FastISel.cpp revision ed00d01712c891c40d5bac5ece79e787c67b6a63
1///===-- FastISel.cpp - Implementation of the FastISel class --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the FastISel class.
11//
12// "Fast" instruction selection is designed to emit very poor code quickly.
13// Also, it is not designed to be able to do much lowering, so most illegal
14// types (e.g. i64 on 32-bit targets) and operations are not supported.  It is
15// also not intended to be able to do much optimization, except in a few cases
16// where doing optimizations reduces overall compile time.  For example, folding
17// constants into immediate fields is often done, because it's cheap and it
18// reduces the number of instructions later phases have to examine.
19//
20// "Fast" instruction selection is able to fail gracefully and transfer
21// control to the SelectionDAG selector for operations that it doesn't
22// support.  In many cases, this allows us to avoid duplicating a lot of
23// the complicated lowering logic that SelectionDAG currently has.
24//
25// The intended use for "fast" instruction selection is "-O0" mode
26// compilation, where the quality of the generated code is irrelevant when
27// weighed against the speed at which the code can be generated.  Also,
28// at -O0, the LLVM optimizers are not running, and this makes the
29// compile time of codegen a much higher portion of the overall compile
30// time.  Despite its limitations, "fast" instruction selection is able to
31// handle enough code on its own to provide noticeable overall speedups
32// in -O0 compiles.
33//
34// Basic operations are supported in a target-independent way, by reading
35// the same instruction descriptions that the SelectionDAG selector reads,
36// and identifying simple arithmetic operations that can be directly selected
37// from simple operators.  More complicated operations currently require
38// target-specific code.
39//
40//===----------------------------------------------------------------------===//
41
42#include "llvm/Function.h"
43#include "llvm/GlobalVariable.h"
44#include "llvm/Instructions.h"
45#include "llvm/IntrinsicInst.h"
46#include "llvm/CodeGen/FastISel.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/Target/TargetData.h"
51#include "llvm/Target/TargetInstrInfo.h"
52#include "llvm/Target/TargetLowering.h"
53#include "llvm/Target/TargetMachine.h"
54#include "SelectionDAGBuild.h"
55using namespace llvm;
56
57unsigned FastISel::getRegForValue(Value *V) {
58  // Look up the value to see if we already have a register for it. We
59  // cache values defined by Instructions across blocks, and other values
60  // only locally. This is because Instructions already have the SSA
61  // def-dominatess-use requirement enforced.
62  if (ValueMap.count(V))
63    return ValueMap[V];
64  unsigned Reg = LocalValueMap[V];
65  if (Reg != 0)
66    return Reg;
67
68  MVT::SimpleValueType VT = TLI.getValueType(V->getType()).getSimpleVT();
69
70  // Ignore illegal types.
71  if (!TLI.isTypeLegal(VT)) {
72    // Promote MVT::i1 to a legal type though, because it's common and easy.
73    if (VT == MVT::i1)
74      VT = TLI.getTypeToTransformTo(VT).getSimpleVT();
75    else
76      return 0;
77  }
78
79  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
80    if (CI->getValue().getActiveBits() <= 64)
81      Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
82  } else if (isa<AllocaInst>(V)) {
83    Reg = TargetMaterializeAlloca(cast<AllocaInst>(V));
84  } else if (isa<ConstantPointerNull>(V)) {
85    // Translate this as an integer zero so that it can be
86    // local-CSE'd with actual integer zeros.
87    Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType()));
88  } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
89    Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF);
90
91    if (!Reg) {
92      const APFloat &Flt = CF->getValueAPF();
93      MVT IntVT = TLI.getPointerTy();
94
95      uint64_t x[2];
96      uint32_t IntBitWidth = IntVT.getSizeInBits();
97      bool isExact;
98      (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
99                                APFloat::rmTowardZero, &isExact);
100      if (isExact) {
101        APInt IntVal(IntBitWidth, 2, x);
102
103        unsigned IntegerReg = getRegForValue(ConstantInt::get(IntVal));
104        if (IntegerReg != 0)
105          Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg);
106      }
107    }
108  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
109    if (!SelectOperator(CE, CE->getOpcode())) return 0;
110    Reg = LocalValueMap[CE];
111  } else if (isa<UndefValue>(V)) {
112    Reg = createResultReg(TLI.getRegClassFor(VT));
113    BuildMI(MBB, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg);
114  }
115
116  // If target-independent code couldn't handle the value, give target-specific
117  // code a try.
118  if (!Reg && isa<Constant>(V))
119    Reg = TargetMaterializeConstant(cast<Constant>(V));
120
121  // Don't cache constant materializations in the general ValueMap.
122  // To do so would require tracking what uses they dominate.
123  if (Reg != 0)
124    LocalValueMap[V] = Reg;
125  return Reg;
126}
127
128unsigned FastISel::lookUpRegForValue(Value *V) {
129  // Look up the value to see if we already have a register for it. We
130  // cache values defined by Instructions across blocks, and other values
131  // only locally. This is because Instructions already have the SSA
132  // def-dominatess-use requirement enforced.
133  if (ValueMap.count(V))
134    return ValueMap[V];
135  return LocalValueMap[V];
136}
137
138/// UpdateValueMap - Update the value map to include the new mapping for this
139/// instruction, or insert an extra copy to get the result in a previous
140/// determined register.
141/// NOTE: This is only necessary because we might select a block that uses
142/// a value before we select the block that defines the value.  It might be
143/// possible to fix this by selecting blocks in reverse postorder.
144void FastISel::UpdateValueMap(Value* I, unsigned Reg) {
145  if (!isa<Instruction>(I)) {
146    LocalValueMap[I] = Reg;
147    return;
148  }
149  if (!ValueMap.count(I))
150    ValueMap[I] = Reg;
151  else
152    TII.copyRegToReg(*MBB, MBB->end(), ValueMap[I],
153                     Reg, MRI.getRegClass(Reg), MRI.getRegClass(Reg));
154}
155
156/// SelectBinaryOp - Select and emit code for a binary operator instruction,
157/// which has an opcode which directly corresponds to the given ISD opcode.
158///
159bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) {
160  MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true);
161  if (VT == MVT::Other || !VT.isSimple())
162    // Unhandled type. Halt "fast" selection and bail.
163    return false;
164
165  // We only handle legal types. For example, on x86-32 the instruction
166  // selector contains all of the 64-bit instructions from x86-64,
167  // under the assumption that i64 won't be used if the target doesn't
168  // support it.
169  if (!TLI.isTypeLegal(VT)) {
170    // MVT::i1 is special. Allow AND, OR, or XOR because they
171    // don't require additional zeroing, which makes them easy.
172    if (VT == MVT::i1 &&
173        (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR ||
174         ISDOpcode == ISD::XOR))
175      VT = TLI.getTypeToTransformTo(VT);
176    else
177      return false;
178  }
179
180  unsigned Op0 = getRegForValue(I->getOperand(0));
181  if (Op0 == 0)
182    // Unhandled operand. Halt "fast" selection and bail.
183    return false;
184
185  // Check if the second operand is a constant and handle it appropriately.
186  if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
187    unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(),
188                                     ISDOpcode, Op0, CI->getZExtValue());
189    if (ResultReg != 0) {
190      // We successfully emitted code for the given LLVM Instruction.
191      UpdateValueMap(I, ResultReg);
192      return true;
193    }
194  }
195
196  // Check if the second operand is a constant float.
197  if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) {
198    unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(),
199                                     ISDOpcode, Op0, CF);
200    if (ResultReg != 0) {
201      // We successfully emitted code for the given LLVM Instruction.
202      UpdateValueMap(I, ResultReg);
203      return true;
204    }
205  }
206
207  unsigned Op1 = getRegForValue(I->getOperand(1));
208  if (Op1 == 0)
209    // Unhandled operand. Halt "fast" selection and bail.
210    return false;
211
212  // Now we have both operands in registers. Emit the instruction.
213  unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(),
214                                   ISDOpcode, Op0, Op1);
215  if (ResultReg == 0)
216    // Target-specific code wasn't able to find a machine opcode for
217    // the given ISD opcode and type. Halt "fast" selection and bail.
218    return false;
219
220  // We successfully emitted code for the given LLVM Instruction.
221  UpdateValueMap(I, ResultReg);
222  return true;
223}
224
225bool FastISel::SelectGetElementPtr(User *I) {
226  unsigned N = getRegForValue(I->getOperand(0));
227  if (N == 0)
228    // Unhandled operand. Halt "fast" selection and bail.
229    return false;
230
231  const Type *Ty = I->getOperand(0)->getType();
232  MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT();
233  for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end();
234       OI != E; ++OI) {
235    Value *Idx = *OI;
236    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
237      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
238      if (Field) {
239        // N = N + Offset
240        uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field);
241        // FIXME: This can be optimized by combining the add with a
242        // subsequent one.
243        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
244        if (N == 0)
245          // Unhandled operand. Halt "fast" selection and bail.
246          return false;
247      }
248      Ty = StTy->getElementType(Field);
249    } else {
250      Ty = cast<SequentialType>(Ty)->getElementType();
251
252      // If this is a constant subscript, handle it quickly.
253      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
254        if (CI->getZExtValue() == 0) continue;
255        uint64_t Offs =
256          TD.getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
257        N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
258        if (N == 0)
259          // Unhandled operand. Halt "fast" selection and bail.
260          return false;
261        continue;
262      }
263
264      // N = N + Idx * ElementSize;
265      uint64_t ElementSize = TD.getABITypeSize(Ty);
266      unsigned IdxN = getRegForValue(Idx);
267      if (IdxN == 0)
268        // Unhandled operand. Halt "fast" selection and bail.
269        return false;
270
271      // If the index is smaller or larger than intptr_t, truncate or extend
272      // it.
273      MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false);
274      if (IdxVT.bitsLT(VT))
275        IdxN = FastEmit_r(IdxVT.getSimpleVT(), VT, ISD::SIGN_EXTEND, IdxN);
276      else if (IdxVT.bitsGT(VT))
277        IdxN = FastEmit_r(IdxVT.getSimpleVT(), VT, ISD::TRUNCATE, IdxN);
278      if (IdxN == 0)
279        // Unhandled operand. Halt "fast" selection and bail.
280        return false;
281
282      if (ElementSize != 1) {
283        IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT);
284        if (IdxN == 0)
285          // Unhandled operand. Halt "fast" selection and bail.
286          return false;
287      }
288      N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN);
289      if (N == 0)
290        // Unhandled operand. Halt "fast" selection and bail.
291        return false;
292    }
293  }
294
295  // We successfully emitted code for the given LLVM Instruction.
296  UpdateValueMap(I, N);
297  return true;
298}
299
300bool FastISel::SelectCall(User *I) {
301  Function *F = cast<CallInst>(I)->getCalledFunction();
302  if (!F) return false;
303
304  unsigned IID = F->getIntrinsicID();
305  switch (IID) {
306  default: break;
307  case Intrinsic::dbg_stoppoint: {
308    DbgStopPointInst *SPI = cast<DbgStopPointInst>(I);
309    if (MMI && SPI->getContext() && MMI->Verify(SPI->getContext())) {
310      DebugInfoDesc *DD = MMI->getDescFor(SPI->getContext());
311      assert(DD && "Not a debug information descriptor");
312      const CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
313      unsigned SrcFile = MMI->RecordSource(CompileUnit);
314      unsigned Line = SPI->getLine();
315      unsigned Col = SPI->getColumn();
316      unsigned ID = MMI->RecordSourceLine(Line, Col, SrcFile);
317      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
318      BuildMI(MBB, II).addImm(ID);
319    }
320    return true;
321  }
322  case Intrinsic::dbg_region_start: {
323    DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I);
324    if (MMI && RSI->getContext() && MMI->Verify(RSI->getContext())) {
325      unsigned ID = MMI->RecordRegionStart(RSI->getContext());
326      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
327      BuildMI(MBB, II).addImm(ID);
328    }
329    return true;
330  }
331  case Intrinsic::dbg_region_end: {
332    DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I);
333    if (MMI && REI->getContext() && MMI->Verify(REI->getContext())) {
334      unsigned ID = MMI->RecordRegionEnd(REI->getContext());
335      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
336      BuildMI(MBB, II).addImm(ID);
337    }
338    return true;
339  }
340  case Intrinsic::dbg_func_start: {
341    if (!MMI) return true;
342    DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I);
343    Value *SP = FSI->getSubprogram();
344    if (SP && MMI->Verify(SP)) {
345      // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
346      // what (most?) gdb expects.
347      DebugInfoDesc *DD = MMI->getDescFor(SP);
348      assert(DD && "Not a debug information descriptor");
349      SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
350      const CompileUnitDesc *CompileUnit = Subprogram->getFile();
351      unsigned SrcFile = MMI->RecordSource(CompileUnit);
352      // Record the source line but does not create a label for the normal
353      // function start. It will be emitted at asm emission time. However,
354      // create a label if this is a beginning of inlined function.
355      unsigned LabelID = MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
356      if (MMI->getSourceLines().size() != 1) {
357        const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL);
358        BuildMI(MBB, II).addImm(LabelID);
359      }
360    }
361    return true;
362  }
363  case Intrinsic::dbg_declare: {
364    DbgDeclareInst *DI = cast<DbgDeclareInst>(I);
365    Value *Variable = DI->getVariable();
366    if (MMI && Variable && MMI->Verify(Variable)) {
367      // Determine the address of the declared object.
368      Value *Address = DI->getAddress();
369      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
370        Address = BCI->getOperand(0);
371      AllocaInst *AI = dyn_cast<AllocaInst>(Address);
372      // Don't handle byval struct arguments, for example.
373      if (!AI) break;
374      DenseMap<const AllocaInst*, int>::iterator SI =
375        StaticAllocaMap.find(AI);
376      assert(SI != StaticAllocaMap.end() && "Invalid dbg.declare!");
377      int FI = SI->second;
378
379      // Determine the debug globalvariable.
380      GlobalValue *GV = cast<GlobalVariable>(Variable);
381
382      // Build the DECLARE instruction.
383      const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE);
384      BuildMI(MBB, II).addFrameIndex(FI).addGlobalAddress(GV);
385    }
386    return true;
387  }
388  case Intrinsic::eh_exception: {
389    MVT VT = TLI.getValueType(I->getType());
390    switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) {
391    default: break;
392    case TargetLowering::Expand: {
393      if (!MBB->isLandingPad()) {
394        // FIXME: Mark exception register as live in.  Hack for PR1508.
395        unsigned Reg = TLI.getExceptionAddressRegister();
396        if (Reg) MBB->addLiveIn(Reg);
397      }
398      unsigned Reg = TLI.getExceptionAddressRegister();
399      const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
400      unsigned ResultReg = createResultReg(RC);
401      bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
402                                           Reg, RC, RC);
403      assert(InsertedCopy && "Can't copy address registers!");
404      UpdateValueMap(I, ResultReg);
405      return true;
406    }
407    }
408    break;
409  }
410  case Intrinsic::eh_selector_i32:
411  case Intrinsic::eh_selector_i64: {
412    MVT VT = TLI.getValueType(I->getType());
413    switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) {
414    default: break;
415    case TargetLowering::Expand: {
416      MVT VT = (IID == Intrinsic::eh_selector_i32 ?
417                           MVT::i32 : MVT::i64);
418
419      if (MMI) {
420        if (MBB->isLandingPad())
421          AddCatchInfo(*cast<CallInst>(I), MMI, MBB);
422        else {
423#ifndef NDEBUG
424          CatchInfoLost.insert(cast<CallInst>(I));
425#endif
426          // FIXME: Mark exception selector register as live in.  Hack for PR1508.
427          unsigned Reg = TLI.getExceptionSelectorRegister();
428          if (Reg) MBB->addLiveIn(Reg);
429        }
430
431        unsigned Reg = TLI.getExceptionSelectorRegister();
432        const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
433        unsigned ResultReg = createResultReg(RC);
434        bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
435                                             Reg, RC, RC);
436        assert(InsertedCopy && "Can't copy address registers!");
437        UpdateValueMap(I, ResultReg);
438      } else {
439        unsigned ResultReg =
440          getRegForValue(Constant::getNullValue(I->getType()));
441        UpdateValueMap(I, ResultReg);
442      }
443      return true;
444    }
445    }
446    break;
447  }
448  }
449  return false;
450}
451
452bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) {
453  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
454  MVT DstVT = TLI.getValueType(I->getType());
455
456  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
457      DstVT == MVT::Other || !DstVT.isSimple() ||
458      !TLI.isTypeLegal(DstVT))
459    // Unhandled type. Halt "fast" selection and bail.
460    return false;
461
462  // Check if the source operand is legal. Or as a special case,
463  // it may be i1 if we're doing zero-extension because that's
464  // trivially easy and somewhat common.
465  if (!TLI.isTypeLegal(SrcVT)) {
466    if (SrcVT == MVT::i1 && Opcode == ISD::ZERO_EXTEND)
467      SrcVT = TLI.getTypeToTransformTo(SrcVT);
468    else
469      // Unhandled type. Halt "fast" selection and bail.
470      return false;
471  }
472
473  unsigned InputReg = getRegForValue(I->getOperand(0));
474  if (!InputReg)
475    // Unhandled operand.  Halt "fast" selection and bail.
476    return false;
477
478  unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(),
479                                  DstVT.getSimpleVT(),
480                                  Opcode,
481                                  InputReg);
482  if (!ResultReg)
483    return false;
484
485  UpdateValueMap(I, ResultReg);
486  return true;
487}
488
489bool FastISel::SelectBitCast(User *I) {
490  // If the bitcast doesn't change the type, just use the operand value.
491  if (I->getType() == I->getOperand(0)->getType()) {
492    unsigned Reg = getRegForValue(I->getOperand(0));
493    if (Reg == 0)
494      return false;
495    UpdateValueMap(I, Reg);
496    return true;
497  }
498
499  // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators.
500  MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
501  MVT DstVT = TLI.getValueType(I->getType());
502
503  if (SrcVT == MVT::Other || !SrcVT.isSimple() ||
504      DstVT == MVT::Other || !DstVT.isSimple() ||
505      !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT))
506    // Unhandled type. Halt "fast" selection and bail.
507    return false;
508
509  unsigned Op0 = getRegForValue(I->getOperand(0));
510  if (Op0 == 0)
511    // Unhandled operand. Halt "fast" selection and bail.
512    return false;
513
514  // First, try to perform the bitcast by inserting a reg-reg copy.
515  unsigned ResultReg = 0;
516  if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) {
517    TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT);
518    TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT);
519    ResultReg = createResultReg(DstClass);
520
521    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
522                                         Op0, DstClass, SrcClass);
523    if (!InsertedCopy)
524      ResultReg = 0;
525  }
526
527  // If the reg-reg copy failed, select a BIT_CONVERT opcode.
528  if (!ResultReg)
529    ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(),
530                           ISD::BIT_CONVERT, Op0);
531
532  if (!ResultReg)
533    return false;
534
535  UpdateValueMap(I, ResultReg);
536  return true;
537}
538
539bool
540FastISel::SelectInstruction(Instruction *I) {
541  return SelectOperator(I, I->getOpcode());
542}
543
544/// FastEmitBranch - Emit an unconditional branch to the given block,
545/// unless it is the immediate (fall-through) successor, and update
546/// the CFG.
547void
548FastISel::FastEmitBranch(MachineBasicBlock *MSucc) {
549  MachineFunction::iterator NextMBB =
550     next(MachineFunction::iterator(MBB));
551
552  if (MBB->isLayoutSuccessor(MSucc)) {
553    // The unconditional fall-through case, which needs no instructions.
554  } else {
555    // The unconditional branch case.
556    TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>());
557  }
558  MBB->addSuccessor(MSucc);
559}
560
561bool
562FastISel::SelectOperator(User *I, unsigned Opcode) {
563  switch (Opcode) {
564  case Instruction::Add: {
565    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD;
566    return SelectBinaryOp(I, Opc);
567  }
568  case Instruction::Sub: {
569    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB;
570    return SelectBinaryOp(I, Opc);
571  }
572  case Instruction::Mul: {
573    ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL;
574    return SelectBinaryOp(I, Opc);
575  }
576  case Instruction::SDiv:
577    return SelectBinaryOp(I, ISD::SDIV);
578  case Instruction::UDiv:
579    return SelectBinaryOp(I, ISD::UDIV);
580  case Instruction::FDiv:
581    return SelectBinaryOp(I, ISD::FDIV);
582  case Instruction::SRem:
583    return SelectBinaryOp(I, ISD::SREM);
584  case Instruction::URem:
585    return SelectBinaryOp(I, ISD::UREM);
586  case Instruction::FRem:
587    return SelectBinaryOp(I, ISD::FREM);
588  case Instruction::Shl:
589    return SelectBinaryOp(I, ISD::SHL);
590  case Instruction::LShr:
591    return SelectBinaryOp(I, ISD::SRL);
592  case Instruction::AShr:
593    return SelectBinaryOp(I, ISD::SRA);
594  case Instruction::And:
595    return SelectBinaryOp(I, ISD::AND);
596  case Instruction::Or:
597    return SelectBinaryOp(I, ISD::OR);
598  case Instruction::Xor:
599    return SelectBinaryOp(I, ISD::XOR);
600
601  case Instruction::GetElementPtr:
602    return SelectGetElementPtr(I);
603
604  case Instruction::Br: {
605    BranchInst *BI = cast<BranchInst>(I);
606
607    if (BI->isUnconditional()) {
608      BasicBlock *LLVMSucc = BI->getSuccessor(0);
609      MachineBasicBlock *MSucc = MBBMap[LLVMSucc];
610      FastEmitBranch(MSucc);
611      return true;
612    }
613
614    // Conditional branches are not handed yet.
615    // Halt "fast" selection and bail.
616    return false;
617  }
618
619  case Instruction::Unreachable:
620    // Nothing to emit.
621    return true;
622
623  case Instruction::PHI:
624    // PHI nodes are already emitted.
625    return true;
626
627  case Instruction::Alloca:
628    // FunctionLowering has the static-sized case covered.
629    if (StaticAllocaMap.count(cast<AllocaInst>(I)))
630      return true;
631
632    // Dynamic-sized alloca is not handled yet.
633    return false;
634
635  case Instruction::Call:
636    return SelectCall(I);
637
638  case Instruction::BitCast:
639    return SelectBitCast(I);
640
641  case Instruction::FPToSI:
642    return SelectCast(I, ISD::FP_TO_SINT);
643  case Instruction::ZExt:
644    return SelectCast(I, ISD::ZERO_EXTEND);
645  case Instruction::SExt:
646    return SelectCast(I, ISD::SIGN_EXTEND);
647  case Instruction::Trunc:
648    return SelectCast(I, ISD::TRUNCATE);
649  case Instruction::SIToFP:
650    return SelectCast(I, ISD::SINT_TO_FP);
651
652  case Instruction::IntToPtr: // Deliberate fall-through.
653  case Instruction::PtrToInt: {
654    MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
655    MVT DstVT = TLI.getValueType(I->getType());
656    if (DstVT.bitsGT(SrcVT))
657      return SelectCast(I, ISD::ZERO_EXTEND);
658    if (DstVT.bitsLT(SrcVT))
659      return SelectCast(I, ISD::TRUNCATE);
660    unsigned Reg = getRegForValue(I->getOperand(0));
661    if (Reg == 0) return false;
662    UpdateValueMap(I, Reg);
663    return true;
664  }
665
666  default:
667    // Unhandled instruction. Halt "fast" selection and bail.
668    return false;
669  }
670}
671
672FastISel::FastISel(MachineFunction &mf,
673                   MachineModuleInfo *mmi,
674                   DenseMap<const Value *, unsigned> &vm,
675                   DenseMap<const BasicBlock *, MachineBasicBlock *> &bm,
676                   DenseMap<const AllocaInst *, int> &am
677#ifndef NDEBUG
678                   , SmallSet<Instruction*, 8> &cil
679#endif
680                   )
681  : MBB(0),
682    ValueMap(vm),
683    MBBMap(bm),
684    StaticAllocaMap(am),
685#ifndef NDEBUG
686    CatchInfoLost(cil),
687#endif
688    MF(mf),
689    MMI(mmi),
690    MRI(MF.getRegInfo()),
691    MFI(*MF.getFrameInfo()),
692    MCP(*MF.getConstantPool()),
693    TM(MF.getTarget()),
694    TD(*TM.getTargetData()),
695    TII(*TM.getInstrInfo()),
696    TLI(*TM.getTargetLowering()) {
697}
698
699FastISel::~FastISel() {}
700
701unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType,
702                             ISD::NodeType) {
703  return 0;
704}
705
706unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType,
707                              ISD::NodeType, unsigned /*Op0*/) {
708  return 0;
709}
710
711unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType,
712                               ISD::NodeType, unsigned /*Op0*/,
713                               unsigned /*Op0*/) {
714  return 0;
715}
716
717unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType,
718                              ISD::NodeType, uint64_t /*Imm*/) {
719  return 0;
720}
721
722unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType,
723                              ISD::NodeType, ConstantFP * /*FPImm*/) {
724  return 0;
725}
726
727unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType,
728                               ISD::NodeType, unsigned /*Op0*/,
729                               uint64_t /*Imm*/) {
730  return 0;
731}
732
733unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType,
734                               ISD::NodeType, unsigned /*Op0*/,
735                               ConstantFP * /*FPImm*/) {
736  return 0;
737}
738
739unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType,
740                                ISD::NodeType,
741                                unsigned /*Op0*/, unsigned /*Op1*/,
742                                uint64_t /*Imm*/) {
743  return 0;
744}
745
746/// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries
747/// to emit an instruction with an immediate operand using FastEmit_ri.
748/// If that fails, it materializes the immediate into a register and try
749/// FastEmit_rr instead.
750unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
751                                unsigned Op0, uint64_t Imm,
752                                MVT::SimpleValueType ImmType) {
753  // First check if immediate type is legal. If not, we can't use the ri form.
754  unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm);
755  if (ResultReg != 0)
756    return ResultReg;
757  unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm);
758  if (MaterialReg == 0)
759    return 0;
760  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
761}
762
763/// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries
764/// to emit an instruction with a floating-point immediate operand using
765/// FastEmit_rf. If that fails, it materializes the immediate into a register
766/// and try FastEmit_rr instead.
767unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode,
768                                unsigned Op0, ConstantFP *FPImm,
769                                MVT::SimpleValueType ImmType) {
770  // First check if immediate type is legal. If not, we can't use the rf form.
771  unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm);
772  if (ResultReg != 0)
773    return ResultReg;
774
775  // Materialize the constant in a register.
776  unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm);
777  if (MaterialReg == 0) {
778    // If the target doesn't have a way to directly enter a floating-point
779    // value into a register, use an alternate approach.
780    // TODO: The current approach only supports floating-point constants
781    // that can be constructed by conversion from integer values. This should
782    // be replaced by code that creates a load from a constant-pool entry,
783    // which will require some target-specific work.
784    const APFloat &Flt = FPImm->getValueAPF();
785    MVT IntVT = TLI.getPointerTy();
786
787    uint64_t x[2];
788    uint32_t IntBitWidth = IntVT.getSizeInBits();
789    bool isExact;
790    (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true,
791                             APFloat::rmTowardZero, &isExact);
792    if (!isExact)
793      return 0;
794    APInt IntVal(IntBitWidth, 2, x);
795
796    unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(),
797                                     ISD::Constant, IntVal.getZExtValue());
798    if (IntegerReg == 0)
799      return 0;
800    MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT,
801                             ISD::SINT_TO_FP, IntegerReg);
802    if (MaterialReg == 0)
803      return 0;
804  }
805  return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg);
806}
807
808unsigned FastISel::createResultReg(const TargetRegisterClass* RC) {
809  return MRI.createVirtualRegister(RC);
810}
811
812unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode,
813                                 const TargetRegisterClass* RC) {
814  unsigned ResultReg = createResultReg(RC);
815  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
816
817  BuildMI(MBB, II, ResultReg);
818  return ResultReg;
819}
820
821unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode,
822                                  const TargetRegisterClass *RC,
823                                  unsigned Op0) {
824  unsigned ResultReg = createResultReg(RC);
825  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
826
827  if (II.getNumDefs() >= 1)
828    BuildMI(MBB, II, ResultReg).addReg(Op0);
829  else {
830    BuildMI(MBB, II).addReg(Op0);
831    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
832                                         II.ImplicitDefs[0], RC, RC);
833    if (!InsertedCopy)
834      ResultReg = 0;
835  }
836
837  return ResultReg;
838}
839
840unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
841                                   const TargetRegisterClass *RC,
842                                   unsigned Op0, unsigned Op1) {
843  unsigned ResultReg = createResultReg(RC);
844  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
845
846  if (II.getNumDefs() >= 1)
847    BuildMI(MBB, II, ResultReg).addReg(Op0).addReg(Op1);
848  else {
849    BuildMI(MBB, II).addReg(Op0).addReg(Op1);
850    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
851                                         II.ImplicitDefs[0], RC, RC);
852    if (!InsertedCopy)
853      ResultReg = 0;
854  }
855  return ResultReg;
856}
857
858unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
859                                   const TargetRegisterClass *RC,
860                                   unsigned Op0, uint64_t Imm) {
861  unsigned ResultReg = createResultReg(RC);
862  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
863
864  if (II.getNumDefs() >= 1)
865    BuildMI(MBB, II, ResultReg).addReg(Op0).addImm(Imm);
866  else {
867    BuildMI(MBB, II).addReg(Op0).addImm(Imm);
868    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
869                                         II.ImplicitDefs[0], RC, RC);
870    if (!InsertedCopy)
871      ResultReg = 0;
872  }
873  return ResultReg;
874}
875
876unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
877                                   const TargetRegisterClass *RC,
878                                   unsigned Op0, ConstantFP *FPImm) {
879  unsigned ResultReg = createResultReg(RC);
880  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
881
882  if (II.getNumDefs() >= 1)
883    BuildMI(MBB, II, ResultReg).addReg(Op0).addFPImm(FPImm);
884  else {
885    BuildMI(MBB, II).addReg(Op0).addFPImm(FPImm);
886    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
887                                         II.ImplicitDefs[0], RC, RC);
888    if (!InsertedCopy)
889      ResultReg = 0;
890  }
891  return ResultReg;
892}
893
894unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
895                                    const TargetRegisterClass *RC,
896                                    unsigned Op0, unsigned Op1, uint64_t Imm) {
897  unsigned ResultReg = createResultReg(RC);
898  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
899
900  if (II.getNumDefs() >= 1)
901    BuildMI(MBB, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm);
902  else {
903    BuildMI(MBB, II).addReg(Op0).addReg(Op1).addImm(Imm);
904    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
905                                         II.ImplicitDefs[0], RC, RC);
906    if (!InsertedCopy)
907      ResultReg = 0;
908  }
909  return ResultReg;
910}
911
912unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode,
913                                  const TargetRegisterClass *RC,
914                                  uint64_t Imm) {
915  unsigned ResultReg = createResultReg(RC);
916  const TargetInstrDesc &II = TII.get(MachineInstOpcode);
917
918  if (II.getNumDefs() >= 1)
919    BuildMI(MBB, II, ResultReg).addImm(Imm);
920  else {
921    BuildMI(MBB, II).addImm(Imm);
922    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
923                                         II.ImplicitDefs[0], RC, RC);
924    if (!InsertedCopy)
925      ResultReg = 0;
926  }
927  return ResultReg;
928}
929
930unsigned FastISel::FastEmitInst_extractsubreg(unsigned Op0, uint32_t Idx) {
931  const TargetRegisterClass* RC = MRI.getRegClass(Op0);
932  const TargetRegisterClass* SRC = *(RC->subregclasses_begin()+Idx-1);
933
934  unsigned ResultReg = createResultReg(SRC);
935  const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG);
936
937  if (II.getNumDefs() >= 1)
938    BuildMI(MBB, II, ResultReg).addReg(Op0).addImm(Idx);
939  else {
940    BuildMI(MBB, II).addReg(Op0).addImm(Idx);
941    bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg,
942                                         II.ImplicitDefs[0], RC, RC);
943    if (!InsertedCopy)
944      ResultReg = 0;
945  }
946  return ResultReg;
947}
948