return false;
351
352  // We only handle legal types. For example, on x86-32 the instruction
353  // selector contains all of the 64-bit instructions from x86-64,
354  // under the assumption that i64 won't be used if the target doesn't
355  // support it.
356  if (!TLI.isTypeLegal(VT)) {
357    // MVT::i1 is special. Allow AND, OR, or XOR because they
358    // don't require additional zeroing, which makes them easy.
359    if (VT == MVT::i1 &&
360        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
361         ISDOpcode == ISD::XOR))
362      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
363    else
364      return false;
365  }
366
367  // Check if the first operand is a constant, and handle it as "ri".  At -O0,
368  // we don't have anything that canonicalizes operand order.
369  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
370    if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
371      unsigned Op1 = getRegForValue(I->getOperand(1));
372      if (Op1 == 0) return false;
373
374      bool Op1IsKill = hasTrivialKill(I->getOperand(1));
375
376      unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
377                                        Op1IsKill, CI->getZExtValue(),
378                                        VT.getSimpleVT());
379      if (ResultReg == 0) return false;
380
381      // We successfully emitted code for the given LLVM Instruction.
382      UpdateValueMap(I, ResultReg);
383      return true;
384    }
385
386
387  unsigned Op0 = getRegForValue(I->getOperand(0));
388  if (Op0 == 0)   // Unhandled operand. Halt "fast" selection and bail.
389    return false;
390
391  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
392
393  // Check if the second operand is a constant and handle it appropriately.
394  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
395    uint64_t Imm = CI->getZExtValue();
396
397    // Transform "sdiv exact X, 8" -> "sra X, 3".
398    if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
399        cast<BinaryOperator>(I)->isExact() &&
400        isPowerOf2_64(Imm)) {
401      Imm = Log2_64(Imm);
402      ISDOpcode = ISD::SRA;
403    }
404
405    unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
406                                      Op0IsKill, Imm, VT.getSimpleVT());
407    if (ResultReg == 0) return false;
408
409    // We successfully emitted code for the given LLVM Instruction.
410    UpdateValueMap(I, ResultReg);
411    return true;
412  }
413
414  // Check if the second operand is a constant float.
415  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
416    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
417                                     ISDOpcode, Op0, Op0IsKill, CF);
418    if (ResultReg != 0) {
419      // We successfully emitted code for the given LLVM Instruction.
420      UpdateValueMap(I, ResultReg);
421      return true;
422    }
423  }
424
425  unsigned Op1 = getRegForValue(I->getOperand(1));
426  if (Op1 == 0)
427    // Unhandled operand. Halt "fast" selection and bail.
428    return false;
429
430  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
431
432  // Now we have both operands in registers. Emit the instruction.
433  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
434                                   ISDOpcode,
435                                   Op0, Op0IsKill,
436                                   Op1, Op1IsKill);
437  if (ResultReg == 0)
438    // Target-specific code wasn't able to find a machine opcode for
439    // the given ISD opcode and type. Halt "fast" selection and bail.
440    return false;
441
442  // We successfully emitted code for the given LLVM Instruction.
443  UpdateValueMap(I, ResultReg);
444  return true;
445}
446
447bool FastISel::SelectGetElementPtr(const User *I) {
448  unsigned N = getRegForValue(I->getOperand(0));
449  if (N == 0)
450    // Unhandled operand. Halt "fast" selection and bail.
451    return false;
452
453  bool NIsKill = hasTrivialKill(I->getOperand(0));
454
455  // Keep a running tab of the total offset to coalesce multiple N = N + Offset
456  // into a single N = N + TotalOffset.
457  uint64_t TotalOffs = 0;
458  // FIXME: What's a good SWAG number for MaxOffs?
459  uint64_t MaxOffs = 2048;
460  Type *Ty = I->getOperand(0)->getType();
461  MVT VT = TLI.getPointerTy();
462  for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
463       E = I->op_end(); OI != E; ++OI) {
464    const Value *Idx = *OI;
465    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
466      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
467      if (Field) {
468        // N = N + Offset
469        TotalOffs += TD.getStructLayout(StTy)->getElementOffset(Field);
470        if (TotalOffs >= MaxOffs) {
471          N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
472          if (N == 0)
473            // Unhandled operand. Halt "fast" selection and bail.
474            return false;
475          NIsKill = true;
476          TotalOffs = 0;
477        }
478      }
479      Ty = StTy->getElementType(Field);
480    } else {
481      Ty = cast<SequentialType>(Ty)->getElementType();
482
483      // If this is a constant subscript, handle it quickly.
484      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
485        if (CI->isZero()) continue;
486        // N = N + Offset
487        TotalOffs +=
488          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
489        if (TotalOffs >= MaxOffs) {
490          N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
491          if (N == 0)
492            // Unhandled operand. Halt "fast" selection and bail.
493            return false;
494          NIsKill = true;
495          TotalOffs = 0;
496        }
497        continue;
498      }
499      if (TotalOffs) {
500        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
501        if (N == 0)
502          // Unhandled operand. Halt "fast" selection and bail.
503          return false;
504        NIsKill = true;
505        TotalOffs = 0;
506      }
507
508      // N = N + Idx * ElementSize;
509      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
510      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
511      unsigned IdxN = Pair.first;
512      bool IdxNIsKill = Pair.second;
513      if (IdxN == 0)
514        // Unhandled operand. Halt "fast" selection and bail.
515        return false;
516
517      if (ElementSize != 1) {
518        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
519        if (IdxN == 0)
520          // Unhandled operand. Halt "fast" selection and bail.
521          return false;
522        IdxNIsKill = true;
523      }
524      N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
525      if (N == 0)
526        // Unhandled operand. Halt "fast" selection and bail.
527        return false;
528    }
529  }
530  if (TotalOffs) {
531    N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT);
532    if (N == 0)
533      // Unhandled operand. Halt "fast" selection and bail.
534      return false;
535  }
536
537  // We successfully emitted code for the given LLVM Instruction.
538  UpdateValueMap(I, N);
539  return true;
540}
541
542bool FastISel::SelectCall(const User *I) {
543  const CallInst *Call = cast<CallInst>(I);
544
545  // Handle simple inline asms.
546  if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) {
547    // Don't attempt to handle constraints.
548    if (!IA->getConstraintString().empty())
549      return false;
550
551    unsigned ExtraInfo = 0;
552    if (IA->hasSideEffects())
553      ExtraInfo |= InlineAsm::Extra_HasSideEffects;
554    if (IA->isAlignStack())
555      ExtraInfo |= InlineAsm::Extra_IsAlignStack;
556
557    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
558            TII.get(TargetOpcode::INLINEASM))
559      .addExternalSymbol(IA->getAsmString().c_str())
560      .addImm(ExtraInfo);
561    return true;
562  }
563
564  MachineModuleInfo &MMI = FuncInfo.MF->getMMI();
565  ComputeUsesVAFloatArgument(*Call, &MMI);
566
567  const Function *F = Call->getCalledFunction();
568  if (!F) return false;
569
570  // Handle selected intrinsic function calls.
571  switch (F->getIntrinsicID()) {
572  default: break;
573    // At -O0 we don't care about the lifetime intrinsics.
574  case Intrinsic::lifetime_start:
575  case Intrinsic::lifetime_end:
576    return true;
577  case Intrinsic::dbg_declare: {
578    const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
579    if (!DIVariable(DI->getVariable()).Verify() ||
580        !FuncInfo.MF->getMMI().hasDebugInfo()) {
581      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
582      return true;
583    }
584
585    const Value *Address = DI->getAddress();
586    if (!Address || isa<UndefValue>(Address)) {
587      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
588      return true;
589    }
590
591    unsigned Reg = 0;
592    unsigned Offset = 0;
593    if (const Argument *Arg = dyn_cast<Argument>(Address)) {
594      // Some arguments' frame index is recorded during argument lowering.
595      Offset = FuncInfo.getArgumentFrameIndex(Arg);
596      if (Offset)
597	Reg = TRI.getFrameRegister(*FuncInfo.MF);
598    }
599    if (!Reg)
600      Reg = getRegForValue(Address);
601
602    if (Reg)
603      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
604              TII.get(TargetOpcode::DBG_VALUE))
605        .addReg(Reg, RegState::Debug).addImm(Offset)
606        .addMetadata(DI->getVariable());
607    return true;
608  }
609  case Intrinsic::dbg_value: {
610    // This form of DBG_VALUE is target-independent.
611    const DbgValueInst *DI = cast<DbgValueInst>(Call);
612    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
613    const Value *V = DI->getValue();
614    if (!V) {
615      // Currently the optimizer can produce this; insert an undef to
616      // help debugging.  Probably the optimizer should not do this.
617      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
618        .addReg(0U).addImm(DI->getOffset())
619        .addMetadata(DI->getVariable());
620    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
621      if (CI->getBitWidth() > 64)
622        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
623          .addCImm(CI).addImm(DI->getOffset())
624          .addMetadata(DI->getVariable());
625      else
626        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
627          .addImm(CI->getZExtValue()).addImm(DI->getOffset())
628          .addMetadata(DI->getVariable());
629    } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
630      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
631        .addFPImm(CF).addImm(DI->getOffset())
632        .addMetadata(DI->getVariable());
633    } else if (unsigned Reg = lookUpRegForValue(V)) {
634      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
635        .addReg(Reg, RegState::Debug).addImm(DI->getOffset())
636        .addMetadata(DI->getVariable());
637    } else {
638      // We can't yet handle anything else here because it would require
639      // generating code, thus altering codegen because of debug info.
640      DEBUG(dbgs() << "Dropping debug info for " << DI);
641    }
642    return true;
643  }
644  case Intrinsic::objectsize: {
645    ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
646    unsigned long long Res = CI->isZero() ? -1ULL : 0;
647    Constant *ResCI = ConstantInt::get(Call->getType(), Res);
648    unsigned ResultReg = getRegForValue(ResCI);
649    if (ResultReg == 0)
650      return false;
651    UpdateValueMap(Call, ResultReg);
652    return true;
653  }
654  }
655
656  // Usually, it does not make sense to initialize a value,
657  // make an unrelated function call and use the value, because
658  // it tends to be spilled on the stack. So, we move the pointer
659  // to the last local value to the beginning of the block, so that
660  // all the values which have already been materialized,
661  // appear after the call. It also makes sense to skip intrinsics
662  // since they tend to be inlined.
663  if (!isa<IntrinsicInst>(F))
664    flushLocalValueMap();
665
666  // An arbitrary call. Bail.
667  return false;
668}
669
670bool FastISel::SelectCast(const User *I, unsigned Opcode) {
671  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
672  EVT DstVT = TLI.getValueType(I->getType());
673
674  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
675      DstVT == MVT::Other || !DstVT.isSimple())
676    // Unhandled type. Halt "fast" selection and bail.
677    return false;
678
679  // Check if the destination type is legal.
680  if (!TLI.isTypeLegal(DstVT))
681    return false;
682
683  // Check if the source operand is legal.
684  if (!TLI.isTypeLegal(SrcVT))
685    return false;
686
687  unsigned InputReg = getRegForValue(I->getOperand(0));
688  if (!InputReg)
689    // Unhandled operand.  Halt "fast" selection and bail.
690    return false;
691
692  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
693
694  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
695                                  DstVT.getSimpleVT(),
696                                  Opcode,
697                                  InputReg, InputRegIsKill);
698  if (!ResultReg)
699    return false;
700
701  UpdateValueMap(I, ResultReg);
702  return true;
703}
704
705bool FastISel::SelectBitCast(const User *I) {
706  // If the bitcast doesn't change the type, just use the operand value.
707  if (I->getType() == I->getOperand(0)->getType()) {
708    unsigned Reg = getRegForValue(I->getOperand(0));
709    if (Reg == 0)
710      return false;
711    UpdateValueMap(I, Reg);
712    return true;
713  }
714
715  // Bitcasts of other values become reg-reg copies or BITCAST operators.
716  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
717  EVT DstVT = TLI.getValueType(I->getType());
718
719  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
720      DstVT == MVT::Other || !DstVT.isSimple() ||
721      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
722    // Unhandled type. Halt "fast" selection and bail.
723    return false;
724
725  unsigned Op0 = getRegForValue(I->getOperand(0));
726  if (Op0 == 0)
727    // Unhandled operand. Halt "fast" selection and bail.
728    return false;
729
730  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
731
732  // First, try to perform the bitcast by inserting a reg-reg copy.
733  unsigned ResultReg = 0;
734  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
735    const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
736    const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
737    // Don't attempt a cross-class copy. It will likely fail.
738    if (SrcClass == DstClass) {
739      ResultReg = createResultReg(DstClass);
740      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
741              ResultReg).addReg(Op0);
742    }
743  }
744
745  // If the reg-reg copy failed, select a BITCAST opcode.
746  if (!ResultReg)
747    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
748                           ISD::BITCAST, Op0, Op0IsKill);
749
750  if (!ResultReg)
751    return false;
752
753  UpdateValueMap(I, ResultReg);
754  return true;
755}
756
757bool
758FastISel::SelectInstruction(const Instruction *I) {
759  // Just before the terminator instruction, insert instructions to
760  // feed PHI nodes in successor blocks.
761  if (isa<TerminatorInst>(I))
762    if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
763      return false;
764
765  DL = I->getDebugLoc();
766
767  MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt;
768
769  // First, try doing target-independent selection.
770  if (SelectOperator(I, I->getOpcode())) {
771    ++NumFastIselSuccessIndependent;
772    DL = DebugLoc();
773    return true;
774  }
775  // Remove dead code.  However, ignore call instructions since we've flushed
776  // the local value map and recomputed the insert point.
777  if (!isa<CallInst>(I)) {
778    recomputeInsertPt();
779    if (SavedInsertPt != FuncInfo.InsertPt)
780      removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
781  }
782
783  // Next, try calling the target to attempt to handle the instruction.
784  SavedInsertPt = FuncInfo.InsertPt;
785  if (TargetSelectInstruction(I)) {
786    ++NumFastIselSuccessTarget;
787    DL = DebugLoc();
788    return true;
789  }
790  // Check for dead code and remove as necessary.
791  recomputeInsertPt();
792  if (SavedInsertPt != FuncInfo.InsertPt)
793    removeDeadCode(FuncInfo.InsertPt, SavedInsertPt);
794
795  DL = DebugLoc();
796  return false;
797}
798
799/// FastEmitBranch - Emit an unconditional branch to the given block,
800/// unless it is the immediate (fall-through) successor, and update
801/// the CFG.
802void
803FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
804  if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
805    // The unconditional fall-through case, which needs no instructions.
806  } else {
807    // The unconditional branch case.
808    TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
809                     SmallVector<MachineOperand, 0>(), DL);
810  }
811  FuncInfo.MBB->addSuccessor(MSucc);
812}
813
814/// SelectFNeg - Emit an FNeg operation.
815///
816bool
817FastISel::SelectFNeg(const User *I) {
818  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
819  if (OpReg == 0) return false;
820
821  bool OpRegIsKill = hasTrivialKill(I);
822
823  // If the target has ISD::FNEG, use it.
824  EVT VT = TLI.getValueType(I->getType());
825  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
826                                  ISD::FNEG, OpReg, OpRegIsKill);
827  if (ResultReg != 0) {
828    UpdateValueMap(I, ResultReg);
829    return true;
830  }
831
832  // Bitcast the value to integer, twiddle the sign bit with xor,
833  // and then bitcast it back to floating-point.
834  if (VT.getSizeInBits() > 64) return false;
835  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
836  if (!TLI.isTypeLegal(IntVT))
837    return false;
838
839  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
840                               ISD::BITCAST, OpReg, OpRegIsKill);
841  if (IntReg == 0)
842    return false;
843
844  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
845                                       IntReg, /*Kill=*/true,
846                                       UINT64_C(1) << (VT.getSizeInBits()-1),
847                                       IntVT.getSimpleVT());
848  if (IntResultReg == 0)
849    return false;
850
851  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
852                         ISD::BITCAST, IntResultReg, /*Kill=*/true);
853  if (ResultReg == 0)
854    return false;
855
856  UpdateValueMap(I, ResultReg);
857  return true;
858}
859
860bool
861FastISel::SelectExtractValue(const User *U) {
862  const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
863  if (!EVI)
864    return false;
865
866  // Make sure we only try to handle extracts with a legal result.  But also
867  // allow i1 because it's easy.
868  EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
869  if (!RealVT.isSimple())
870    return false;
871  MVT VT = RealVT.getSimpleVT();
872  if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
873    return false;
874
875  const Value *Op0 = EVI->getOperand(0);
876  Type *AggTy = Op0->getType();
877
878  // Get the base result register.
879  unsigned ResultReg;
880  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
881  if (I != FuncInfo.ValueMap.end())
882    ResultReg = I->second;
883  else if (isa<Instruction>(Op0))
884    ResultReg = FuncInfo.InitializeRegForValue(Op0);
885  else
886    return false; // fast-isel can't handle aggregate constants at the moment
887
888  // Get the actual result register, which is an offset from the base register.
889  unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
890
891  SmallVector<EVT, 4> AggValueVTs;
892  ComputeValueVTs(TLI, AggTy, AggValueVTs);
893
894  for (unsigned i = 0; i < VTIndex; i++)
895    ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
896
897  UpdateValueMap(EVI, ResultReg);
898  return true;
899}
900
901bool
902FastISel::SelectOperator(const User *I, unsigned Opcode) {
903  switch (Opcode) {
904  case Instruction::Add:
905    return SelectBinaryOp(I, ISD::ADD);
906  case Instruction::FAdd:
907    return SelectBinaryOp(I, ISD::FADD);
908  case Instruction::Sub:
909    return SelectBinaryOp(I, ISD::SUB);
910  case Instruction::FSub:
911    // FNeg is currently represented in LLVM IR as a special case of FSub.
912    if (BinaryOperator::isFNeg(I))
913      return SelectFNeg(I);
914    return SelectBinaryOp(I, ISD::FSUB);
915  case Instruction::Mul:
916    return SelectBinaryOp(I, ISD::MUL);
917  case Instruction::FMul:
918    return SelectBinaryOp(I, ISD::FMUL);
919  case Instruction::SDiv:
920    return SelectBinaryOp(I, ISD::SDIV);
921  case Instruction::UDiv:
922    return SelectBinaryOp(I, ISD::UDIV);
923  case Instruction::FDiv:
924    return SelectBinaryOp(I, ISD::FDIV);
925  case Instruction::SRem:
926    return SelectBinaryOp(I, ISD::SREM);
927  case Instruction::URem:
928    return SelectBinaryOp(I, ISD::UREM);
929  case Instruction::FRem:
930    return SelectBinaryOp(I, ISD::FREM);
931  case Instruction::Shl:
932    return SelectBinaryOp(I, ISD::SHL);
933  case Instruction::LShr:
934    return SelectBinaryOp(I, ISD::SRL);
935  case Instruction::AShr:
936    return SelectBinaryOp(I, ISD::SRA);
937  case Instruction::And:
938    return SelectBinaryOp(I, ISD::AND);
939  case Instruction::Or:
940    return SelectBinaryOp(I, ISD::OR);
941  case Instruction::Xor:
942    return SelectBinaryOp(I, ISD::XOR);
943
944  case Instruction::GetElementPtr:
945    return SelectGetElementPtr(I);
946
947  case Instruction::Br: {
948    const BranchInst *BI = cast<BranchInst>(I);
949
950    if (BI->isUnconditional()) {
951      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
952      MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
953      FastEmitBranch(MSucc, BI->getDebugLoc());
954      return true;
955    }
956
957    // Conditional branches are not handed yet.
958    // Halt "fast" selection and bail.
959    return false;
960  }
961
962  case Instruction::Unreachable:
963    // Nothing to emit.
964    return true;
965
966  case Instruction::Alloca:
967    // FunctionLowering has the static-sized case covered.
968    if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
969      return true;
970
971    // Dynamic-sized alloca is not handled yet.
972    return false;
973
974  case Instruction::Call:
975    return SelectCall(I);
976
977  case Instruction::BitCast:
978    return SelectBitCast(I);
979
980  case Instruction::FPToSI:
981    return SelectCast(I, ISD::FP_TO_SINT);
982  case Instruction::ZExt:
983    return SelectCast(I, ISD::ZERO_EXTEND);
984  case Instruction::SExt:
985    return SelectCast(I, ISD::SIGN_EXTEND);
986  case Instruction::Trunc:
987    return SelectCast(I, ISD::TRUNCATE);
988  case Instruction::SIToFP:
989    return SelectCast(I, ISD::SINT_TO_FP);
990
991  case Instruction::IntToPtr: // Deliberate fall-through.
992  case Instruction::PtrToInt: {
993    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
994    EVT DstVT = TLI.getValueType(I->getType());
995    if (DstVT.bitsGT(SrcVT))
996      return SelectCast(I, ISD::ZERO_EXTEND);
997    if (DstVT.bitsLT(SrcVT))
998      return SelectCast(I, ISD::TRUNCATE);
999    unsigned Reg = getRegForValue(I->getOperand(0));
1000    if (Reg == 0) return false;
1001    UpdateValueMap(I, Reg);
1002    return true;
1003  }
1004
1005  case Instruction::ExtractValue:
1006    return SelectExtractValue(I);
1007
1008  case Instruction::PHI:
1009    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
1010
1011  default:
1012    // Unhandled instruction. Halt "fast" selection and bail.
1013    return false;
1014  }
1015}
1016
1017FastISel::FastISel(FunctionLoweringInfo &funcInfo)
1018  : FuncInfo(funcInfo),
1019    MRI(FuncInfo.MF->getRegInfo()),
1020    MFI(*FuncInfo.MF->getFrameInfo()),
1021    MCP(*FuncInfo.MF->getConstantPool()),
1022    TM(FuncInfo.MF->getTarget()),
1023    TD(*TM.getTargetData()),
1024    TII(*TM.getInstrInfo()),
1025    TLI(*TM.getTargetLowering()),
1026    TRI(*TM.getRegisterInfo()) {
1027}
1028
1029FastISel::~FastISel() {}
1030
1031unsigned FastISel::FastEmit_(MVT, MVT,
1032                             unsigned) {
1033  return 0;
1034}
1035
1036unsigned FastISel::FastEmit_r(MVT, MVT,
1037                              unsigned,
1038                              unsigned /*Op0*/, bool /*Op0IsKill*/) {
1039  return 0;
1040}
1041
1042unsigned FastISel::FastEmit_rr(MVT, MVT,
1043                               unsigned,
1044                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1045                               unsigned /*Op1*/, bool /*Op1IsKill*/) {
1046  return 0;
1047}
1048
1049unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1050  return 0;
1051}
1052
1053unsigned FastISel::FastEmit_f(MVT, MVT,
1054                              unsigned, const ConstantFP * /*FPImm*/) {
1055  return 0;
1056}
1057
1058unsigned FastISel::FastEmit_ri(MVT, MVT,
1059                               unsigned,
1060                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1061                               uint64_t /*Imm*/) {
1062  return 0;
1063}
1064
1065unsigned FastISel::FastEmit_rf(MVT, MVT,
1066                               unsigned,
1067                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1068                               const ConstantFP * /*FPImm*/) {
1069  return 0;
1070}
1071
1072unsigned FastISel::FastEmit_rri(MVT, MVT,
1073                                unsigned,
1074                                unsigned /*Op0*/, bool /*Op0IsKill*/,
1075                                unsigned /*Op1*/, bool /*Op1IsKill*/,
1076                                uint64_t /*Imm*/) {
1077  return 0;
1078}
1079
1080/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
1081/// to emit an instruction with an immediate operand using FastEmit_ri.
1082/// If that fails, it materializes the immediate into a register and try
1083/// FastEmit_rr instead.
1084unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
1085                                unsigned Op0, bool Op0IsKill,
1086                                uint64_t Imm, MVT ImmType) {
1087  // If this is a multiply by a power of two, emit this as a shift left.
1088  if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1089    Opcode = ISD::SHL;
1090    Imm = Log2_64(Imm);
1091  } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1092    // div x, 8 -> srl x, 3
1093    Opcode = ISD::SRL;
1094    Imm = Log2_64(Imm);
1095  }
1096
1097  // Horrible hack (to be removed), check to make sure shift amounts are
1098  // in-range.
1099  if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1100      Imm >= VT.getSizeInBits())
1101    return 0;
1102
1103  // First check if immediate type is legal. If not, we can't use the ri form.
1104  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1105  if (ResultReg != 0)
1106    return ResultReg;
1107  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1108  if (MaterialReg == 0) {
1109    // This is a bit ugly/slow, but failing here means falling out of
1110    // fast-isel, which would be very slow.
1111    IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
1112                                              VT.getSizeInBits());
1113    MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1114  }
1115  return FastEmit_rr(VT, VT, Opcode,
1116                     Op0, Op0IsKill,
1117                     MaterialReg, /*Kill=*/true);
1118}
1119
1120unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
1121  return MRI.createVirtualRegister(RC);
1122}
1123
1124unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1125                                 const TargetRegisterClass* RC) {
1126  unsigned ResultReg = createResultReg(RC);
1127  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1128
1129  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
1130  return ResultReg;
1131}
1132
1133unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1134                                  const TargetRegisterClass *RC,
1135                                  unsigned Op0, bool Op0IsKill) {
1136  unsigned ResultReg = createResultReg(RC);
1137  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1138
1139  if (II.getNumDefs() >= 1)
1140    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1141      .addReg(Op0, Op0IsKill * RegState::Kill);
1142  else {
1143    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1144      .addReg(Op0, Op0IsKill * RegState::Kill);
1145    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1146            ResultReg).addReg(II.ImplicitDefs[0]);
1147  }
1148
1149  return ResultReg;
1150}
1151
1152unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1153                                   const TargetRegisterClass *RC,
1154                                   unsigned Op0, bool Op0IsKill,
1155                                   unsigned Op1, bool Op1IsKill) {
1156  unsigned ResultReg = createResultReg(RC);
1157  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1158
1159  if (II.getNumDefs() >= 1)
1160    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1161      .addReg(Op0, Op0IsKill * RegState::Kill)
1162      .addReg(Op1, Op1IsKill * RegState::Kill);
1163  else {
1164    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1165      .addReg(Op0, Op0IsKill * RegState::Kill)
1166      .addReg(Op1, Op1IsKill * RegState::Kill);
1167    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1168            ResultReg).addReg(II.ImplicitDefs[0]);
1169  }
1170  return ResultReg;
1171}
1172
1173unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
1174                                   const TargetRegisterClass *RC,
1175                                   unsigned Op0, bool Op0IsKill,
1176                                   unsigned Op1, bool Op1IsKill,
1177                                   unsigned Op2, bool Op2IsKill) {
1178  unsigned ResultReg = createResultReg(RC);
1179  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1180
1181  if (II.getNumDefs() >= 1)
1182    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1183      .addReg(Op0, Op0IsKill * RegState::Kill)
1184      .addReg(Op1, Op1IsKill * RegState::Kill)
1185      .addReg(Op2, Op2IsKill * RegState::Kill);
1186  else {
1187    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1188      .addReg(Op0, Op0IsKill * RegState::Kill)
1189      .addReg(Op1, Op1IsKill * RegState::Kill)
1190      .addReg(Op2, Op2IsKill * RegState::Kill);
1191    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1192            ResultReg).addReg(II.ImplicitDefs[0]);
1193  }
1194  return ResultReg;
1195}
1196
1197unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1198                                   const TargetRegisterClass *RC,
1199                                   unsigned Op0, bool Op0IsKill,
1200                                   uint64_t Imm) {
1201  unsigned ResultReg = createResultReg(RC);
1202  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1203
1204  if (II.getNumDefs() >= 1)
1205    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1206      .addReg(Op0, Op0IsKill * RegState::Kill)
1207      .addImm(Imm);
1208  else {
1209    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1210      .addReg(Op0, Op0IsKill * RegState::Kill)
1211      .addImm(Imm);
1212    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1213            ResultReg).addReg(II.ImplicitDefs[0]);
1214  }
1215  return ResultReg;
1216}
1217
1218unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
1219                                   const TargetRegisterClass *RC,
1220                                   unsigned Op0, bool Op0IsKill,
1221                                   uint64_t Imm1, uint64_t Imm2) {
1222  unsigned ResultReg = createResultReg(RC);
1223  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1224
1225  if (II.getNumDefs() >= 1)
1226    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1227      .addReg(Op0, Op0IsKill * RegState::Kill)
1228      .addImm(Imm1)
1229      .addImm(Imm2);
1230  else {
1231    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1232      .addReg(Op0, Op0IsKill * RegState::Kill)
1233      .addImm(Imm1)
1234      .addImm(Imm2);
1235    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1236            ResultReg).addReg(II.ImplicitDefs[0]);
1237  }
1238  return ResultReg;
1239}
1240
1241unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1242                                   const TargetRegisterClass *RC,
1243                                   unsigned Op0, bool Op0IsKill,
1244                                   const ConstantFP *FPImm) {
1245  unsigned ResultReg = createResultReg(RC);
1246  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1247
1248  if (II.getNumDefs() >= 1)
1249    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1250      .addReg(Op0, Op0IsKill * RegState::Kill)
1251      .addFPImm(FPImm);
1252  else {
1253    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1254      .addReg(Op0, Op0IsKill * RegState::Kill)
1255      .addFPImm(FPImm);
1256    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1257            ResultReg).addReg(II.ImplicitDefs[0]);
1258  }
1259  return ResultReg;
1260}
1261
1262unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1263                                    const TargetRegisterClass *RC,
1264                                    unsigned Op0, bool Op0IsKill,
1265                                    unsigned Op1, bool Op1IsKill,
1266                                    uint64_t Imm) {
1267  unsigned ResultReg = createResultReg(RC);
1268  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1269
1270  if (II.getNumDefs() >= 1)
1271    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1272      .addReg(Op0, Op0IsKill * RegState::Kill)
1273      .addReg(Op1, Op1IsKill * RegState::Kill)
1274      .addImm(Imm);
1275  else {
1276    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1277      .addReg(Op0, Op0IsKill * RegState::Kill)
1278      .addReg(Op1, Op1IsKill * RegState::Kill)
1279      .addImm(Imm);
1280    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1281            ResultReg).addReg(II.ImplicitDefs[0]);
1282  }
1283  return ResultReg;
1284}
1285
1286unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1287                                  const TargetRegisterClass *RC,
1288                                  uint64_t Imm) {
1289  unsigned ResultReg = createResultReg(RC);
1290  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1291
1292  if (II.getNumDefs() >= 1)
1293    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
1294  else {
1295    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
1296    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1297            ResultReg).addReg(II.ImplicitDefs[0]);
1298  }
1299  return ResultReg;
1300}
1301
1302unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
1303                                  const TargetRegisterClass *RC,
1304                                  uint64_t Imm1, uint64_t Imm2) {
1305  unsigned ResultReg = createResultReg(RC);
1306  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1307
1308  if (II.getNumDefs() >= 1)
1309    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1310      .addImm(Imm1).addImm(Imm2);
1311  else {
1312    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
1313    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1314            ResultReg).addReg(II.ImplicitDefs[0]);
1315  }
1316  return ResultReg;
1317}
1318
1319unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1320                                              unsigned Op0, bool Op0IsKill,
1321                                              uint32_t Idx) {
1322  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1323  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1324         "Cannot yet extract from physregs");
1325  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1326          DL, TII.get(TargetOpcode::COPY), ResultReg)
1327    .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1328  return ResultReg;
1329}
1330
1331/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1332/// with all but the least significant bit set to zero.
1333unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1334  return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1335}
1336
1337/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1338/// Emit code to ensure constants are copied into registers when needed.
1339/// Remember the virtual registers that need to be added to the Machine PHI
1340/// nodes as input.  We cannot just directly add them, because expansion
1341/// might result in multiple MBB's for one BB.  As such, the start of the
1342/// BB might correspond to a different MBB than the end.
1343bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1344  const TerminatorInst *TI = LLVMBB->getTerminator();
1345
1346  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1347  unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1348
1349  // Check successor nodes' PHI nodes that expect a constant to be available
1350  // from this block.
1351  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1352    const BasicBlock *SuccBB = TI->getSuccessor(succ);
1353    if (!isa<PHINode>(SuccBB->begin())) continue;
1354    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1355
1356    // If this terminator has multiple identical successors (common for
1357    // switches), only handle each succ once.
1358    if (!SuccsHandled.insert(SuccMBB)) continue;
1359
1360    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1361
1362    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1363    // nodes and Machine PHI nodes, but the incoming operands have not been
1364    // emitted yet.
1365    for (BasicBlock::const_iterator I = SuccBB->begin();
1366         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1367
1368      // Ignore dead phi's.
1369      if (PN->use_empty()) continue;
1370
1371      // Only handle legal types. Two interesting things to note here. First,
1372      // by bailing out early, we may leave behind some dead instructions,
1373      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1374      // own moves. Second, this check is necessary because FastISel doesn't
1375      // use CreateRegs to create registers, so it always creates
1376      // exactly one register for each non-void instruction.
1377      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1378      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1379        // Handle integer promotions, though, because they're common and easy.
1380        if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
1381          VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1382        else {
1383          FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1384          return false;
1385        }
1386      }
1387
1388      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1389
1390      // Set the DebugLoc for the copy. Prefer the location of the operand
1391      // if there is one; use the location of the PHI otherwise.
1392      DL = PN->getDebugLoc();
1393      if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1394        DL = Inst->getDebugLoc();
1395
1396      unsigned Reg = getRegForValue(PHIOp);
1397      if (Reg == 0) {
1398        FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1399        return false;
1400      }
1401      FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1402      DL = DebugLoc();
1403    }
1404  }
1405
1406  return true;
1407}
1408