FunctionLoweringInfo.cpp revision 551754c4958086cc6910da7c950f2875e212f5cf
1//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating functions from LLVM IR into
11// Machine IR.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "function-lowering-info"
16#include "FunctionLoweringInfo.h"
17#include "llvm/CallingConv.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Function.h"
20#include "llvm/Instructions.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/Module.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/Analysis/DebugInfo.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Target/TargetFrameInfo.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetIntrinsicInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include <algorithm>
43using namespace llvm;
44
45/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
46/// of insertvalue or extractvalue indices that identify a member, return
47/// the linearized index of the start of the member.
48///
49unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
50                                  const unsigned *Indices,
51                                  const unsigned *IndicesEnd,
52                                  unsigned CurIndex) {
53  // Base case: We're done.
54  if (Indices && Indices == IndicesEnd)
55    return CurIndex;
56
57  // Given a struct type, recursively traverse the elements.
58  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
59    for (StructType::element_iterator EB = STy->element_begin(),
60                                      EI = EB,
61                                      EE = STy->element_end();
62        EI != EE; ++EI) {
63      if (Indices && *Indices == unsigned(EI - EB))
64        return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
65      CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
66    }
67    return CurIndex;
68  }
69  // Given an array type, recursively traverse the elements.
70  else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
71    const Type *EltTy = ATy->getElementType();
72    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
73      if (Indices && *Indices == i)
74        return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
75      CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
76    }
77    return CurIndex;
78  }
79  // We haven't found the type we're looking for, so keep searching.
80  return CurIndex + 1;
81}
82
83/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
84/// EVTs that represent all the individual underlying
85/// non-aggregate types that comprise it.
86///
87/// If Offsets is non-null, it points to a vector to be filled in
88/// with the in-memory offsets of each of the individual values.
89///
90void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
91                           SmallVectorImpl<EVT> &ValueVTs,
92                           SmallVectorImpl<uint64_t> *Offsets,
93                           uint64_t StartingOffset) {
94  // Given a struct type, recursively traverse the elements.
95  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
96    const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
97    for (StructType::element_iterator EB = STy->element_begin(),
98                                      EI = EB,
99                                      EE = STy->element_end();
100         EI != EE; ++EI)
101      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
102                      StartingOffset + SL->getElementOffset(EI - EB));
103    return;
104  }
105  // Given an array type, recursively traverse the elements.
106  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
107    const Type *EltTy = ATy->getElementType();
108    uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
109    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
110      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
111                      StartingOffset + i * EltSize);
112    return;
113  }
114  // Interpret void as zero return values.
115  if (Ty->isVoidTy())
116    return;
117  // Base case: we can get an EVT for this LLVM IR type.
118  ValueVTs.push_back(TLI.getValueType(Ty));
119  if (Offsets)
120    Offsets->push_back(StartingOffset);
121}
122
123/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
124/// PHI nodes or outside of the basic block that defines it, or used by a
125/// switch or atomic instruction, which may expand to multiple basic blocks.
126static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
127  if (isa<PHINode>(I)) return true;
128  const BasicBlock *BB = I->getParent();
129  for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end();
130        UI != E; ++UI)
131    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
132      return true;
133  return false;
134}
135
136/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
137/// entry block, return true.  This includes arguments used by switches, since
138/// the switch may expand into multiple basic blocks.
139static bool isOnlyUsedInEntryBlock(const Argument *A, bool EnableFastISel) {
140  // With FastISel active, we may be splitting blocks, so force creation
141  // of virtual registers for all non-dead arguments.
142  // Don't force virtual registers for byval arguments though, because
143  // fast-isel can't handle those in all cases.
144  if (EnableFastISel && !A->hasByValAttr())
145    return A->use_empty();
146
147  const BasicBlock *Entry = A->getParent()->begin();
148  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
149       UI != E; ++UI)
150    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
151      return false;  // Use not in entry block.
152  return true;
153}
154
155FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
156  : TLI(tli) {
157}
158
159void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
160                               bool EnableFastISel) {
161  Fn = &fn;
162  MF = &mf;
163  RegInfo = &MF->getRegInfo();
164
165  // Create a vreg for each argument register that is not dead and is used
166  // outside of the entry block for the function.
167  for (Function::const_arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
168       AI != E; ++AI)
169    if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
170      InitializeRegForValue(AI);
171
172  // Initialize the mapping of values to registers.  This is only set up for
173  // instruction values that are used outside of the block that defines
174  // them.
175  Function::const_iterator BB = Fn->begin(), EB = Fn->end();
176  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
177    if (const AllocaInst *AI = dyn_cast<AllocaInst>(I))
178      if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
179        const Type *Ty = AI->getAllocatedType();
180        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
181        unsigned Align =
182          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
183                   AI->getAlignment());
184
185        TySize *= CUI->getZExtValue();   // Get total allocated size.
186        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
187        StaticAllocaMap[AI] =
188          MF->getFrameInfo()->CreateStackObject(TySize, Align, false);
189      }
190
191  for (; BB != EB; ++BB)
192    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
193      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
194        if (!isa<AllocaInst>(I) ||
195            !StaticAllocaMap.count(cast<AllocaInst>(I)))
196          InitializeRegForValue(I);
197
198  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
199  // also creates the initial PHI MachineInstrs, though none of the input
200  // operands are populated.
201  for (BB = Fn->begin(); BB != EB; ++BB) {
202    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
203    MBBMap[BB] = MBB;
204    MF->push_back(MBB);
205
206    // Transfer the address-taken flag. This is necessary because there could
207    // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
208    // the first one should be marked.
209    if (BB->hasAddressTaken())
210      MBB->setHasAddressTaken();
211
212    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
213    // appropriate.
214    const PHINode *PN;
215    DebugLoc DL;
216    for (BasicBlock::const_iterator
217           I = BB->begin(), E = BB->end(); I != E; ++I) {
218
219      PN = dyn_cast<PHINode>(I);
220      if (!PN || PN->use_empty()) continue;
221
222      unsigned PHIReg = ValueMap[PN];
223      assert(PHIReg && "PHI node does not have an assigned virtual register!");
224
225      SmallVector<EVT, 4> ValueVTs;
226      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
227      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
228        EVT VT = ValueVTs[vti];
229        unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
230        const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
231        for (unsigned i = 0; i != NumRegisters; ++i)
232          BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
233        PHIReg += NumRegisters;
234      }
235    }
236  }
237
238  // Mark landing pad blocks.
239  for (BB = Fn->begin(); BB != EB; ++BB)
240    if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
241      MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
242}
243
244/// clear - Clear out all the function-specific state. This returns this
245/// FunctionLoweringInfo to an empty state, ready to be used for a
246/// different function.
247void FunctionLoweringInfo::clear() {
248  assert(CatchInfoFound.size() == CatchInfoLost.size() &&
249         "Not all catch info was assigned to a landing pad!");
250
251  MBBMap.clear();
252  ValueMap.clear();
253  StaticAllocaMap.clear();
254#ifndef NDEBUG
255  CatchInfoLost.clear();
256  CatchInfoFound.clear();
257#endif
258  LiveOutRegInfo.clear();
259}
260
261unsigned FunctionLoweringInfo::MakeReg(EVT VT) {
262  return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
263}
264
265/// CreateRegForValue - Allocate the appropriate number of virtual registers of
266/// the correctly promoted or expanded types.  Assign these registers
267/// consecutive vreg numbers and return the first assigned number.
268///
269/// In the case that the given value has struct or array type, this function
270/// will assign registers for each member or element.
271///
272unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
273  SmallVector<EVT, 4> ValueVTs;
274  ComputeValueVTs(TLI, V->getType(), ValueVTs);
275
276  unsigned FirstReg = 0;
277  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
278    EVT ValueVT = ValueVTs[Value];
279    EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT);
280
281    unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT);
282    for (unsigned i = 0; i != NumRegs; ++i) {
283      unsigned R = MakeReg(RegisterVT);
284      if (!FirstReg) FirstReg = R;
285    }
286  }
287  return FirstReg;
288}
289
290/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
291GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
292  V = V->stripPointerCasts();
293  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
294
295  if (GV && GV->getName() == ".llvm.eh.catch.all.value") {
296    assert(GV->hasInitializer() &&
297           "The EH catch-all value must have an initializer");
298    Value *Init = GV->getInitializer();
299    GV = dyn_cast<GlobalVariable>(Init);
300    if (!GV) V = cast<ConstantPointerNull>(Init);
301  }
302
303  assert((GV || isa<ConstantPointerNull>(V)) &&
304         "TypeInfo must be a global variable or NULL");
305  return GV;
306}
307
308/// AddCatchInfo - Extract the personality and type infos from an eh.selector
309/// call, and add them to the specified machine basic block.
310void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI,
311                        MachineBasicBlock *MBB) {
312  // Inform the MachineModuleInfo of the personality for this landing pad.
313  const ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
314  assert(CE->getOpcode() == Instruction::BitCast &&
315         isa<Function>(CE->getOperand(0)) &&
316         "Personality should be a function");
317  MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
318
319  // Gather all the type infos for this landing pad and pass them along to
320  // MachineModuleInfo.
321  std::vector<const GlobalVariable *> TyInfo;
322  unsigned N = I.getNumOperands();
323
324  for (unsigned i = N - 1; i > 2; --i) {
325    if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
326      unsigned FilterLength = CI->getZExtValue();
327      unsigned FirstCatch = i + FilterLength + !FilterLength;
328      assert (FirstCatch <= N && "Invalid filter length");
329
330      if (FirstCatch < N) {
331        TyInfo.reserve(N - FirstCatch);
332        for (unsigned j = FirstCatch; j < N; ++j)
333          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
334        MMI->addCatchTypeInfo(MBB, TyInfo);
335        TyInfo.clear();
336      }
337
338      if (!FilterLength) {
339        // Cleanup.
340        MMI->addCleanup(MBB);
341      } else {
342        // Filter.
343        TyInfo.reserve(FilterLength - 1);
344        for (unsigned j = i + 1; j < FirstCatch; ++j)
345          TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
346        MMI->addFilterTypeInfo(MBB, TyInfo);
347        TyInfo.clear();
348      }
349
350      N = i;
351    }
352  }
353
354  if (N > 3) {
355    TyInfo.reserve(N - 3);
356    for (unsigned j = 3; j < N; ++j)
357      TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
358    MMI->addCatchTypeInfo(MBB, TyInfo);
359  }
360}
361
362void llvm::CopyCatchInfo(const BasicBlock *SrcBB, const BasicBlock *DestBB,
363                         MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) {
364  for (BasicBlock::const_iterator I = SrcBB->begin(), E = --SrcBB->end();
365       I != E; ++I)
366    if (const EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) {
367      // Apply the catch info to DestBB.
368      AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]);
369#ifndef NDEBUG
370      if (!FLI.MBBMap[SrcBB]->isLandingPad())
371        FLI.CatchInfoFound.insert(EHSel);
372#endif
373    }
374}
375
376/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
377/// processed uses a memory 'm' constraint.
378bool
379llvm::hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
380                                const TargetLowering &TLI) {
381  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
382    InlineAsm::ConstraintInfo &CI = CInfos[i];
383    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
384      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
385      if (CType == TargetLowering::C_Memory)
386        return true;
387    }
388
389    // Indirect operand accesses access memory.
390    if (CI.isIndirect)
391      return true;
392  }
393
394  return false;
395}
396
397/// getFCmpCondCode - Return the ISD condition code corresponding to
398/// the given LLVM IR floating-point condition code.  This includes
399/// consideration of global floating-point math flags.
400///
401ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
402  ISD::CondCode FPC, FOC;
403  switch (Pred) {
404  case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
405  case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
406  case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
407  case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
408  case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
409  case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
410  case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
411  case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break;
412  case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break;
413  case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
414  case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
415  case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
416  case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
417  case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
418  case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
419  case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
420  default:
421    llvm_unreachable("Invalid FCmp predicate opcode!");
422    FOC = FPC = ISD::SETFALSE;
423    break;
424  }
425  if (FiniteOnlyFPMath())
426    return FOC;
427  else
428    return FPC;
429}
430
431/// getICmpCondCode - Return the ISD condition code corresponding to
432/// the given LLVM IR integer condition code.
433///
434ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
435  switch (Pred) {
436  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
437  case ICmpInst::ICMP_NE:  return ISD::SETNE;
438  case ICmpInst::ICMP_SLE: return ISD::SETLE;
439  case ICmpInst::ICMP_ULE: return ISD::SETULE;
440  case ICmpInst::ICMP_SGE: return ISD::SETGE;
441  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
442  case ICmpInst::ICMP_SLT: return ISD::SETLT;
443  case ICmpInst::ICMP_ULT: return ISD::SETULT;
444  case ICmpInst::ICMP_SGT: return ISD::SETGT;
445  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
446  default:
447    llvm_unreachable("Invalid ICmp predicate opcode!");
448    return ISD::SETNE;
449  }
450}
451