FastISel.cpp revision e8c92dd439581bec7e3516cbdbea74e2e60fe7f0
1//===-- FastISel.cpp - Implementation of the FastISel class ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/Analysis/DebugInfo.h"
51#include "llvm/Target/TargetData.h"
52#include "llvm/Target/TargetInstrInfo.h"
53#include "llvm/Target/TargetLowering.h"
54#include "llvm/Target/TargetMachine.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "FunctionLoweringInfo.h"
57using namespace llvm;
58
59unsigned FastISel::getRegForValue(const Value *V) {
60  EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true);
61  // Don't handle non-simple values in FastISel.
62  if (!RealVT.isSimple())
63    return 0;
64
65  // Ignore illegal types. We must do this before looking up the value
66  // in ValueMap because Arguments are given virtual registers regardless
67  // of whether FastISel can handle them.
68  MVT VT = RealVT.getSimpleVT();
69  if (!TLI.isTypeLegal(VT)) {
70    // Promote MVT::i1 to a legal type though, because it's common and easy.
71    if (VT == MVT::i1)
72      VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT();
73    else
74      return 0;
75  }
76
77  // Look up the value to see if we already have a register for it. We
78  // cache values defined by Instructions across blocks, and other values
79  // only locally. This is because Instructions already have the SSA
80  // def-dominates-use requirement enforced.
81  if (ValueMap.count(V))
82    return ValueMap[V];
83  unsigned Reg = LocalValueMap[V];
84  if (Reg != 0)
85    return Reg;
86
87  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
88    if (CI->getValue().getActiveBits() <= 64)
89      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
90  } else if (isa<AllocaInst>(V)) {
91    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
92  } else if (isa<ConstantPointerNull>(V)) {
93    // Translate this as an integer zero so that it can be
94    // local-CSE'd with actual integer zeros.
95    Reg =
96      getRegForValue(Constant::getNullValue(TD.getIntPtrType(V->getContext())));
97  } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
98    // Try to emit the constant directly.
99    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
100
101    if (!Reg) {
102      // Try to emit the constant by using an integer constant with a cast.
103      const APFloat &Flt = CF->getValueAPF();
104      EVT IntVT = TLI.getPointerTy();
105
106      uint64_t x[2];
107      uint32_t IntBitWidth = IntVT.getSizeInBits();
108      bool isExact;
109      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
110                                APFloat::rmTowardZero, &isExact);
111      if (isExact) {
112        APInt IntVal(IntBitWidth, 2, x);
113
114        unsigned IntegerReg =
115          getRegForValue(ConstantInt::get(V->getContext(), IntVal));
116        if (IntegerReg != 0)
117          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
118      }
119    }
120  } else if (const Operator *Op = dyn_cast<Operator>(V)) {
121    if (!SelectOperator(Op, Op->getOpcode())) return 0;
122    Reg = LocalValueMap[Op];
123  } else if (isa<UndefValue>(V)) {
124    Reg = createResultReg(TLI.getRegClassFor(VT));
125    BuildMI(MBB, DL, TII.get(TargetOpcode::IMPLICIT_DEF), Reg);
126  }
127
128  // If target-independent code couldn't handle the value, give target-specific
129  // code a try.
130  if (!Reg && isa<Constant>(V))
131    Reg = TargetMaterializeConstant(cast<Constant>(V));
132
133  // Don't cache constant materializations in the general ValueMap.
134  // To do so would require tracking what uses they dominate.
135  if (Reg != 0)
136    LocalValueMap[V] = Reg;
137  return Reg;
138}
139
140unsigned FastISel::lookUpRegForValue(const Value *V) {
141  // Look up the value to see if we already have a register for it. We
142  // cache values defined by Instructions across blocks, and other values
143  // only locally. This is because Instructions already have the SSA
144  // def-dominatess-use requirement enforced.
145  if (ValueMap.count(V))
146    return ValueMap[V];
147  return LocalValueMap[V];
148}
149
150/// UpdateValueMap - Update the value map to include the new mapping for this
151/// instruction, or insert an extra copy to get the result in a previous
152/// determined register.
153/// NOTE: This is only necessary because we might select a block that uses
154/// a value before we select the block that defines the value.  It might be
155/// possible to fix this by selecting blocks in reverse postorder.
156unsigned FastISel::UpdateValueMap(const Value *I, unsigned Reg) {
157  if (!isa<Instruction>(I)) {
158    LocalValueMap[I] = Reg;
159    return Reg;
160  }
161
162  unsigned &AssignedReg = ValueMap[I];
163  if (AssignedReg == 0)
164    AssignedReg = Reg;
165  else if (Reg != AssignedReg) {
166    const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
167    TII.copyRegToReg(*MBB, MBB->end(), AssignedReg,
168                     Reg, RegClass, RegClass);
169  }
170  return AssignedReg;
171}
172
173unsigned FastISel::getRegForGEPIndex(const Value *Idx) {
174  unsigned IdxN = getRegForValue(Idx);
175  if (IdxN == 0)
176    // Unhandled operand. Halt "fast" selection and bail.
177    return 0;
178
179  // If the index is smaller or larger than intptr_t, truncate or extend it.
180  MVT PtrVT = TLI.getPointerTy();
181  EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false);
182  if (IdxVT.bitsLT(PtrVT))
183    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, IdxN);
184  else if (IdxVT.bitsGT(PtrVT))
185    IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, IdxN);
186  return IdxN;
187}
188
189/// SelectBinaryOp - Select and emit code for a binary operator instruction,
190/// which has an opcode which directly corresponds to the given ISD opcode.
191///
192bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) {
193  EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true);
194  if (VT == MVT::Other || !VT.isSimple())
195    // Unhandled type. Halt "fast" selection and bail.
196    return false;
197
198  // We only handle legal types. For example, on x86-32 the instruction
199  // selector contains all of the 64-bit instructions from x86-64,
200  // under the assumption that i64 won't be used if the target doesn't
201  // support it.
202  if (!TLI.isTypeLegal(VT)) {
203    // MVT::i1 is special. Allow AND, OR, or XOR because they
204    // don't require additional zeroing, which makes them easy.
205    if (VT == MVT::i1 &&
206        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
207         ISDOpcode == ISD::XOR))
208      VT = TLI.getTypeToTransformTo(I->getContext(), VT);
209    else
210      return false;
211  }
212
213  unsigned Op0 = getRegForValue(I->getOperand(0));
214  if (Op0 == 0)
215    // Unhandled operand. Halt "fast" selection and bail.
216    return false;
217
218  // Check if the second operand is a constant and handle it appropriately.
219  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
220    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
221                                     ISDOpcode, Op0, CI->getZExtValue());
222    if (ResultReg != 0) {
223      // We successfully emitted code for the given LLVM Instruction.
224      UpdateValueMap(I, ResultReg);
225      return true;
226    }
227  }
228
229  // Check if the second operand is a constant float.
230  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
231    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
232                                     ISDOpcode, Op0, CF);
233    if (ResultReg != 0) {
234      // We successfully emitted code for the given LLVM Instruction.
235      UpdateValueMap(I, ResultReg);
236      return true;
237    }
238  }
239
240  unsigned Op1 = getRegForValue(I->getOperand(1));
241  if (Op1 == 0)
242    // Unhandled operand. Halt "fast" selection and bail.
243    return false;
244
245  // Now we have both operands in registers. Emit the instruction.
246  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
247                                   ISDOpcode, Op0, Op1);
248  if (ResultReg == 0)
249    // Target-specific code wasn't able to find a machine opcode for
250    // the given ISD opcode and type. Halt "fast" selection and bail.
251    return false;
252
253  // We successfully emitted code for the given LLVM Instruction.
254  UpdateValueMap(I, ResultReg);
255  return true;
256}
257
258bool FastISel::SelectGetElementPtr(const User *I) {
259  unsigned N = getRegForValue(I->getOperand(0));
260  if (N == 0)
261    // Unhandled operand. Halt "fast" selection and bail.
262    return false;
263
264  const Type *Ty = I->getOperand(0)->getType();
265  MVT VT = TLI.getPointerTy();
266  for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1,
267       E = I->op_end(); OI != E; ++OI) {
268    const Value *Idx = *OI;
269    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
270      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
271      if (Field) {
272        // N = N + Offset
273        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
274        // FIXME: This can be optimized by combining the add with a
275        // subsequent one.
276        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
277        if (N == 0)
278          // Unhandled operand. Halt "fast" selection and bail.
279          return false;
280      }
281      Ty = StTy->getElementType(Field);
282    } else {
283      Ty = cast<SequentialType>(Ty)->getElementType();
284
285      // If this is a constant subscript, handle it quickly.
286      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
287        if (CI->getZExtValue() == 0) continue;
288        uint64_t Offs =
289          TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
290        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
291        if (N == 0)
292          // Unhandled operand. Halt "fast" selection and bail.
293          return false;
294        continue;
295      }
296
297      // N = N + Idx * ElementSize;
298      uint64_t ElementSize = TD.getTypeAllocSize(Ty);
299      unsigned IdxN = getRegForGEPIndex(Idx);
300      if (IdxN == 0)
301        // Unhandled operand. Halt "fast" selection and bail.
302        return false;
303
304      if (ElementSize != 1) {
305        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
306        if (IdxN == 0)
307          // Unhandled operand. Halt "fast" selection and bail.
308          return false;
309      }
310      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
311      if (N == 0)
312        // Unhandled operand. Halt "fast" selection and bail.
313        return false;
314    }
315  }
316
317  // We successfully emitted code for the given LLVM Instruction.
318  UpdateValueMap(I, N);
319  return true;
320}
321
322bool FastISel::SelectCall(const User *I) {
323  const Function *F = cast<CallInst>(I)->getCalledFunction();
324  if (!F) return false;
325
326  // Handle selected intrinsic function calls.
327  unsigned IID = F->getIntrinsicID();
328  switch (IID) {
329  default: break;
330  case Intrinsic::dbg_declare: {
331    const DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
332    if (!DIDescriptor::ValidDebugInfo(DI->getVariable(), CodeGenOpt::None) ||
333        !MF.getMMI().hasDebugInfo())
334      return true;
335
336    const Value *Address = DI->getAddress();
337    if (!Address)
338      return true;
339    if (isa<UndefValue>(Address))
340      return true;
341    const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
342    // Don't handle byval struct arguments or VLAs, for example.
343    if (!AI) break;
344    DenseMap<const AllocaInst*, int>::iterator SI =
345      StaticAllocaMap.find(AI);
346    if (SI == StaticAllocaMap.end()) break; // VLAs.
347    int FI = SI->second;
348    if (!DI->getDebugLoc().isUnknown())
349      MF.getMMI().setVariableDbgInfo(DI->getVariable(), FI, DI->getDebugLoc());
350
351    // Building the map above is target independent.  Generating DBG_VALUE
352    // inline is target dependent; do this now.
353    (void)TargetSelectInstruction(cast<Instruction>(I));
354    return true;
355  }
356  case Intrinsic::dbg_value: {
357    // This form of DBG_VALUE is target-independent.
358    const DbgValueInst *DI = cast<DbgValueInst>(I);
359    const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
360    const Value *V = DI->getValue();
361    if (!V) {
362      // Currently the optimizer can produce this; insert an undef to
363      // help debugging.  Probably the optimizer should not do this.
364      BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()).
365                                     addMetadata(DI->getVariable());
366    } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
367      BuildMI(MBB, DL, II).addImm(CI->getZExtValue()).addImm(DI->getOffset()).
368                                     addMetadata(DI->getVariable());
369    } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
370      BuildMI(MBB, DL, II).addFPImm(CF).addImm(DI->getOffset()).
371                                     addMetadata(DI->getVariable());
372    } else if (unsigned Reg = lookUpRegForValue(V)) {
373      BuildMI(MBB, DL, II).addReg(Reg, RegState::Debug).addImm(DI->getOffset()).
374                                     addMetadata(DI->getVariable());
375    } else {
376      // We can't yet handle anything else here because it would require
377      // generating code, thus altering codegen because of debug info.
378      // Insert an undef so we can see what we dropped.
379      BuildMI(MBB, DL, II).addReg(0U).addImm(DI->getOffset()).
380                                     addMetadata(DI->getVariable());
381    }
382    return true;
383  }
384  case Intrinsic::eh_exception: {
385    EVT VT = TLI.getValueType(I->getType());
386    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
387    default: break;
388    case TargetLowering::Expand: {
389      assert(MBB->isLandingPad() && "Call to eh.exception not in landing pad!");
390      unsigned Reg = TLI.getExceptionAddressRegister();
391      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
392      unsigned ResultReg = createResultReg(RC);
393      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
394                                           Reg, RC, RC);
395      assert(InsertedCopy && "Can't copy address registers!");
396      InsertedCopy = InsertedCopy;
397      UpdateValueMap(I, ResultReg);
398      return true;
399    }
400    }
401    break;
402  }
403  case Intrinsic::eh_selector: {
404    EVT VT = TLI.getValueType(I->getType());
405    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
406    default: break;
407    case TargetLowering::Expand: {
408      if (MBB->isLandingPad())
409        AddCatchInfo(*cast<CallInst>(I), &MF.getMMI(), MBB);
410      else {
411#ifndef NDEBUG
412        CatchInfoLost.insert(cast<CallInst>(I));
413#endif
414        // FIXME: Mark exception selector register as live in.  Hack for PR1508.
415        unsigned Reg = TLI.getExceptionSelectorRegister();
416        if (Reg) MBB->addLiveIn(Reg);
417      }
418
419      unsigned Reg = TLI.getExceptionSelectorRegister();
420      EVT SrcVT = TLI.getPointerTy();
421      const TargetRegisterClass *RC = TLI.getRegClassFor(SrcVT);
422      unsigned ResultReg = createResultReg(RC);
423      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, Reg,
424                                           RC, RC);
425      assert(InsertedCopy && "Can't copy address registers!");
426      InsertedCopy = InsertedCopy;
427
428      // Cast the register to the type of the selector.
429      if (SrcVT.bitsGT(MVT::i32))
430        ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32, ISD::TRUNCATE,
431                               ResultReg);
432      else if (SrcVT.bitsLT(MVT::i32))
433        ResultReg = FastEmit_r(SrcVT.getSimpleVT(), MVT::i32,
434                               ISD::SIGN_EXTEND, ResultReg);
435      if (ResultReg == 0)
436        // Unhandled operand. Halt "fast" selection and bail.
437        return false;
438
439      UpdateValueMap(I, ResultReg);
440
441      return true;
442    }
443    }
444    break;
445  }
446  }
447
448  // An arbitrary call. Bail.
449  return false;
450}
451
452bool FastISel::SelectCast(const User *I, unsigned Opcode) {
453  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
454  EVT DstVT = TLI.getValueType(I->getType());
455
456  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
457      DstVT == MVT::Other || !DstVT.isSimple())
458    // Unhandled type. Halt "fast" selection and bail.
459    return false;
460
461  // Check if the destination type is legal. Or as a special case,
462  // it may be i1 if we're doing a truncate because that's
463  // easy and somewhat common.
464  if (!TLI.isTypeLegal(DstVT))
465    if (DstVT != MVT::i1 || Opcode != ISD::TRUNCATE)
466      // Unhandled type. Halt "fast" selection and bail.
467      return false;
468
469  // Check if the source operand is legal. Or as a special case,
470  // it may be i1 if we're doing zero-extension because that's
471  // easy and somewhat common.
472  if (!TLI.isTypeLegal(SrcVT))
473    if (SrcVT != MVT::i1 || Opcode != ISD::ZERO_EXTEND)
474      // Unhandled type. Halt "fast" selection and bail.
475      return false;
476
477  unsigned InputReg = getRegForValue(I->getOperand(0));
478  if (!InputReg)
479    // Unhandled operand.  Halt "fast" selection and bail.
480    return false;
481
482  // If the operand is i1, arrange for the high bits in the register to be zero.
483  if (SrcVT == MVT::i1) {
484   SrcVT = TLI.getTypeToTransformTo(I->getContext(), SrcVT);
485   InputReg = FastEmitZExtFromI1(SrcVT.getSimpleVT(), InputReg);
486   if (!InputReg)
487     return false;
488  }
489  // If the result is i1, truncate to the target's type for i1 first.
490  if (DstVT == MVT::i1)
491    DstVT = TLI.getTypeToTransformTo(I->getContext(), DstVT);
492
493  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
494                                  DstVT.getSimpleVT(),
495                                  Opcode,
496                                  InputReg);
497  if (!ResultReg)
498    return false;
499
500  UpdateValueMap(I, ResultReg);
501  return true;
502}
503
504bool FastISel::SelectBitCast(const User *I) {
505  // If the bitcast doesn't change the type, just use the operand value.
506  if (I->getType() == I->getOperand(0)->getType()) {
507    unsigned Reg = getRegForValue(I->getOperand(0));
508    if (Reg == 0)
509      return false;
510    UpdateValueMap(I, Reg);
511    return true;
512  }
513
514  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
515  EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
516  EVT DstVT = TLI.getValueType(I->getType());
517
518  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
519      DstVT == MVT::Other || !DstVT.isSimple() ||
520      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
521    // Unhandled type. Halt "fast" selection and bail.
522    return false;
523
524  unsigned Op0 = getRegForValue(I->getOperand(0));
525  if (Op0 == 0)
526    // Unhandled operand. Halt "fast" selection and bail.
527    return false;
528
529  // First, try to perform the bitcast by inserting a reg-reg copy.
530  unsigned ResultReg = 0;
531  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
532    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
533    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
534    ResultReg = createResultReg(DstClass);
535
536    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
537                                         Op0, DstClass, SrcClass);
538    if (!InsertedCopy)
539      ResultReg = 0;
540  }
541
542  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
543  if (!ResultReg)
544    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
545                           ISD::BIT_CONVERT, Op0);
546
547  if (!ResultReg)
548    return false;
549
550  UpdateValueMap(I, ResultReg);
551  return true;
552}
553
554bool
555FastISel::SelectInstruction(const Instruction *I) {
556  // Just before the terminator instruction, insert instructions to
557  // feed PHI nodes in successor blocks.
558  if (isa<TerminatorInst>(I))
559    if (!HandlePHINodesInSuccessorBlocks(I->getParent()))
560      return false;
561
562  DL = I->getDebugLoc();
563
564  // First, try doing target-independent selection.
565  if (SelectOperator(I, I->getOpcode())) {
566    DL = DebugLoc();
567    return true;
568  }
569
570  // Next, try calling the target to attempt to handle the instruction.
571  if (TargetSelectInstruction(I)) {
572    DL = DebugLoc();
573    return true;
574  }
575
576  DL = DebugLoc();
577  return false;
578}
579
580/// FastEmitBranch - Emit an unconditional branch to the given block,
581/// unless it is the immediate (fall-through) successor, and update
582/// the CFG.
583void
584FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
585  if (MBB->isLayoutSuccessor(MSucc)) {
586    // The unconditional fall-through case, which needs no instructions.
587  } else {
588    // The unconditional branch case.
589    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
590  }
591  MBB->addSuccessor(MSucc);
592}
593
594/// SelectFNeg - Emit an FNeg operation.
595///
596bool
597FastISel::SelectFNeg(const User *I) {
598  unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I));
599  if (OpReg == 0) return false;
600
601  // If the target has ISD::FNEG, use it.
602  EVT VT = TLI.getValueType(I->getType());
603  unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(),
604                                  ISD::FNEG, OpReg);
605  if (ResultReg != 0) {
606    UpdateValueMap(I, ResultReg);
607    return true;
608  }
609
610  // Bitcast the value to integer, twiddle the sign bit with xor,
611  // and then bitcast it back to floating-point.
612  if (VT.getSizeInBits() > 64) return false;
613  EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits());
614  if (!TLI.isTypeLegal(IntVT))
615    return false;
616
617  unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(),
618                               ISD::BIT_CONVERT, OpReg);
619  if (IntReg == 0)
620    return false;
621
622  unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, IntReg,
623                                       UINT64_C(1) << (VT.getSizeInBits()-1),
624                                       IntVT.getSimpleVT());
625  if (IntResultReg == 0)
626    return false;
627
628  ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(),
629                         ISD::BIT_CONVERT, IntResultReg);
630  if (ResultReg == 0)
631    return false;
632
633  UpdateValueMap(I, ResultReg);
634  return true;
635}
636
637bool
638FastISel::SelectOperator(const User *I, unsigned Opcode) {
639  switch (Opcode) {
640  case Instruction::Add:
641    return SelectBinaryOp(I, ISD::ADD);
642  case Instruction::FAdd:
643    return SelectBinaryOp(I, ISD::FADD);
644  case Instruction::Sub:
645    return SelectBinaryOp(I, ISD::SUB);
646  case Instruction::FSub:
647    // FNeg is currently represented in LLVM IR as a special case of FSub.
648    if (BinaryOperator::isFNeg(I))
649      return SelectFNeg(I);
650    return SelectBinaryOp(I, ISD::FSUB);
651  case Instruction::Mul:
652    return SelectBinaryOp(I, ISD::MUL);
653  case Instruction::FMul:
654    return SelectBinaryOp(I, ISD::FMUL);
655  case Instruction::SDiv:
656    return SelectBinaryOp(I, ISD::SDIV);
657  case Instruction::UDiv:
658    return SelectBinaryOp(I, ISD::UDIV);
659  case Instruction::FDiv:
660    return SelectBinaryOp(I, ISD::FDIV);
661  case Instruction::SRem:
662    return SelectBinaryOp(I, ISD::SREM);
663  case Instruction::URem:
664    return SelectBinaryOp(I, ISD::UREM);
665  case Instruction::FRem:
666    return SelectBinaryOp(I, ISD::FREM);
667  case Instruction::Shl:
668    return SelectBinaryOp(I, ISD::SHL);
669  case Instruction::LShr:
670    return SelectBinaryOp(I, ISD::SRL);
671  case Instruction::AShr:
672    return SelectBinaryOp(I, ISD::SRA);
673  case Instruction::And:
674    return SelectBinaryOp(I, ISD::AND);
675  case Instruction::Or:
676    return SelectBinaryOp(I, ISD::OR);
677  case Instruction::Xor:
678    return SelectBinaryOp(I, ISD::XOR);
679
680  case Instruction::GetElementPtr:
681    return SelectGetElementPtr(I);
682
683  case Instruction::Br: {
684    const BranchInst *BI = cast<BranchInst>(I);
685
686    if (BI->isUnconditional()) {
687      const BasicBlock *LLVMSucc = BI->getSuccessor(0);
688      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
689      FastEmitBranch(MSucc);
690      return true;
691    }
692
693    // Conditional branches are not handed yet.
694    // Halt "fast" selection and bail.
695    return false;
696  }
697
698  case Instruction::Unreachable:
699    // Nothing to emit.
700    return true;
701
702  case Instruction::Alloca:
703    // FunctionLowering has the static-sized case covered.
704    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
705      return true;
706
707    // Dynamic-sized alloca is not handled yet.
708    return false;
709
710  case Instruction::Call:
711    return SelectCall(I);
712
713  case Instruction::BitCast:
714    return SelectBitCast(I);
715
716  case Instruction::FPToSI:
717    return SelectCast(I, ISD::FP_TO_SINT);
718  case Instruction::ZExt:
719    return SelectCast(I, ISD::ZERO_EXTEND);
720  case Instruction::SExt:
721    return SelectCast(I, ISD::SIGN_EXTEND);
722  case Instruction::Trunc:
723    return SelectCast(I, ISD::TRUNCATE);
724  case Instruction::SIToFP:
725    return SelectCast(I, ISD::SINT_TO_FP);
726
727  case Instruction::IntToPtr: // Deliberate fall-through.
728  case Instruction::PtrToInt: {
729    EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
730    EVT DstVT = TLI.getValueType(I->getType());
731    if (DstVT.bitsGT(SrcVT))
732      return SelectCast(I, ISD::ZERO_EXTEND);
733    if (DstVT.bitsLT(SrcVT))
734      return SelectCast(I, ISD::TRUNCATE);
735    unsigned Reg = getRegForValue(I->getOperand(0));
736    if (Reg == 0) return false;
737    UpdateValueMap(I, Reg);
738    return true;
739  }
740
741  case Instruction::PHI:
742    llvm_unreachable("FastISel shouldn't visit PHI nodes!");
743
744  default:
745    // Unhandled instruction. Halt "fast" selection and bail.
746    return false;
747  }
748}
749
750FastISel::FastISel(MachineFunction &mf,
751                   DenseMap<const Value *, unsigned> &vm,
752                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
753                   DenseMap<const AllocaInst *, int> &am,
754                   std::vector<std::pair<MachineInstr*, unsigned> > &pn
755#ifndef NDEBUG
756                   , SmallSet<const Instruction *, 8> &cil
757#endif
758                   )
759  : MBB(0),
760    ValueMap(vm),
761    MBBMap(bm),
762    StaticAllocaMap(am),
763    PHINodesToUpdate(pn),
764#ifndef NDEBUG
765    CatchInfoLost(cil),
766#endif
767    MF(mf),
768    MRI(MF.getRegInfo()),
769    MFI(*MF.getFrameInfo()),
770    MCP(*MF.getConstantPool()),
771    TM(MF.getTarget()),
772    TD(*TM.getTargetData()),
773    TII(*TM.getInstrInfo()),
774    TLI(*TM.getTargetLowering()) {
775}
776
777FastISel::~FastISel() {}
778
779unsigned FastISel::FastEmit_(MVT, MVT,
780                             unsigned) {
781  return 0;
782}
783
784unsigned FastISel::FastEmit_r(MVT, MVT,
785                              unsigned, unsigned /*Op0*/) {
786  return 0;
787}
788
789unsigned FastISel::FastEmit_rr(MVT, MVT,
790                               unsigned, unsigned /*Op0*/,
791                               unsigned /*Op0*/) {
792  return 0;
793}
794
795unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) {
796  return 0;
797}
798
799unsigned FastISel::FastEmit_f(MVT, MVT,
800                              unsigned, const ConstantFP * /*FPImm*/) {
801  return 0;
802}
803
804unsigned FastISel::FastEmit_ri(MVT, MVT,
805                               unsigned, unsigned /*Op0*/,
806                               uint64_t /*Imm*/) {
807  return 0;
808}
809
810unsigned FastISel::FastEmit_rf(MVT, MVT,
811                               unsigned, unsigned /*Op0*/,
812                               const ConstantFP * /*FPImm*/) {
813  return 0;
814}
815
816unsigned FastISel::FastEmit_rri(MVT, MVT,
817                                unsigned,
818                                unsigned /*Op0*/, unsigned /*Op1*/,
819                                uint64_t /*Imm*/) {
820  return 0;
821}
822
823/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
824/// to emit an instruction with an immediate operand using FastEmit_ri.
825/// If that fails, it materializes the immediate into a register and try
826/// FastEmit_rr instead.
827unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode,
828                                unsigned Op0, uint64_t Imm,
829                                MVT ImmType) {
830  // First check if immediate type is legal. If not, we can't use the ri form.
831  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
832  if (ResultReg != 0)
833    return ResultReg;
834  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
835  if (MaterialReg == 0)
836    return 0;
837  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
838}
839
840/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
841/// to emit an instruction with a floating-point immediate operand using
842/// FastEmit_rf. If that fails, it materializes the immediate into a register
843/// and try FastEmit_rr instead.
844unsigned FastISel::FastEmit_rf_(MVT VT, unsigned Opcode,
845                                unsigned Op0, const ConstantFP *FPImm,
846                                MVT ImmType) {
847  // First check if immediate type is legal. If not, we can't use the rf form.
848  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
849  if (ResultReg != 0)
850    return ResultReg;
851
852  // Materialize the constant in a register.
853  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
854  if (MaterialReg == 0) {
855    // If the target doesn't have a way to directly enter a floating-point
856    // value into a register, use an alternate approach.
857    // TODO: The current approach only supports floating-point constants
858    // that can be constructed by conversion from integer values. This should
859    // be replaced by code that creates a load from a constant-pool entry,
860    // which will require some target-specific work.
861    const APFloat &Flt = FPImm->getValueAPF();
862    EVT IntVT = TLI.getPointerTy();
863
864    uint64_t x[2];
865    uint32_t IntBitWidth = IntVT.getSizeInBits();
866    bool isExact;
867    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
868                             APFloat::rmTowardZero, &isExact);
869    if (!isExact)
870      return 0;
871    APInt IntVal(IntBitWidth, 2, x);
872
873    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
874                                     ISD::Constant, IntVal.getZExtValue());
875    if (IntegerReg == 0)
876      return 0;
877    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
878                             ISD::SINT_TO_FP, IntegerReg);
879    if (MaterialReg == 0)
880      return 0;
881  }
882  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
883}
884
885unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
886  return MRI.createVirtualRegister(RC);
887}
888
889unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
890                                 const TargetRegisterClass* RC) {
891  unsigned ResultReg = createResultReg(RC);
892  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
893
894  BuildMI(MBB, DL, II, ResultReg);
895  return ResultReg;
896}
897
898unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
899                                  const TargetRegisterClass *RC,
900                                  unsigned Op0) {
901  unsigned ResultReg = createResultReg(RC);
902  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
903
904  if (II.getNumDefs() >= 1)
905    BuildMI(MBB, DL, II, ResultReg).addReg(Op0);
906  else {
907    BuildMI(MBB, DL, II).addReg(Op0);
908    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
909                                         II.ImplicitDefs[0], RC, RC);
910    if (!InsertedCopy)
911      ResultReg = 0;
912  }
913
914  return ResultReg;
915}
916
917unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
918                                   const TargetRegisterClass *RC,
919                                   unsigned Op0, unsigned Op1) {
920  unsigned ResultReg = createResultReg(RC);
921  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
922
923  if (II.getNumDefs() >= 1)
924    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1);
925  else {
926    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1);
927    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
928                                         II.ImplicitDefs[0], RC, RC);
929    if (!InsertedCopy)
930      ResultReg = 0;
931  }
932  return ResultReg;
933}
934
935unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
936                                   const TargetRegisterClass *RC,
937                                   unsigned Op0, uint64_t Imm) {
938  unsigned ResultReg = createResultReg(RC);
939  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
940
941  if (II.getNumDefs() >= 1)
942    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Imm);
943  else {
944    BuildMI(MBB, DL, II).addReg(Op0).addImm(Imm);
945    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
946                                         II.ImplicitDefs[0], RC, RC);
947    if (!InsertedCopy)
948      ResultReg = 0;
949  }
950  return ResultReg;
951}
952
953unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
954                                   const TargetRegisterClass *RC,
955                                   unsigned Op0, const ConstantFP *FPImm) {
956  unsigned ResultReg = createResultReg(RC);
957  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
958
959  if (II.getNumDefs() >= 1)
960    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addFPImm(FPImm);
961  else {
962    BuildMI(MBB, DL, II).addReg(Op0).addFPImm(FPImm);
963    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
964                                         II.ImplicitDefs[0], RC, RC);
965    if (!InsertedCopy)
966      ResultReg = 0;
967  }
968  return ResultReg;
969}
970
971unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
972                                    const TargetRegisterClass *RC,
973                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
974  unsigned ResultReg = createResultReg(RC);
975  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
976
977  if (II.getNumDefs() >= 1)
978    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
979  else {
980    BuildMI(MBB, DL, II).addReg(Op0).addReg(Op1).addImm(Imm);
981    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
982                                         II.ImplicitDefs[0], RC, RC);
983    if (!InsertedCopy)
984      ResultReg = 0;
985  }
986  return ResultReg;
987}
988
989unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
990                                  const TargetRegisterClass *RC,
991                                  uint64_t Imm) {
992  unsigned ResultReg = createResultReg(RC);
993  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
994
995  if (II.getNumDefs() >= 1)
996    BuildMI(MBB, DL, II, ResultReg).addImm(Imm);
997  else {
998    BuildMI(MBB, DL, II).addImm(Imm);
999    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1000                                         II.ImplicitDefs[0], RC, RC);
1001    if (!InsertedCopy)
1002      ResultReg = 0;
1003  }
1004  return ResultReg;
1005}
1006
1007unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT,
1008                                              unsigned Op0, uint32_t Idx) {
1009  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
1010
1011  unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1012  const TargetInstrDesc &II = TII.get(TargetOpcode::EXTRACT_SUBREG);
1013
1014  if (II.getNumDefs() >= 1)
1015    BuildMI(MBB, DL, II, ResultReg).addReg(Op0).addImm(Idx);
1016  else {
1017    BuildMI(MBB, DL, II).addReg(Op0).addImm(Idx);
1018    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
1019                                         II.ImplicitDefs[0], RC, RC);
1020    if (!InsertedCopy)
1021      ResultReg = 0;
1022  }
1023  return ResultReg;
1024}
1025
1026/// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op
1027/// with all but the least significant bit set to zero.
1028unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op) {
1029  return FastEmit_ri(VT, VT, ISD::AND, Op, 1);
1030}
1031
1032/// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks.
1033/// Emit code to ensure constants are copied into registers when needed.
1034/// Remember the virtual registers that need to be added to the Machine PHI
1035/// nodes as input.  We cannot just directly add them, because expansion
1036/// might result in multiple MBB's for one BB.  As such, the start of the
1037/// BB might correspond to a different MBB than the end.
1038bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
1039  const TerminatorInst *TI = LLVMBB->getTerminator();
1040
1041  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
1042  unsigned OrigNumPHINodesToUpdate = PHINodesToUpdate.size();
1043
1044  // Check successor nodes' PHI nodes that expect a constant to be available
1045  // from this block.
1046  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
1047    const BasicBlock *SuccBB = TI->getSuccessor(succ);
1048    if (!isa<PHINode>(SuccBB->begin())) continue;
1049    MachineBasicBlock *SuccMBB = MBBMap[SuccBB];
1050
1051    // If this terminator has multiple identical successors (common for
1052    // switches), only handle each succ once.
1053    if (!SuccsHandled.insert(SuccMBB)) continue;
1054
1055    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
1056
1057    // At this point we know that there is a 1-1 correspondence between LLVM PHI
1058    // nodes and Machine PHI nodes, but the incoming operands have not been
1059    // emitted yet.
1060    for (BasicBlock::const_iterator I = SuccBB->begin();
1061         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1062      // Ignore dead phi's.
1063      if (PN->use_empty()) continue;
1064
1065      // Only handle legal types. Two interesting things to note here. First,
1066      // by bailing out early, we may leave behind some dead instructions,
1067      // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
1068      // own moves. Second, this check is necessary becuase FastISel doesn't
1069      // use CreateRegForValue to create registers, so it always creates
1070      // exactly one register for each non-void instruction.
1071      EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
1072      if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
1073        // Promote MVT::i1.
1074        if (VT == MVT::i1)
1075          VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT);
1076        else {
1077          PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1078          return false;
1079        }
1080      }
1081
1082      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
1083
1084      unsigned Reg = getRegForValue(PHIOp);
1085      if (Reg == 0) {
1086        PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
1087        return false;
1088      }
1089      PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
1090    }
1091  }
1092
1093  return true;
1094}
1095