FastISel.cpp revision db125cfaf57cc83e7dd7453de2d509bc8efd0e5e
1//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/Operator.h"
47#include "llvm/CodeGen/Analysis.h"
48#include "llvm/CodeGen/FastISel.h"
49#include "llvm/CodeGen/FunctionLoweringInfo.h"
50#include "llvm/CodeGen/MachineInstrBuilder.h"
51#include "llvm/CodeGen/MachineModuleInfo.h"
52#include "llvm/CodeGen/MachineRegisterInfo.h"
53#include "llvm/Analysis/DebugInfo.h"
54#include "llvm/Analysis/Loads.h"
55#include "llvm/Target/TargetData.h"
56#include "llvm/Target/TargetInstrInfo.h"
57#include "llvm/Target/TargetLowering.h"
58#include "llvm/Target/TargetMachine.h"
59#include "llvm/Support/ErrorHandling.h"
60#include "llvm/Support/Debug.h"
61using namespace llvm;
62
63/// startNewBlock - Set the current block to which generated machine
64/// instructions will be appended, and clear the local CSE map.
65///
66void FastISel::startNewBlock() {
67  LocalValueMap.clear();
68
69  // Start out as null, meaining no local-value instructions have
70  // been emitted.
71  LastLocalValue = 0;
72
73  // Advance the last local value past any EH_LABEL instructions.
74  MachineBasicBlock::iterator
75    I = FuncInfo.MBB->begin(), E = FuncInfo.MBB->end();
76  while (I != E && I->getOpcode() == TargetOpcode::EH_LABEL) {
77    LastLocalValue = I;
78    ++I;
79  }
80}
81
82bool FastISel::hasTrivialKill(const Value *V) const {
83  // Don't consider constants or arguments to have trivial kills.
84  const Instruction *I = dyn_cast<Instruction>(V);
85  if (!I)
86    return false;
87
88  // No-op casts are trivially coalesced by fast-isel.
89  if (const CastInst *Cast = dyn_cast<CastInst>(I))
90    if (Cast->isNoopCast(TD.getIntPtrType(Cast->getContext())) &&
91        !hasTrivialKill(Cast->getOperand(0)))
92      return false;
93
94  // Only instructions with a single use in the same basic block are considered
95  // to have trivial kills.
96  return I->hasOneUse() &&
97         !(I->getOpcode() == Instruction::BitCast ||
98           I->getOpcode() == Instruction::PtrToInt ||
99           I->getOpcode() == Instruction::IntToPtr) &&
100         cast<Instruction>(*I->use_begin())->getParent() == I->getParent();
101}
102
103unsigned FastISel::getRegForValue(const Value *V) {
104  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
105  // Don't handle non-simple values in FastISel.
106  if (!RealVT.isSimple())
107    return 0;
108
109  // Ignore illegal types. We must do this before looking up the value
110  // in ValueMap because Arguments are given virtual registers regardless
111  // of whether FastISel can handle them.
112  MVT VT = RealVT.getSimpleVT();
113  if (!TLI.isTypeLegal(VT)) {
114    // Handle integer promotions, though, because they're common and easy.
115    if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
116      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
117    else
118      return 0;
119  }
120
121  // Look up the value to see if we already have a register for it. We
122  // cache values defined by Instructions across blocks, and other values
123  // only locally. This is because Instructions already have the SSA
124  // def-dominates-use requirement enforced.
125  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
126  if (I != FuncInfo.ValueMap.end())
127    return I->second;
128
129  unsigned Reg = LocalValueMap[V];
130  if (Reg != 0)
131    return Reg;
132
133  // In bottom-up mode, just create the virtual register which will be used
134  // to hold the value. It will be materialized later.
135  if (isa<Instruction>(V) &&
136      (!isa<AllocaInst>(V) ||
137       !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V))))
138    return FuncInfo.InitializeRegForValue(V);
139
140  SavePoint SaveInsertPt = enterLocalValueArea();
141
142  // Materialize the value in a register. Emit any instructions in the
143  // local value area.
144  Reg = materializeRegForValue(V, VT);
145
146  leaveLocalValueArea(SaveInsertPt);
147
148  return Reg;
149}
150
151/// materializeRegForValue - Helper for getRegForValue. This function is
152/// called when the value isn't already available in a register and must
153/// be materialized with new instructions.
154unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) {
155  unsigned Reg = 0;
156
157  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
158    if (CI->getValue().getActiveBits() <= 64)
159      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
160  } else if (isa<AllocaInst>(V)) {
161    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
162  } else if (isa<ConstantPointerNull>(V)) {
163    // Translate this as an integer zero so that it can be
164    // local-CSE'd with actual integer zeros.
165    Reg =
166      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
167  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
168    if (CF->isNullValue()) {
169      Reg = TargetMaterializeFloatZero(CF);
170    } else {
171      // Try to emit the constant directly.
172      Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
173    }
174
175    if (!Reg) {
176      // Try to emit the constant by using an integer constant with a cast.
177      const APFloat &Flt = CF->getValueAPF();
178      EVT IntVT = TLI.getPointerTy();
179
180      uint64_t x[2];
181      uint32_t IntBitWidth = IntVT.getSizeInBits();
182      bool isExact;
183      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
184                                APFloat::rmTowardZero, &isExact);
185      if (isExact) {
186        APInt IntVal(IntBitWidth, 2, x);
187
188        unsigned IntegerReg =
189          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
190        if (IntegerReg != 0)
191          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP,
192                           IntegerReg, /*Kill=*/false);
193      }
194    }
195  } else if (const Operator *Op = dyn_cast<Operator>(V)) {
196    if (!SelectOperator(Op, Op->getOpcode()))
197      if (!isa<Instruction>(Op) ||
198          !TargetSelectInstruction(cast<Instruction>(Op)))
199        return 0;
200    Reg = lookUpRegForValue(Op);
201  } else if (isa<UndefValue>(V)) {
202    Reg = createResultReg(TLI.getRegClassFor(VT));
203    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
204            TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
205  }
206
207  // If target-independent code couldn't handle the value, give target-specific
208  // code a try.
209  if (!Reg && isa<Constant>(V))
210    Reg = TargetMaterializeConstant(cast<Constant>(V));
211
212  // Don't cache constant materializations in the general ValueMap.
213  // To do so would require tracking what uses they dominate.
214  if (Reg != 0) {
215    LocalValueMap[V] = Reg;
216    LastLocalValue = MRI.getVRegDef(Reg);
217  }
218  return Reg;
219}
220
221unsigned FastISel::lookUpRegForValue(const Value *V) {
222  // Look up the value to see if we already have a register for it. We
223  // cache values defined by Instructions across blocks, and other values
224  // only locally. This is because Instructions already have the SSA
225  // def-dominates-use requirement enforced.
226  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V);
227  if (I != FuncInfo.ValueMap.end())
228    return I->second;
229  return LocalValueMap[V];
230}
231
232/// UpdateValueMap - Update the value map to include the new mapping for this
233/// instruction, or insert an extra copy to get the result in a previous
234/// determined register.
235/// NOTE: This is only necessary because we might select a block that uses
236/// a value before we select the block that defines the value.  It might be
237/// possible to fix this by selecting blocks in reverse postorder.
238void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) {
239  if (!isa<Instruction>(I)) {
240    LocalValueMap[I] = Reg;
241    return;
242  }
243
244  unsigned &AssignedReg = FuncInfo.ValueMap[I];
245  if (AssignedReg == 0)
246    // Use the new register.
247    AssignedReg = Reg;
248  else if (Reg != AssignedReg) {
249    // Arrange for uses of AssignedReg to be replaced by uses of Reg.
250    for (unsigned i = 0; i < NumRegs; i++)
251      FuncInfo.RegFixups[AssignedReg+i] = Reg+i;
252
253    AssignedReg = Reg;
254  }
255}
256
257std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) {
258  unsigned IdxN = getRegForValue(Idx);
259  if (IdxN == 0)
260    // Unhandled operand. Halt "fast" selection and bail.
261    return std::pair<unsigned, bool>(0, false);
262
263  bool IdxNIsKill = hasTrivialKill(Idx);
264
265  // If the index is smaller or larger than intptr_t, truncate or extend it.
266  MVT PtrVT = TLI.getPointerTy();
267  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
268  if (IdxVT.bitsLT(PtrVT)) {
269    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND,
270                      IdxN, IdxNIsKill);
271    IdxNIsKill = true;
272  }
273  else if (IdxVT.bitsGT(PtrVT)) {
274    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE,
275                      IdxN, IdxNIsKill);
276    IdxNIsKill = true;
277  }
278  return std::pair<unsigned, bool>(IdxN, IdxNIsKill);
279}
280
281void FastISel::recomputeInsertPt() {
282  if (getLastLocalValue()) {
283    FuncInfo.InsertPt = getLastLocalValue();
284    FuncInfo.MBB = FuncInfo.InsertPt->getParent();
285    ++FuncInfo.InsertPt;
286  } else
287    FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI();
288
289  // Now skip past any EH_LABELs, which must remain at the beginning.
290  while (FuncInfo.InsertPt != FuncInfo.MBB->end() &&
291         FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL)
292    ++FuncInfo.InsertPt;
293}
294
295FastISel::SavePoint FastISel::enterLocalValueArea() {
296  MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt;
297  DebugLoc OldDL = DL;
298  recomputeInsertPt();
299  DL = DebugLoc();
300  SavePoint SP = { OldInsertPt, OldDL };
301  return SP;
302}
303
304void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) {
305  if (FuncInfo.InsertPt != FuncInfo.MBB->begin())
306    LastLocalValue = llvm::prior(FuncInfo.InsertPt);
307
308  // Restore the previous insert position.
309  FuncInfo.InsertPt = OldInsertPt.InsertPt;
310  DL = OldInsertPt.DL;
311}
312
313/// SelectBinaryOp - Select and emit code for a binary operator instruction,
314/// which has an opcode which directly corresponds to the given ISD opcode.
315///
316bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
317  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
318  if (VT == MVT::Other || !VT.isSimple())
319    // Unhandled type. Halt "fast" selection and bail.
320    return false;
321
322  // We only handle legal types. For example, on x86-32 the instruction
323  // selector contains all of the 64-bit instructions from x86-64,
324  // under the assumption that i64 won't be used if the target doesn't
325  // support it.
326  if (!TLI.isTypeLegal(VT)) {
327    // MVT::i1 is special. Allow AND, OR, or XOR because they
328    // don't require additional zeroing, which makes them easy.
329    if (VT == MVT::i1 &&
330        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
331         ISDOpcode == ISD::XOR))
332      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
333    else
334      return false;
335  }
336
337  // Check if the first operand is a constant, and handle it as "ri".  At -O0,
338  // we don't have anything that canonicalizes operand order.
339  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0)))
340    if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) {
341      unsigned Op1 = getRegForValue(I->getOperand(1));
342      if (Op1 == 0) return false;
343
344      bool Op1IsKill = hasTrivialKill(I->getOperand(1));
345
346      unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1,
347                                        Op1IsKill, CI->getZExtValue(),
348                                        VT.getSimpleVT());
349      if (ResultReg == 0) return false;
350
351      // We successfully emitted code for the given LLVM Instruction.
352      UpdateValueMap(I, ResultReg);
353      return true;
354    }
355
356
357  unsigned Op0 = getRegForValue(I->getOperand(0));
358  if (Op0 == 0)   // Unhandled operand. Halt "fast" selection and bail.
359    return false;
360
361  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
362
363  // Check if the second operand is a constant and handle it appropriately.
364  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
365    uint64_t Imm = CI->getZExtValue();
366
367    // Transform "sdiv exact X, 8" -> "sra X, 3".
368    if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) &&
369        cast<BinaryOperator>(I)->isExact() &&
370        isPowerOf2_64(Imm)) {
371      Imm = Log2_64(Imm);
372      ISDOpcode = ISD::SRA;
373    }
374
375    unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0,
376                                      Op0IsKill, Imm, VT.getSimpleVT());
377    if (ResultReg == 0) return false;
378
379    // We successfully emitted code for the given LLVM Instruction.
380    UpdateValueMap(I, ResultReg);
381    return true;
382  }
383
384  // Check if the second operand is a constant float.
385  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
386    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
387                                     ISDOpcode, Op0, Op0IsKill, CF);
388    if (ResultReg != 0) {
389      // We successfully emitted code for the given LLVM Instruction.
390      UpdateValueMap(I, ResultReg);
391      return true;
392    }
393  }
394
395  unsigned Op1 = getRegForValue(I->getOperand(1));
396  if (Op1 == 0)
397    // Unhandled operand. Halt "fast" selection and bail.
398    return false;
399
400  bool Op1IsKill = hasTrivialKill(I->getOperand(1));
401
402  // Now we have both operands in registers. Emit the instruction.
403  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
404                                   ISDOpcode,
405                                   Op0, Op0IsKill,
406                                   Op1, Op1IsKill);
407  if (ResultReg == 0)
408    // Target-specific code wasn't able to find a machine opcode for
409    // the given ISD opcode and type. Halt "fast" selection and bail.
410    return false;
411
412  // We successfully emitted code for the given LLVM Instruction.
413  UpdateValueMap(I, ResultReg);
414  return true;
415}
416
417bool FastISel::SelectGetElementPtr(const User *I) {
418  unsigned N = getRegForValue(I->getOperand(0));
419  if (N == 0)
420    // Unhandled operand. Halt "fast" selection and bail.
421    return false;
422
423  bool NIsKill = hasTrivialKill(I->getOperand(0));
424
425  Type *Ty = I->getOperand(0)->getType();
426  MVT VT = TLI.getPointerTy();
427  for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
428       E = I->op_end(); OI != E; ++OI) {
429    const Value *Idx = *OI;
430    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
431      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
432      if (Field) {
433        // N = N + Offset
434        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
435        // FIXME: This can be optimized by combining the add with a
436        // subsequent one.
437        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
438        if (N == 0)
439          // Unhandled operand. Halt "fast" selection and bail.
440          return false;
441        NIsKill = true;
442      }
443      Ty = StTy->getElementType(Field);
444    } else {
445      Ty = cast<SequentialType>(Ty)->getElementType();
446
447      // If this is a constant subscript, handle it quickly.
448      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
449        if (CI->isZero()) continue;
450        uint64_t Offs =
451          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
452        N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, Offs, VT);
453        if (N == 0)
454          // Unhandled operand. Halt "fast" selection and bail.
455          return false;
456        NIsKill = true;
457        continue;
458      }
459
460      // N = N + Idx * ElementSize;
461      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
462      std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx);
463      unsigned IdxN = Pair.first;
464      bool IdxNIsKill = Pair.second;
465      if (IdxN == 0)
466        // Unhandled operand. Halt "fast" selection and bail.
467        return false;
468
469      if (ElementSize != 1) {
470        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT);
471        if (IdxN == 0)
472          // Unhandled operand. Halt "fast" selection and bail.
473          return false;
474        IdxNIsKill = true;
475      }
476      N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill);
477      if (N == 0)
478        // Unhandled operand. Halt "fast" selection and bail.
479        return false;
480    }
481  }
482
483  // We successfully emitted code for the given LLVM Instruction.
484  UpdateValueMap(I, N);
485  return true;
486}
487
488bool FastISel::SelectCall(const User *I) {
489  const CallInst *Call = cast<CallInst>(I);
490
491  // Handle simple inline asms.
492  if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getArgOperand(0))) {
493    // Don't attempt to handle constraints.
494    if (!IA->getConstraintString().empty())
495      return false;
496
497    unsigned ExtraInfo = 0;
498    if (IA->hasSideEffects())
499      ExtraInfo |= InlineAsm::Extra_HasSideEffects;
500    if (IA->isAlignStack())
501      ExtraInfo |= InlineAsm::Extra_IsAlignStack;
502
503    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
504            TII.get(TargetOpcode::INLINEASM))
505      .addExternalSymbol(IA->getAsmString().c_str())
506      .addImm(ExtraInfo);
507    return true;
508  }
509
510  const Function *F = Call->getCalledFunction();
511  if (!F) return false;
512
513  // Handle selected intrinsic function calls.
514  switch (F->getIntrinsicID()) {
515  default: break;
516  case Intrinsic::dbg_declare: {
517    const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call);
518    if (!DIVariable(DI->getVariable()).Verify() ||
519        !FuncInfo.MF->getMMI().hasDebugInfo())
520      return true;
521
522    const Value *Address = DI->getAddress();
523    if (!Address || isa<UndefValue>(Address) || isa<AllocaInst>(Address))
524      return true;
525
526    unsigned Reg = 0;
527    unsigned Offset = 0;
528    if (const Argument *Arg = dyn_cast<Argument>(Address)) {
529      if (Arg->hasByValAttr()) {
530        // Byval arguments' frame index is recorded during argument lowering.
531        // Use this info directly.
532        Offset = FuncInfo.getByValArgumentFrameIndex(Arg);
533        if (Offset)
534          Reg = TRI.getFrameRegister(*FuncInfo.MF);
535      }
536    }
537    if (!Reg)
538      Reg = getRegForValue(Address);
539
540    if (Reg)
541      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
542              TII.get(TargetOpcode::DBG_VALUE))
543        .addReg(Reg, RegState::Debug).addImm(Offset)
544        .addMetadata(DI->getVariable());
545    return true;
546  }
547  case Intrinsic::dbg_value: {
548    // This form of DBG_VALUE is target-independent.
549    const DbgValueInst *DI = cast<DbgValueInst>(Call);
550    const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
551    const Value *V = DI->getValue();
552    if (!V) {
553      // Currently the optimizer can produce this; insert an undef to
554      // help debugging.  Probably the optimizer should not do this.
555      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
556        .addReg(0U).addImm(DI->getOffset())
557        .addMetadata(DI->getVariable());
558    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
559      if (CI->getBitWidth() > 64)
560        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
561          .addCImm(CI).addImm(DI->getOffset())
562          .addMetadata(DI->getVariable());
563      else
564        BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
565          .addImm(CI->getZExtValue()).addImm(DI->getOffset())
566          .addMetadata(DI->getVariable());
567    } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
568      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
569        .addFPImm(CF).addImm(DI->getOffset())
570        .addMetadata(DI->getVariable());
571    } else if (unsigned Reg = lookUpRegForValue(V)) {
572      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
573        .addReg(Reg, RegState::Debug).addImm(DI->getOffset())
574        .addMetadata(DI->getVariable());
575    } else {
576      // We can't yet handle anything else here because it would require
577      // generating code, thus altering codegen because of debug info.
578      DEBUG(dbgs() << "Dropping debug info for " << DI);
579    }
580    return true;
581  }
582  case Intrinsic::eh_exception: {
583    EVT VT = TLI.getValueType(Call->getType());
584    if (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)!=TargetLowering::Expand)
585      break;
586
587    assert(FuncInfo.MBB->isLandingPad() &&
588           "Call to eh.exception not in landing pad!");
589    unsigned Reg = TLI.getExceptionAddressRegister();
590    const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
591    unsigned ResultReg = createResultReg(RC);
592    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
593            ResultReg).addReg(Reg);
594    UpdateValueMap(Call, ResultReg);
595    return true;
596  }
597  case Intrinsic::eh_selector: {
598    EVT VT = TLI.getValueType(Call->getType());
599    if (TLI.getOperationAction(ISD::EHSELECTION, VT) != TargetLowering::Expand)
600      break;
601    if (FuncInfo.MBB->isLandingPad())
602      AddCatchInfo(*Call, &FuncInfo.MF->getMMI(), FuncInfo.MBB);
603    else {
604#ifndef NDEBUG
605      FuncInfo.CatchInfoLost.insert(Call);
606#endif
607      // FIXME: Mark exception selector register as live in.  Hack for PR1508.
608      unsigned Reg = TLI.getExceptionSelectorRegister();
609      if (Reg) FuncInfo.MBB->addLiveIn(Reg);
610    }
611
612    unsigned Reg = TLI.getExceptionSelectorRegister();
613    EVT SrcVT = TLI.getPointerTy();
614    const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
615    unsigned ResultReg = createResultReg(RC);
616    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
617            ResultReg).addReg(Reg);
618
619    bool ResultRegIsKill = hasTrivialKill(Call);
620
621    // Cast the register to the type of the selector.
622    if (SrcVT.bitsGT(MVT::i32))
623      ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
624                             ResultReg, ResultRegIsKill);
625    else if (SrcVT.bitsLT(MVT::i32))
626      ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
627                             ISD::SIGN_EXTEND, ResultReg, ResultRegIsKill);
628    if (ResultReg == 0)
629      // Unhandled operand. Halt "fast" selection and bail.
630      return false;
631
632    UpdateValueMap(Call, ResultReg);
633
634    return true;
635  }
636  case Intrinsic::objectsize: {
637    ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1));
638    unsigned long long Res = CI->isZero() ? -1ULL : 0;
639    Constant *ResCI = ConstantInt::get(Call->getType(), Res);
640    unsigned ResultReg = getRegForValue(ResCI);
641    if (ResultReg == 0)
642      return false;
643    UpdateValueMap(Call, ResultReg);
644    return true;
645  }
646  }
647
648  // An arbitrary call. Bail.
649  return false;
650}
651
652bool FastISel::SelectCast(const User *I, unsigned Opcode) {
653  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
654  EVT DstVT = TLI.getValueType(I->getType());
655
656  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
657      DstVT == MVT::Other || !DstVT.isSimple())
658    // Unhandled type. Halt "fast" selection and bail.
659    return false;
660
661  // Check if the destination type is legal.
662  if (!TLI.isTypeLegal(DstVT))
663    return false;
664
665  // Check if the source operand is legal.
666  if (!TLI.isTypeLegal(SrcVT))
667    return false;
668
669  unsigned InputReg = getRegForValue(I->getOperand(0));
670  if (!InputReg)
671    // Unhandled operand.  Halt "fast" selection and bail.
672    return false;
673
674  bool InputRegIsKill = hasTrivialKill(I->getOperand(0));
675
676  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
677                                  DstVT.getSimpleVT(),
678                                  Opcode,
679                                  InputReg, InputRegIsKill);
680  if (!ResultReg)
681    return false;
682
683  UpdateValueMap(I, ResultReg);
684  return true;
685}
686
687bool FastISel::SelectBitCast(const User *I) {
688  // If the bitcast doesn't change the type, just use the operand value.
689  if (I->getType() == I->getOperand(0)->getType()) {
690    unsigned Reg = getRegForValue(I->getOperand(0));
691    if (Reg == 0)
692      return false;
693    UpdateValueMap(I, Reg);
694    return true;
695  }
696
697  // Bitcasts of other values become reg-reg copies or BITCAST operators.
698  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
699  EVT DstVT = TLI.getValueType(I->getType());
700
701  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
702      DstVT == MVT::Other || !DstVT.isSimple() ||
703      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
704    // Unhandled type. Halt "fast" selection and bail.
705    return false;
706
707  unsigned Op0 = getRegForValue(I->getOperand(0));
708  if (Op0 == 0)
709    // Unhandled operand. Halt "fast" selection and bail.
710    return false;
711
712  bool Op0IsKill = hasTrivialKill(I->getOperand(0));
713
714  // First, try to perform the bitcast by inserting a reg-reg copy.
715  unsigned ResultReg = 0;
716  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
717    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
718    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
719    // Don't attempt a cross-class copy. It will likely fail.
720    if (SrcClass == DstClass) {
721      ResultReg = createResultReg(DstClass);
722      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
723              ResultReg).addReg(Op0);
724    }
725  }
726
727  // If the reg-reg copy failed, select a BITCAST opcode.
728  if (!ResultReg)
729    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
730                           ISD::BITCAST, Op0, Op0IsKill);
731
732  if (!ResultReg)
733    return false;
734
735  UpdateValueMap(I, ResultReg);
736  return true;
737}
738
739bool
740FastISel::SelectInstruction(const Instruction *I) {
741  // Just before the terminator instruction, insert instructions to
742  // feed PHI nodes in successor blocks.
743  if (isa<TerminatorInst>(I))
744    if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
745      return false;
746
747  DL = I->getDebugLoc();
748
749  // First, try doing target-independent selection.
750  if (SelectOperator(I, I->getOpcode())) {
751    DL = DebugLoc();
752    return true;
753  }
754
755  // Next, try calling the target to attempt to handle the instruction.
756  if (TargetSelectInstruction(I)) {
757    DL = DebugLoc();
758    return true;
759  }
760
761  DL = DebugLoc();
762  return false;
763}
764
765/// FastEmitBranch - Emit an unconditional branch to the given block,
766/// unless it is the immediate (fall-through) successor, and update
767/// the CFG.
768void
769FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DL) {
770  if (FuncInfo.MBB->isLayoutSuccessor(MSucc)) {
771    // The unconditional fall-through case, which needs no instructions.
772  } else {
773    // The unconditional branch case.
774    TII.InsertBranch(*FuncInfo.MBB, MSucc, NULL,
775                     SmallVector<MachineOperand, 0>(), DL);
776  }
777  FuncInfo.MBB->addSuccessor(MSucc);
778}
779
780/// SelectFNeg - Emit an FNeg operation.
781///
782bool
783FastISel::SelectFNeg(const User *I) {
784  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
785  if (OpReg == 0) return false;
786
787  bool OpRegIsKill = hasTrivialKill(I);
788
789  // If the target has ISD::FNEG, use it.
790  EVT VT = TLI.getValueType(I->getType());
791  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
792                                  ISD::FNEG, OpReg, OpRegIsKill);
793  if (ResultReg != 0) {
794    UpdateValueMap(I, ResultReg);
795    return true;
796  }
797
798  // Bitcast the value to integer, twiddle the sign bit with xor,
799  // and then bitcast it back to floating-point.
800  if (VT.getSizeInBits() > 64) return false;
801  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
802  if (!TLI.isTypeLegal(IntVT))
803    return false;
804
805  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
806                               ISD::BITCAST, OpReg, OpRegIsKill);
807  if (IntReg == 0)
808    return false;
809
810  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR,
811                                       IntReg, /*Kill=*/true,
812                                       UINT64_C(1) << (VT.getSizeInBits()-1),
813                                       IntVT.getSimpleVT());
814  if (IntResultReg == 0)
815    return false;
816
817  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
818                         ISD::BITCAST, IntResultReg, /*Kill=*/true);
819  if (ResultReg == 0)
820    return false;
821
822  UpdateValueMap(I, ResultReg);
823  return true;
824}
825
826bool
827FastISel::SelectExtractValue(const User *U) {
828  const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U);
829  if (!EVI)
830    return false;
831
832  // Make sure we only try to handle extracts with a legal result.  But also
833  // allow i1 because it's easy.
834  EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true);
835  if (!RealVT.isSimple())
836    return false;
837  MVT VT = RealVT.getSimpleVT();
838  if (!TLI.isTypeLegal(VT) && VT != MVT::i1)
839    return false;
840
841  const Value *Op0 = EVI->getOperand(0);
842  Type *AggTy = Op0->getType();
843
844  // Get the base result register.
845  unsigned ResultReg;
846  DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0);
847  if (I != FuncInfo.ValueMap.end())
848    ResultReg = I->second;
849  else if (isa<Instruction>(Op0))
850    ResultReg = FuncInfo.InitializeRegForValue(Op0);
851  else
852    return false; // fast-isel can't handle aggregate constants at the moment
853
854  // Get the actual result register, which is an offset from the base register.
855  unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices());
856
857  SmallVector<EVT, 4> AggValueVTs;
858  ComputeValueVTs(TLI, AggTy, AggValueVTs);
859
860  for (unsigned i = 0; i < VTIndex; i++)
861    ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]);
862
863  UpdateValueMap(EVI, ResultReg);
864  return true;
865}
866
867bool
868FastISel::SelectOperator(const User *I, unsigned Opcode) {
869  switch (Opcode) {
870  case Instruction::Add:
871    return SelectBinaryOp(I, ISD::ADD);
872  case Instruction::FAdd:
873    return SelectBinaryOp(I, ISD::FADD);
874  case Instruction::Sub:
875    return SelectBinaryOp(I, ISD::SUB);
876  case Instruction::FSub:
877    // FNeg is currently represented in LLVM IR as a special case of FSub.
878    if (BinaryOperator::isFNeg(I))
879      return SelectFNeg(I);
880    return SelectBinaryOp(I, ISD::FSUB);
881  case Instruction::Mul:
882    return SelectBinaryOp(I, ISD::MUL);
883  case Instruction::FMul:
884    return SelectBinaryOp(I, ISD::FMUL);
885  case Instruction::SDiv:
886    return SelectBinaryOp(I, ISD::SDIV);
887  case Instruction::UDiv:
888    return SelectBinaryOp(I, ISD::UDIV);
889  case Instruction::FDiv:
890    return SelectBinaryOp(I, ISD::FDIV);
891  case Instruction::SRem:
892    return SelectBinaryOp(I, ISD::SREM);
893  case Instruction::URem:
894    return SelectBinaryOp(I, ISD::UREM);
895  case Instruction::FRem:
896    return SelectBinaryOp(I, ISD::FREM);
897  case Instruction::Shl:
898    return SelectBinaryOp(I, ISD::SHL);
899  case Instruction::LShr:
900    return SelectBinaryOp(I, ISD::SRL);
901  case Instruction::AShr:
902    return SelectBinaryOp(I, ISD::SRA);
903  case Instruction::And:
904    return SelectBinaryOp(I, ISD::AND);
905  case Instruction::Or:
906    return SelectBinaryOp(I, ISD::OR);
907  case Instruction::Xor:
908    return SelectBinaryOp(I, ISD::XOR);
909
910  case Instruction::GetElementPtr:
911    return SelectGetElementPtr(I);
912
913  case Instruction::Br: {
914    const BranchInst *BI = cast<BranchInst>(I);
915
916    if (BI->isUnconditional()) {
917      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
918      MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc];
919      FastEmitBranch(MSucc, BI->getDebugLoc());
920      return true;
921    }
922
923    // Conditional branches are not handed yet.
924    // Halt "fast" selection and bail.
925    return false;
926  }
927
928  case Instruction::Unreachable:
929    // Nothing to emit.
930    return true;
931
932  case Instruction::Alloca:
933    // FunctionLowering has the static-sized case covered.
934    if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I)))
935      return true;
936
937    // Dynamic-sized alloca is not handled yet.
938    return false;
939
940  case Instruction::Call:
941    return SelectCall(I);
942
943  case Instruction::BitCast:
944    return SelectBitCast(I);
945
946  case Instruction::FPToSI:
947    return SelectCast(I, ISD::FP_TO_SINT);
948  case Instruction::ZExt:
949    return SelectCast(I, ISD::ZERO_EXTEND);
950  case Instruction::SExt:
951    return SelectCast(I, ISD::SIGN_EXTEND);
952  case Instruction::Trunc:
953    return SelectCast(I, ISD::TRUNCATE);
954  case Instruction::SIToFP:
955    return SelectCast(I, ISD::SINT_TO_FP);
956
957  case Instruction::IntToPtr: // Deliberate fall-through.
958  case Instruction::PtrToInt: {
959    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
960    EVT DstVT = TLI.getValueType(I->getType());
961    if (DstVT.bitsGT(SrcVT))
962      return SelectCast(I, ISD::ZERO_EXTEND);
963    if (DstVT.bitsLT(SrcVT))
964      return SelectCast(I, ISD::TRUNCATE);
965    unsigned Reg = getRegForValue(I->getOperand(0));
966    if (Reg == 0) return false;
967    UpdateValueMap(I, Reg);
968    return true;
969  }
970
971  case Instruction::ExtractValue:
972    return SelectExtractValue(I);
973
974  case Instruction::PHI:
975    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
976
977  default:
978    // Unhandled instruction. Halt "fast" selection and bail.
979    return false;
980  }
981}
982
983FastISel::FastISel(FunctionLoweringInfo &funcInfo)
984  : FuncInfo(funcInfo),
985    MRI(FuncInfo.MF->getRegInfo()),
986    MFI(*FuncInfo.MF->getFrameInfo()),
987    MCP(*FuncInfo.MF->getConstantPool()),
988    TM(FuncInfo.MF->getTarget()),
989    TD(*TM.getTargetData()),
990    TII(*TM.getInstrInfo()),
991    TLI(*TM.getTargetLowering()),
992    TRI(*TM.getRegisterInfo()) {
993}
994
995FastISel::~FastISel() {}
996
997unsigned FastISel::FastEmit_(MVT, MVT,
998                             unsigned) {
999  return 0;
1000}
1001
1002unsigned FastISel::FastEmit_r(MVT, MVT,
1003                              unsigned,
1004                              unsigned /*Op0*/, bool /*Op0IsKill*/) {
1005  return 0;
1006}
1007
1008unsigned FastISel::FastEmit_rr(MVT, MVT,
1009                               unsigned,
1010                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1011                               unsigned /*Op1*/, bool /*Op1IsKill*/) {
1012  return 0;
1013}
1014
1015unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
1016  return 0;
1017}
1018
1019unsigned FastISel::FastEmit_f(MVT, MVT,
1020                              unsigned, const ConstantFP * /*FPImm*/) {
1021  return 0;
1022}
1023
1024unsigned FastISel::FastEmit_ri(MVT, MVT,
1025                               unsigned,
1026                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1027                               uint64_t /*Imm*/) {
1028  return 0;
1029}
1030
1031unsigned FastISel::FastEmit_rf(MVT, MVT,
1032                               unsigned,
1033                               unsigned /*Op0*/, bool /*Op0IsKill*/,
1034                               const ConstantFP * /*FPImm*/) {
1035  return 0;
1036}
1037
1038unsigned FastISel::FastEmit_rri(MVT, MVT,
1039                                unsigned,
1040                                unsigned /*Op0*/, bool /*Op0IsKill*/,
1041                                unsigned /*Op1*/, bool /*Op1IsKill*/,
1042                                uint64_t /*Imm*/) {
1043  return 0;
1044}
1045
1046/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
1047/// to emit an instruction with an immediate operand using FastEmit_ri.
1048/// If that fails, it materializes the immediate into a register and try
1049/// FastEmit_rr instead.
1050unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
1051                                unsigned Op0, bool Op0IsKill,
1052                                uint64_t Imm, MVT ImmType) {
1053  // If this is a multiply by a power of two, emit this as a shift left.
1054  if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) {
1055    Opcode = ISD::SHL;
1056    Imm = Log2_64(Imm);
1057  } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) {
1058    // div x, 8 -> srl x, 3
1059    Opcode = ISD::SRL;
1060    Imm = Log2_64(Imm);
1061  }
1062
1063  // Horrible hack (to be removed), check to make sure shift amounts are
1064  // in-range.
1065  if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) &&
1066      Imm >= VT.getSizeInBits())
1067    return 0;
1068
1069  // First check if immediate type is legal. If not, we can't use the ri form.
1070  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm);
1071  if (ResultReg != 0)
1072    return ResultReg;
1073  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
1074  if (MaterialReg == 0) {
1075    // This is a bit ugly/slow, but failing here means falling out of
1076    // fast-isel, which would be very slow.
1077    IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(),
1078                                              VT.getSizeInBits());
1079    MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm));
1080  }
1081  return FastEmit_rr(VT, VT, Opcode,
1082                     Op0, Op0IsKill,
1083                     MaterialReg, /*Kill=*/true);
1084}
1085
1086unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
1087  return MRI.createVirtualRegister(RC);
1088}
1089
1090unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
1091                                 const TargetRegisterClass* RC) {
1092  unsigned ResultReg = createResultReg(RC);
1093  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1094
1095  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg);
1096  return ResultReg;
1097}
1098
1099unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
1100                                  const TargetRegisterClass *RC,
1101                                  unsigned Op0, bool Op0IsKill) {
1102  unsigned ResultReg = createResultReg(RC);
1103  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1104
1105  if (II.getNumDefs() >= 1)
1106    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1107      .addReg(Op0, Op0IsKill * RegState::Kill);
1108  else {
1109    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1110      .addReg(Op0, Op0IsKill * RegState::Kill);
1111    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1112            ResultReg).addReg(II.ImplicitDefs[0]);
1113  }
1114
1115  return ResultReg;
1116}
1117
1118unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
1119                                   const TargetRegisterClass *RC,
1120                                   unsigned Op0, bool Op0IsKill,
1121                                   unsigned Op1, bool Op1IsKill) {
1122  unsigned ResultReg = createResultReg(RC);
1123  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1124
1125  if (II.getNumDefs() >= 1)
1126    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1127      .addReg(Op0, Op0IsKill * RegState::Kill)
1128      .addReg(Op1, Op1IsKill * RegState::Kill);
1129  else {
1130    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1131      .addReg(Op0, Op0IsKill * RegState::Kill)
1132      .addReg(Op1, Op1IsKill * RegState::Kill);
1133    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1134            ResultReg).addReg(II.ImplicitDefs[0]);
1135  }
1136  return ResultReg;
1137}
1138
1139unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode,
1140                                   const TargetRegisterClass *RC,
1141                                   unsigned Op0, bool Op0IsKill,
1142                                   unsigned Op1, bool Op1IsKill,
1143                                   unsigned Op2, bool Op2IsKill) {
1144  unsigned ResultReg = createResultReg(RC);
1145  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1146
1147  if (II.getNumDefs() >= 1)
1148    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1149      .addReg(Op0, Op0IsKill * RegState::Kill)
1150      .addReg(Op1, Op1IsKill * RegState::Kill)
1151      .addReg(Op2, Op2IsKill * RegState::Kill);
1152  else {
1153    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1154      .addReg(Op0, Op0IsKill * RegState::Kill)
1155      .addReg(Op1, Op1IsKill * RegState::Kill)
1156      .addReg(Op2, Op2IsKill * RegState::Kill);
1157    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1158            ResultReg).addReg(II.ImplicitDefs[0]);
1159  }
1160  return ResultReg;
1161}
1162
1163unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
1164                                   const TargetRegisterClass *RC,
1165                                   unsigned Op0, bool Op0IsKill,
1166                                   uint64_t Imm) {
1167  unsigned ResultReg = createResultReg(RC);
1168  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1169
1170  if (II.getNumDefs() >= 1)
1171    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1172      .addReg(Op0, Op0IsKill * RegState::Kill)
1173      .addImm(Imm);
1174  else {
1175    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1176      .addReg(Op0, Op0IsKill * RegState::Kill)
1177      .addImm(Imm);
1178    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1179            ResultReg).addReg(II.ImplicitDefs[0]);
1180  }
1181  return ResultReg;
1182}
1183
1184unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode,
1185                                   const TargetRegisterClass *RC,
1186                                   unsigned Op0, bool Op0IsKill,
1187                                   uint64_t Imm1, uint64_t Imm2) {
1188  unsigned ResultReg = createResultReg(RC);
1189  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1190
1191  if (II.getNumDefs() >= 1)
1192    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1193      .addReg(Op0, Op0IsKill * RegState::Kill)
1194      .addImm(Imm1)
1195      .addImm(Imm2);
1196  else {
1197    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1198      .addReg(Op0, Op0IsKill * RegState::Kill)
1199      .addImm(Imm1)
1200      .addImm(Imm2);
1201    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1202            ResultReg).addReg(II.ImplicitDefs[0]);
1203  }
1204  return ResultReg;
1205}
1206
1207unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
1208                                   const TargetRegisterClass *RC,
1209                                   unsigned Op0, bool Op0IsKill,
1210                                   const ConstantFP *FPImm) {
1211  unsigned ResultReg = createResultReg(RC);
1212  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1213
1214  if (II.getNumDefs() >= 1)
1215    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1216      .addReg(Op0, Op0IsKill * RegState::Kill)
1217      .addFPImm(FPImm);
1218  else {
1219    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1220      .addReg(Op0, Op0IsKill * RegState::Kill)
1221      .addFPImm(FPImm);
1222    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1223            ResultReg).addReg(II.ImplicitDefs[0]);
1224  }
1225  return ResultReg;
1226}
1227
1228unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
1229                                    const TargetRegisterClass *RC,
1230                                    unsigned Op0, bool Op0IsKill,
1231                                    unsigned Op1, bool Op1IsKill,
1232                                    uint64_t Imm) {
1233  unsigned ResultReg = createResultReg(RC);
1234  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1235
1236  if (II.getNumDefs() >= 1)
1237    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1238      .addReg(Op0, Op0IsKill * RegState::Kill)
1239      .addReg(Op1, Op1IsKill * RegState::Kill)
1240      .addImm(Imm);
1241  else {
1242    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
1243      .addReg(Op0, Op0IsKill * RegState::Kill)
1244      .addReg(Op1, Op1IsKill * RegState::Kill)
1245      .addImm(Imm);
1246    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1247            ResultReg).addReg(II.ImplicitDefs[0]);
1248  }
1249  return ResultReg;
1250}
1251
1252unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
1253                                  const TargetRegisterClass *RC,
1254                                  uint64_t Imm) {
1255  unsigned ResultReg = createResultReg(RC);
1256  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1257
1258  if (II.getNumDefs() >= 1)
1259    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg).addImm(Imm);
1260  else {
1261    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm);
1262    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1263            ResultReg).addReg(II.ImplicitDefs[0]);
1264  }
1265  return ResultReg;
1266}
1267
1268unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode,
1269                                  const TargetRegisterClass *RC,
1270                                  uint64_t Imm1, uint64_t Imm2) {
1271  unsigned ResultReg = createResultReg(RC);
1272  const MCInstrDesc &II = TII.get(MachineInstOpcode);
1273
1274  if (II.getNumDefs() >= 1)
1275    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
1276      .addImm(Imm1).addImm(Imm2);
1277  else {
1278    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II).addImm(Imm1).addImm(Imm2);
1279    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
1280            ResultReg).addReg(II.ImplicitDefs[0]);
1281  }
1282  return ResultReg;
1283}
1284
1285unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1286                                              unsigned Op0, bool Op0IsKill,
1287                                              uint32_t Idx) {
1288  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1289  assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
1290         "Cannot yet extract from physregs");
1291  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
1292          DL, TII.get(TargetOpcode::COPY), ResultReg)
1293    .addReg(Op0, getKillRegState(Op0IsKill), Idx);
1294  return ResultReg;
1295}
1296
1297/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1298/// with all but the least significant bit set to zero.
1299unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) {
1300  return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1);
1301}
1302
1303/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1304/// Emit code to ensure constants are copied into registers when needed.
1305/// Remember the virtual registers that need to be added to the Machine PHI
1306/// nodes as input.  We cannot just directly add them, because expansion
1307/// might result in multiple MBB's for one BB.  As such, the start of the
1308/// BB might correspond to a different MBB than the end.
1309bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1310  const TerminatorInst *TI = LLVMBB->getTerminator();
1311
1312  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1313  unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size();
1314
1315  // Check successor nodes' PHI nodes that expect a constant to be available
1316  // from this block.
1317  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1318    const BasicBlock *SuccBB = TI->getSuccessor(succ);
1319    if (!isa<PHINode>(SuccBB->begin())) continue;
1320    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
1321
1322    // If this terminator has multiple identical successors (common for
1323    // switches), only handle each succ once.
1324    if (!SuccsHandled.insert(SuccMBB)) continue;
1325
1326    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1327
1328    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1329    // nodes and Machine PHI nodes, but the incoming operands have not been
1330    // emitted yet.
1331    for (BasicBlock::const_iterator I = SuccBB->begin();
1332         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1333
1334      // Ignore dead phi's.
1335      if (PN->use_empty()) continue;
1336
1337      // Only handle legal types. Two interesting things to note here. First,
1338      // by bailing out early, we may leave behind some dead instructions,
1339      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1340      // own moves. Second, this check is necessary because FastISel doesn't
1341      // use CreateRegs to create registers, so it always creates
1342      // exactly one register for each non-void instruction.
1343      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1344      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1345        // Promote MVT::i1.
1346        if (VT == MVT::i1)
1347          VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1348        else {
1349          FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1350          return false;
1351        }
1352      }
1353
1354      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1355
1356      // Set the DebugLoc for the copy. Prefer the location of the operand
1357      // if there is one; use the location of the PHI otherwise.
1358      DL = PN->getDebugLoc();
1359      if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp))
1360        DL = Inst->getDebugLoc();
1361
1362      unsigned Reg = getRegForValue(PHIOp);
1363      if (Reg == 0) {
1364        FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1365        return false;
1366      }
1367      FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1368      DL = DebugLoc();
1369    }
1370  }
1371
1372  return true;
1373}
1374