LegalizeDAG.cpp revision 06c918d2981b0b470eb4e25642150303264381e8
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/Analysis/DebugInfo.h"
20#include "llvm/CodeGen/PseudoSourceValue.h"
21#include "llvm/Target/TargetFrameInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetData.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/Target/TargetOptions.h"
26#include "llvm/CallingConv.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Function.h"
30#include "llvm/GlobalVariable.h"
31#include "llvm/LLVMContext.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/SmallPtrSet.h"
40using namespace llvm;
41
42//===----------------------------------------------------------------------===//
43/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
44/// hacks on it until the target machine can handle it.  This involves
45/// eliminating value sizes the machine cannot handle (promoting small sizes to
46/// large sizes or splitting up large values into small values) as well as
47/// eliminating operations the machine cannot handle.
48///
49/// This code also does a small amount of optimization and recognition of idioms
50/// as part of its processing.  For example, if a target does not support a
51/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
52/// will attempt merge setcc and brc instructions into brcc's.
53///
54namespace {
55class SelectionDAGLegalize {
56  const TargetMachine &TM;
57  const TargetLowering &TLI;
58  SelectionDAG &DAG;
59  CodeGenOpt::Level OptLevel;
60
61  // Libcall insertion helpers.
62
63  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
64  /// legalized.  We use this to ensure that calls are properly serialized
65  /// against each other, including inserted libcalls.
66  SDValue LastCALLSEQ_END;
67
68  /// IsLegalizingCall - This member is used *only* for purposes of providing
69  /// helpful assertions that a libcall isn't created while another call is
70  /// being legalized (which could lead to non-serialized call sequences).
71  bool IsLegalizingCall;
72
73  enum LegalizeAction {
74    Legal,      // The target natively supports this operation.
75    Promote,    // This operation should be executed in a larger type.
76    Expand      // Try to expand this to other ops, otherwise use a libcall.
77  };
78
79  /// ValueTypeActions - This is a bitvector that contains two bits for each
80  /// value type, where the two bits correspond to the LegalizeAction enum.
81  /// This can be queried with "getTypeAction(VT)".
82  TargetLowering::ValueTypeActionImpl ValueTypeActions;
83
84  /// LegalizedNodes - For nodes that are of legal width, and that have more
85  /// than one use, this map indicates what regularized operand to use.  This
86  /// allows us to avoid legalizing the same thing more than once.
87  DenseMap<SDValue, SDValue> LegalizedNodes;
88
89  void AddLegalizedOperand(SDValue From, SDValue To) {
90    LegalizedNodes.insert(std::make_pair(From, To));
91    // If someone requests legalization of the new node, return itself.
92    if (From != To)
93      LegalizedNodes.insert(std::make_pair(To, To));
94  }
95
96public:
97  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
98
99  /// getTypeAction - Return how we should legalize values of this type, either
100  /// it is already legal or we need to expand it into multiple registers of
101  /// smaller integer type, or we need to promote it to a larger type.
102  LegalizeAction getTypeAction(EVT VT) const {
103    return (LegalizeAction)ValueTypeActions.getTypeAction(VT);
104  }
105
106  /// isTypeLegal - Return true if this type is legal on this target.
107  ///
108  bool isTypeLegal(EVT VT) const {
109    return getTypeAction(VT) == Legal;
110  }
111
112  void LegalizeDAG();
113
114private:
115  /// LegalizeOp - We know that the specified value has a legal type.
116  /// Recursively ensure that the operands have legal types, then return the
117  /// result.
118  SDValue LegalizeOp(SDValue O);
119
120  SDValue OptimizeFloatStore(StoreSDNode *ST);
121
122  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
123  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
124  /// is necessary to spill the vector being inserted into to memory, perform
125  /// the insert there, and then read the result back.
126  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
127                                         SDValue Idx, DebugLoc dl);
128  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
129                                  SDValue Idx, DebugLoc dl);
130
131  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
132  /// performs the same shuffe in terms of order or result bytes, but on a type
133  /// whose vector element type is narrower than the original shuffle type.
134  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
135  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
136                                     SDValue N1, SDValue N2,
137                                     SmallVectorImpl<int> &Mask) const;
138
139  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
140                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
141
142  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
143                             DebugLoc dl);
144
145  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
146  std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
147                                                 SDNode *Node, bool isSigned);
148  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
149                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
150                          RTLIB::Libcall Call_PPCF128);
151  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
152                           RTLIB::Libcall Call_I8,
153                           RTLIB::Libcall Call_I16,
154                           RTLIB::Libcall Call_I32,
155                           RTLIB::Libcall Call_I64,
156                           RTLIB::Libcall Call_I128);
157
158  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
159  SDValue ExpandBUILD_VECTOR(SDNode *Node);
160  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
161  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
162                                SmallVectorImpl<SDValue> &Results);
163  SDValue ExpandFCOPYSIGN(SDNode *Node);
164  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
165                               DebugLoc dl);
166  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
167                                DebugLoc dl);
168  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
169                                DebugLoc dl);
170
171  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
172  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
173
174  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
175  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
176
177  std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
178
179  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
180  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
181};
182}
183
184/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
185/// performs the same shuffe in terms of order or result bytes, but on a type
186/// whose vector element type is narrower than the original shuffle type.
187/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
188SDValue
189SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
190                                                 SDValue N1, SDValue N2,
191                                             SmallVectorImpl<int> &Mask) const {
192  unsigned NumMaskElts = VT.getVectorNumElements();
193  unsigned NumDestElts = NVT.getVectorNumElements();
194  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
195
196  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
197
198  if (NumEltsGrowth == 1)
199    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
200
201  SmallVector<int, 8> NewMask;
202  for (unsigned i = 0; i != NumMaskElts; ++i) {
203    int Idx = Mask[i];
204    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
205      if (Idx < 0)
206        NewMask.push_back(-1);
207      else
208        NewMask.push_back(Idx * NumEltsGrowth + j);
209    }
210  }
211  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
212  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
213  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
214}
215
216SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
217                                           CodeGenOpt::Level ol)
218  : TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
219    DAG(dag), OptLevel(ol),
220    ValueTypeActions(TLI.getValueTypeActions()) {
221  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
222         "Too many value types for ValueTypeActions to hold!");
223}
224
225void SelectionDAGLegalize::LegalizeDAG() {
226  LastCALLSEQ_END = DAG.getEntryNode();
227  IsLegalizingCall = false;
228
229  // The legalize process is inherently a bottom-up recursive process (users
230  // legalize their uses before themselves).  Given infinite stack space, we
231  // could just start legalizing on the root and traverse the whole graph.  In
232  // practice however, this causes us to run out of stack space on large basic
233  // blocks.  To avoid this problem, compute an ordering of the nodes where each
234  // node is only legalized after all of its operands are legalized.
235  DAG.AssignTopologicalOrder();
236  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
237       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
238    LegalizeOp(SDValue(I, 0));
239
240  // Finally, it's possible the root changed.  Get the new root.
241  SDValue OldRoot = DAG.getRoot();
242  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
243  DAG.setRoot(LegalizedNodes[OldRoot]);
244
245  LegalizedNodes.clear();
246
247  // Remove dead nodes now.
248  DAG.RemoveDeadNodes();
249}
250
251
252/// FindCallEndFromCallStart - Given a chained node that is part of a call
253/// sequence, find the CALLSEQ_END node that terminates the call sequence.
254static SDNode *FindCallEndFromCallStart(SDNode *Node) {
255  if (Node->getOpcode() == ISD::CALLSEQ_END)
256    return Node;
257  if (Node->use_empty())
258    return 0;   // No CallSeqEnd
259
260  // The chain is usually at the end.
261  SDValue TheChain(Node, Node->getNumValues()-1);
262  if (TheChain.getValueType() != MVT::Other) {
263    // Sometimes it's at the beginning.
264    TheChain = SDValue(Node, 0);
265    if (TheChain.getValueType() != MVT::Other) {
266      // Otherwise, hunt for it.
267      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
268        if (Node->getValueType(i) == MVT::Other) {
269          TheChain = SDValue(Node, i);
270          break;
271        }
272
273      // Otherwise, we walked into a node without a chain.
274      if (TheChain.getValueType() != MVT::Other)
275        return 0;
276    }
277  }
278
279  for (SDNode::use_iterator UI = Node->use_begin(),
280       E = Node->use_end(); UI != E; ++UI) {
281
282    // Make sure to only follow users of our token chain.
283    SDNode *User = *UI;
284    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
285      if (User->getOperand(i) == TheChain)
286        if (SDNode *Result = FindCallEndFromCallStart(User))
287          return Result;
288  }
289  return 0;
290}
291
292/// FindCallStartFromCallEnd - Given a chained node that is part of a call
293/// sequence, find the CALLSEQ_START node that initiates the call sequence.
294static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
295  assert(Node && "Didn't find callseq_start for a call??");
296  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
297
298  assert(Node->getOperand(0).getValueType() == MVT::Other &&
299         "Node doesn't have a token chain argument!");
300  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
301}
302
303/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
304/// see if any uses can reach Dest.  If no dest operands can get to dest,
305/// legalize them, legalize ourself, and return false, otherwise, return true.
306///
307/// Keep track of the nodes we fine that actually do lead to Dest in
308/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
309///
310bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
311                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
312  if (N == Dest) return true;  // N certainly leads to Dest :)
313
314  // If we've already processed this node and it does lead to Dest, there is no
315  // need to reprocess it.
316  if (NodesLeadingTo.count(N)) return true;
317
318  // If the first result of this node has been already legalized, then it cannot
319  // reach N.
320  if (LegalizedNodes.count(SDValue(N, 0))) return false;
321
322  // Okay, this node has not already been legalized.  Check and legalize all
323  // operands.  If none lead to Dest, then we can legalize this node.
324  bool OperandsLeadToDest = false;
325  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
326    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
327      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest,
328                                   NodesLeadingTo);
329
330  if (OperandsLeadToDest) {
331    NodesLeadingTo.insert(N);
332    return true;
333  }
334
335  // Okay, this node looks safe, legalize it and return false.
336  LegalizeOp(SDValue(N, 0));
337  return false;
338}
339
340/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
341/// a load from the constant pool.
342static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
343                                SelectionDAG &DAG, const TargetLowering &TLI) {
344  bool Extend = false;
345  DebugLoc dl = CFP->getDebugLoc();
346
347  // If a FP immediate is precise when represented as a float and if the
348  // target can do an extending load from float to double, we put it into
349  // the constant pool as a float, even if it's is statically typed as a
350  // double.  This shrinks FP constants and canonicalizes them for targets where
351  // an FP extending load is the same cost as a normal load (such as on the x87
352  // fp stack or PPC FP unit).
353  EVT VT = CFP->getValueType(0);
354  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
355  if (!UseCP) {
356    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
357    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
358                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
359  }
360
361  EVT OrigVT = VT;
362  EVT SVT = VT;
363  while (SVT != MVT::f32) {
364    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
365    if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
366        // Only do this if the target has a native EXTLOAD instruction from
367        // smaller type.
368        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
369        TLI.ShouldShrinkFPConstant(OrigVT)) {
370      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
371      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
372      VT = SVT;
373      Extend = true;
374    }
375  }
376
377  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
378  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
379  if (Extend)
380    return DAG.getExtLoad(ISD::EXTLOAD, OrigVT, dl,
381                          DAG.getEntryNode(),
382                          CPIdx, MachinePointerInfo::getConstantPool(),
383                          VT, false, false, Alignment);
384  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
385                     MachinePointerInfo::getConstantPool(), false, false,
386                     Alignment);
387}
388
389/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
390static
391SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
392                             const TargetLowering &TLI) {
393  SDValue Chain = ST->getChain();
394  SDValue Ptr = ST->getBasePtr();
395  SDValue Val = ST->getValue();
396  EVT VT = Val.getValueType();
397  int Alignment = ST->getAlignment();
398  DebugLoc dl = ST->getDebugLoc();
399  if (ST->getMemoryVT().isFloatingPoint() ||
400      ST->getMemoryVT().isVector()) {
401    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
402    if (TLI.isTypeLegal(intVT)) {
403      // Expand to a bitconvert of the value to the integer type of the
404      // same size, then a (misaligned) int store.
405      // FIXME: Does not handle truncating floating point stores!
406      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
407      return DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
408                          ST->isVolatile(), ST->isNonTemporal(), Alignment);
409    } else {
410      // Do a (aligned) store to a stack slot, then copy from the stack slot
411      // to the final destination using (unaligned) integer loads and stores.
412      EVT StoredVT = ST->getMemoryVT();
413      EVT RegVT =
414        TLI.getRegisterType(*DAG.getContext(),
415                            EVT::getIntegerVT(*DAG.getContext(),
416                                              StoredVT.getSizeInBits()));
417      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
418      unsigned RegBytes = RegVT.getSizeInBits() / 8;
419      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
420
421      // Make sure the stack slot is also aligned for the register type.
422      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
423
424      // Perform the original store, only redirected to the stack slot.
425      SDValue Store = DAG.getTruncStore(Chain, dl,
426                                        Val, StackPtr, MachinePointerInfo(),
427                                        StoredVT, false, false, 0);
428      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
429      SmallVector<SDValue, 8> Stores;
430      unsigned Offset = 0;
431
432      // Do all but one copies using the full register width.
433      for (unsigned i = 1; i < NumRegs; i++) {
434        // Load one integer register's worth from the stack slot.
435        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
436                                   MachinePointerInfo(),
437                                   false, false, 0);
438        // Store it to the final location.  Remember the store.
439        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
440                                    ST->getPointerInfo().getWithOffset(Offset),
441                                      ST->isVolatile(), ST->isNonTemporal(),
442                                      MinAlign(ST->getAlignment(), Offset)));
443        // Increment the pointers.
444        Offset += RegBytes;
445        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
446                               Increment);
447        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
448      }
449
450      // The last store may be partial.  Do a truncating store.  On big-endian
451      // machines this requires an extending load from the stack slot to ensure
452      // that the bits are in the right place.
453      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
454                                    8 * (StoredBytes - Offset));
455
456      // Load from the stack slot.
457      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, dl, Store, StackPtr,
458                                    MachinePointerInfo(),
459                                    MemVT, false, false, 0);
460
461      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
462                                         ST->getPointerInfo()
463                                           .getWithOffset(Offset),
464                                         MemVT, ST->isVolatile(),
465                                         ST->isNonTemporal(),
466                                         MinAlign(ST->getAlignment(), Offset)));
467      // The order of the stores doesn't matter - say it with a TokenFactor.
468      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
469                         Stores.size());
470    }
471  }
472  assert(ST->getMemoryVT().isInteger() &&
473         !ST->getMemoryVT().isVector() &&
474         "Unaligned store of unknown type.");
475  // Get the half-size VT
476  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
477  int NumBits = NewStoredVT.getSizeInBits();
478  int IncrementSize = NumBits / 8;
479
480  // Divide the stored value in two parts.
481  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
482  SDValue Lo = Val;
483  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
484
485  // Store the two parts
486  SDValue Store1, Store2;
487  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
488                             ST->getPointerInfo(), NewStoredVT,
489                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
490  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
491                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
492  Alignment = MinAlign(Alignment, IncrementSize);
493  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
494                             ST->getPointerInfo().getWithOffset(IncrementSize),
495                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
496                             Alignment);
497
498  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
499}
500
501/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
502static
503SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
504                            const TargetLowering &TLI) {
505  SDValue Chain = LD->getChain();
506  SDValue Ptr = LD->getBasePtr();
507  EVT VT = LD->getValueType(0);
508  EVT LoadedVT = LD->getMemoryVT();
509  DebugLoc dl = LD->getDebugLoc();
510  if (VT.isFloatingPoint() || VT.isVector()) {
511    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
512    if (TLI.isTypeLegal(intVT)) {
513      // Expand to a (misaligned) integer load of the same size,
514      // then bitconvert to floating point or vector.
515      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
516                                    LD->isVolatile(),
517                                    LD->isNonTemporal(), LD->getAlignment());
518      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
519      if (VT.isFloatingPoint() && LoadedVT != VT)
520        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
521
522      SDValue Ops[] = { Result, Chain };
523      return DAG.getMergeValues(Ops, 2, dl);
524    }
525
526    // Copy the value to a (aligned) stack slot using (unaligned) integer
527    // loads and stores, then do a (aligned) load from the stack slot.
528    EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
529    unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
530    unsigned RegBytes = RegVT.getSizeInBits() / 8;
531    unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
532
533    // Make sure the stack slot is also aligned for the register type.
534    SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
535
536    SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
537    SmallVector<SDValue, 8> Stores;
538    SDValue StackPtr = StackBase;
539    unsigned Offset = 0;
540
541    // Do all but one copies using the full register width.
542    for (unsigned i = 1; i < NumRegs; i++) {
543      // Load one integer register's worth from the original location.
544      SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
545                                 LD->getPointerInfo().getWithOffset(Offset),
546                                 LD->isVolatile(), LD->isNonTemporal(),
547                                 MinAlign(LD->getAlignment(), Offset));
548      // Follow the load with a store to the stack slot.  Remember the store.
549      Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
550                                    MachinePointerInfo(), false, false, 0));
551      // Increment the pointers.
552      Offset += RegBytes;
553      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
554      StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
555                             Increment);
556    }
557
558    // The last copy may be partial.  Do an extending load.
559    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
560                                  8 * (LoadedBytes - Offset));
561    SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, RegVT, dl, Chain, Ptr,
562                                  LD->getPointerInfo().getWithOffset(Offset),
563                                  MemVT, LD->isVolatile(),
564                                  LD->isNonTemporal(),
565                                  MinAlign(LD->getAlignment(), Offset));
566    // Follow the load with a store to the stack slot.  Remember the store.
567    // On big-endian machines this requires a truncating store to ensure
568    // that the bits end up in the right place.
569    Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
570                                       MachinePointerInfo(), MemVT,
571                                       false, false, 0));
572
573    // The order of the stores doesn't matter - say it with a TokenFactor.
574    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
575                             Stores.size());
576
577    // Finally, perform the original load only redirected to the stack slot.
578    Load = DAG.getExtLoad(LD->getExtensionType(), VT, dl, TF, StackBase,
579                          MachinePointerInfo(), LoadedVT, false, false, 0);
580
581    // Callers expect a MERGE_VALUES node.
582    SDValue Ops[] = { Load, TF };
583    return DAG.getMergeValues(Ops, 2, dl);
584  }
585  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
586         "Unaligned load of unsupported type.");
587
588  // Compute the new VT that is half the size of the old one.  This is an
589  // integer MVT.
590  unsigned NumBits = LoadedVT.getSizeInBits();
591  EVT NewLoadedVT;
592  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
593  NumBits >>= 1;
594
595  unsigned Alignment = LD->getAlignment();
596  unsigned IncrementSize = NumBits / 8;
597  ISD::LoadExtType HiExtType = LD->getExtensionType();
598
599  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
600  if (HiExtType == ISD::NON_EXTLOAD)
601    HiExtType = ISD::ZEXTLOAD;
602
603  // Load the value in two parts
604  SDValue Lo, Hi;
605  if (TLI.isLittleEndian()) {
606    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, dl, Chain, Ptr, LD->getPointerInfo(),
607                        NewLoadedVT, LD->isVolatile(),
608                        LD->isNonTemporal(), Alignment);
609    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
610                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
611    Hi = DAG.getExtLoad(HiExtType, VT, dl, Chain, Ptr,
612                        LD->getPointerInfo().getWithOffset(IncrementSize),
613                        NewLoadedVT, LD->isVolatile(),
614                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
615  } else {
616    Hi = DAG.getExtLoad(HiExtType, VT, dl, Chain, Ptr, LD->getPointerInfo(),
617                        NewLoadedVT, LD->isVolatile(),
618                        LD->isNonTemporal(), Alignment);
619    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
620                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
621    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, VT, dl, Chain, Ptr,
622                        LD->getPointerInfo().getWithOffset(IncrementSize),
623                        NewLoadedVT, LD->isVolatile(),
624                        LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
625  }
626
627  // aggregate the two parts
628  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
629  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
630  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
631
632  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
633                             Hi.getValue(1));
634
635  SDValue Ops[] = { Result, TF };
636  return DAG.getMergeValues(Ops, 2, dl);
637}
638
639/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
640/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
641/// is necessary to spill the vector being inserted into to memory, perform
642/// the insert there, and then read the result back.
643SDValue SelectionDAGLegalize::
644PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
645                               DebugLoc dl) {
646  SDValue Tmp1 = Vec;
647  SDValue Tmp2 = Val;
648  SDValue Tmp3 = Idx;
649
650  // If the target doesn't support this, we have to spill the input vector
651  // to a temporary stack slot, update the element, then reload it.  This is
652  // badness.  We could also load the value into a vector register (either
653  // with a "move to register" or "extload into register" instruction, then
654  // permute it into place, if the idx is a constant and if the idx is
655  // supported by the target.
656  EVT VT    = Tmp1.getValueType();
657  EVT EltVT = VT.getVectorElementType();
658  EVT IdxVT = Tmp3.getValueType();
659  EVT PtrVT = TLI.getPointerTy();
660  SDValue StackPtr = DAG.CreateStackTemporary(VT);
661
662  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
663
664  // Store the vector.
665  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
666                            MachinePointerInfo::getFixedStack(SPFI),
667                            false, false, 0);
668
669  // Truncate or zero extend offset to target pointer type.
670  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
671  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
672  // Add the offset to the index.
673  unsigned EltSize = EltVT.getSizeInBits()/8;
674  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
675  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
676  // Store the scalar value.
677  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
678                         false, false, 0);
679  // Load the updated vector.
680  return DAG.getLoad(VT, dl, Ch, StackPtr,
681                     MachinePointerInfo::getFixedStack(SPFI), false, false, 0);
682}
683
684
685SDValue SelectionDAGLegalize::
686ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
687  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
688    // SCALAR_TO_VECTOR requires that the type of the value being inserted
689    // match the element type of the vector being created, except for
690    // integers in which case the inserted value can be over width.
691    EVT EltVT = Vec.getValueType().getVectorElementType();
692    if (Val.getValueType() == EltVT ||
693        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
694      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
695                                  Vec.getValueType(), Val);
696
697      unsigned NumElts = Vec.getValueType().getVectorNumElements();
698      // We generate a shuffle of InVec and ScVec, so the shuffle mask
699      // should be 0,1,2,3,4,5... with the appropriate element replaced with
700      // elt 0 of the RHS.
701      SmallVector<int, 8> ShufOps;
702      for (unsigned i = 0; i != NumElts; ++i)
703        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
704
705      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
706                                  &ShufOps[0]);
707    }
708  }
709  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
710}
711
712SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
713  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
714  // FIXME: We shouldn't do this for TargetConstantFP's.
715  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
716  // to phase ordering between legalized code and the dag combiner.  This
717  // probably means that we need to integrate dag combiner and legalizer
718  // together.
719  // We generally can't do this one for long doubles.
720  SDValue Tmp1 = ST->getChain();
721  SDValue Tmp2 = ST->getBasePtr();
722  SDValue Tmp3;
723  unsigned Alignment = ST->getAlignment();
724  bool isVolatile = ST->isVolatile();
725  bool isNonTemporal = ST->isNonTemporal();
726  DebugLoc dl = ST->getDebugLoc();
727  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
728    if (CFP->getValueType(0) == MVT::f32 &&
729        getTypeAction(MVT::i32) == Legal) {
730      Tmp3 = DAG.getConstant(CFP->getValueAPF().
731                                      bitcastToAPInt().zextOrTrunc(32),
732                              MVT::i32);
733      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
734                          isVolatile, isNonTemporal, Alignment);
735    }
736
737    if (CFP->getValueType(0) == MVT::f64) {
738      // If this target supports 64-bit registers, do a single 64-bit store.
739      if (getTypeAction(MVT::i64) == Legal) {
740        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
741                                  zextOrTrunc(64), MVT::i64);
742        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
743                            isVolatile, isNonTemporal, Alignment);
744      }
745
746      if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
747        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
748        // stores.  If the target supports neither 32- nor 64-bits, this
749        // xform is certainly not worth it.
750        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
751        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
752        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
753        if (TLI.isBigEndian()) std::swap(Lo, Hi);
754
755        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile,
756                          isNonTemporal, Alignment);
757        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
758                            DAG.getIntPtrConstant(4));
759        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2,
760                          ST->getPointerInfo().getWithOffset(4),
761                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
762
763        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
764      }
765    }
766  }
767  return SDValue();
768}
769
770/// LegalizeOp - We know that the specified value has a legal type, and
771/// that its operands are legal.  Now ensure that the operation itself
772/// is legal, recursively ensuring that the operands' operations remain
773/// legal.
774SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
775  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
776    return Op;
777
778  SDNode *Node = Op.getNode();
779  DebugLoc dl = Node->getDebugLoc();
780
781  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
782    assert(getTypeAction(Node->getValueType(i)) == Legal &&
783           "Unexpected illegal type!");
784
785  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
786    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
787            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
788           "Unexpected illegal type!");
789
790  // Note that LegalizeOp may be reentered even from single-use nodes, which
791  // means that we always must cache transformed nodes.
792  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
793  if (I != LegalizedNodes.end()) return I->second;
794
795  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
796  SDValue Result = Op;
797  bool isCustom = false;
798
799  // Figure out the correct action; the way to query this varies by opcode
800  TargetLowering::LegalizeAction Action;
801  bool SimpleFinishLegalizing = true;
802  switch (Node->getOpcode()) {
803  case ISD::INTRINSIC_W_CHAIN:
804  case ISD::INTRINSIC_WO_CHAIN:
805  case ISD::INTRINSIC_VOID:
806  case ISD::VAARG:
807  case ISD::STACKSAVE:
808    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
809    break;
810  case ISD::SINT_TO_FP:
811  case ISD::UINT_TO_FP:
812  case ISD::EXTRACT_VECTOR_ELT:
813    Action = TLI.getOperationAction(Node->getOpcode(),
814                                    Node->getOperand(0).getValueType());
815    break;
816  case ISD::FP_ROUND_INREG:
817  case ISD::SIGN_EXTEND_INREG: {
818    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
819    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
820    break;
821  }
822  case ISD::SELECT_CC:
823  case ISD::SETCC:
824  case ISD::BR_CC: {
825    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
826                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
827    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
828    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
829    ISD::CondCode CCCode =
830        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
831    Action = TLI.getCondCodeAction(CCCode, OpVT);
832    if (Action == TargetLowering::Legal) {
833      if (Node->getOpcode() == ISD::SELECT_CC)
834        Action = TLI.getOperationAction(Node->getOpcode(),
835                                        Node->getValueType(0));
836      else
837        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
838    }
839    break;
840  }
841  case ISD::LOAD:
842  case ISD::STORE:
843    // FIXME: Model these properly.  LOAD and STORE are complicated, and
844    // STORE expects the unlegalized operand in some cases.
845    SimpleFinishLegalizing = false;
846    break;
847  case ISD::CALLSEQ_START:
848  case ISD::CALLSEQ_END:
849    // FIXME: This shouldn't be necessary.  These nodes have special properties
850    // dealing with the recursive nature of legalization.  Removing this
851    // special case should be done as part of making LegalizeDAG non-recursive.
852    SimpleFinishLegalizing = false;
853    break;
854  case ISD::EXTRACT_ELEMENT:
855  case ISD::FLT_ROUNDS_:
856  case ISD::SADDO:
857  case ISD::SSUBO:
858  case ISD::UADDO:
859  case ISD::USUBO:
860  case ISD::SMULO:
861  case ISD::UMULO:
862  case ISD::FPOWI:
863  case ISD::MERGE_VALUES:
864  case ISD::EH_RETURN:
865  case ISD::FRAME_TO_ARGS_OFFSET:
866  case ISD::EH_SJLJ_SETJMP:
867  case ISD::EH_SJLJ_LONGJMP:
868  case ISD::EH_SJLJ_DISPATCHSETUP:
869    // These operations lie about being legal: when they claim to be legal,
870    // they should actually be expanded.
871    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
872    if (Action == TargetLowering::Legal)
873      Action = TargetLowering::Expand;
874    break;
875  case ISD::TRAMPOLINE:
876  case ISD::FRAMEADDR:
877  case ISD::RETURNADDR:
878    // These operations lie about being legal: when they claim to be legal,
879    // they should actually be custom-lowered.
880    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
881    if (Action == TargetLowering::Legal)
882      Action = TargetLowering::Custom;
883    break;
884  case ISD::BUILD_VECTOR:
885    // A weird case: legalization for BUILD_VECTOR never legalizes the
886    // operands!
887    // FIXME: This really sucks... changing it isn't semantically incorrect,
888    // but it massively pessimizes the code for floating-point BUILD_VECTORs
889    // because ConstantFP operands get legalized into constant pool loads
890    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
891    // though, because BUILD_VECTORS usually get lowered into other nodes
892    // which get legalized properly.
893    SimpleFinishLegalizing = false;
894    break;
895  default:
896    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
897      Action = TargetLowering::Legal;
898    } else {
899      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
900    }
901    break;
902  }
903
904  if (SimpleFinishLegalizing) {
905    SmallVector<SDValue, 8> Ops, ResultVals;
906    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
907      Ops.push_back(LegalizeOp(Node->getOperand(i)));
908    switch (Node->getOpcode()) {
909    default: break;
910    case ISD::BR:
911    case ISD::BRIND:
912    case ISD::BR_JT:
913    case ISD::BR_CC:
914    case ISD::BRCOND:
915      // Branches tweak the chain to include LastCALLSEQ_END
916      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
917                            LastCALLSEQ_END);
918      Ops[0] = LegalizeOp(Ops[0]);
919      LastCALLSEQ_END = DAG.getEntryNode();
920      break;
921    case ISD::SHL:
922    case ISD::SRL:
923    case ISD::SRA:
924    case ISD::ROTL:
925    case ISD::ROTR:
926      // Legalizing shifts/rotates requires adjusting the shift amount
927      // to the appropriate width.
928      if (!Ops[1].getValueType().isVector())
929        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
930      break;
931    case ISD::SRL_PARTS:
932    case ISD::SRA_PARTS:
933    case ISD::SHL_PARTS:
934      // Legalizing shifts/rotates requires adjusting the shift amount
935      // to the appropriate width.
936      if (!Ops[2].getValueType().isVector())
937        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
938      break;
939    }
940
941    Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), Ops.data(),
942                                            Ops.size()), 0);
943    switch (Action) {
944    case TargetLowering::Legal:
945      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
946        ResultVals.push_back(Result.getValue(i));
947      break;
948    case TargetLowering::Custom:
949      // FIXME: The handling for custom lowering with multiple results is
950      // a complete mess.
951      Tmp1 = TLI.LowerOperation(Result, DAG);
952      if (Tmp1.getNode()) {
953        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
954          if (e == 1)
955            ResultVals.push_back(Tmp1);
956          else
957            ResultVals.push_back(Tmp1.getValue(i));
958        }
959        break;
960      }
961
962      // FALL THROUGH
963    case TargetLowering::Expand:
964      ExpandNode(Result.getNode(), ResultVals);
965      break;
966    case TargetLowering::Promote:
967      PromoteNode(Result.getNode(), ResultVals);
968      break;
969    }
970    if (!ResultVals.empty()) {
971      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
972        if (ResultVals[i] != SDValue(Node, i))
973          ResultVals[i] = LegalizeOp(ResultVals[i]);
974        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
975      }
976      return ResultVals[Op.getResNo()];
977    }
978  }
979
980  switch (Node->getOpcode()) {
981  default:
982#ifndef NDEBUG
983    dbgs() << "NODE: ";
984    Node->dump( &DAG);
985    dbgs() << "\n";
986#endif
987    assert(0 && "Do not know how to legalize this operator!");
988
989  case ISD::BUILD_VECTOR:
990    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
991    default: assert(0 && "This action is not supported yet!");
992    case TargetLowering::Custom:
993      Tmp3 = TLI.LowerOperation(Result, DAG);
994      if (Tmp3.getNode()) {
995        Result = Tmp3;
996        break;
997      }
998      // FALLTHROUGH
999    case TargetLowering::Expand:
1000      Result = ExpandBUILD_VECTOR(Result.getNode());
1001      break;
1002    }
1003    break;
1004  case ISD::CALLSEQ_START: {
1005    SDNode *CallEnd = FindCallEndFromCallStart(Node);
1006
1007    // Recursively Legalize all of the inputs of the call end that do not lead
1008    // to this call start.  This ensures that any libcalls that need be inserted
1009    // are inserted *before* the CALLSEQ_START.
1010    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
1011    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
1012      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
1013                                   NodesLeadingTo);
1014    }
1015
1016    // Now that we have legalized all of the inputs (which may have inserted
1017    // libcalls), create the new CALLSEQ_START node.
1018    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1019
1020    // Merge in the last call to ensure that this call starts after the last
1021    // call ended.
1022    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1023      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1024                         Tmp1, LastCALLSEQ_END);
1025      Tmp1 = LegalizeOp(Tmp1);
1026    }
1027
1028    // Do not try to legalize the target-specific arguments (#1+).
1029    if (Tmp1 != Node->getOperand(0)) {
1030      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1031      Ops[0] = Tmp1;
1032      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(), &Ops[0],
1033                                              Ops.size()), Result.getResNo());
1034    }
1035
1036    // Remember that the CALLSEQ_START is legalized.
1037    AddLegalizedOperand(Op.getValue(0), Result);
1038    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1039      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1040
1041    // Now that the callseq_start and all of the non-call nodes above this call
1042    // sequence have been legalized, legalize the call itself.  During this
1043    // process, no libcalls can/will be inserted, guaranteeing that no calls
1044    // can overlap.
1045    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1046    // Note that we are selecting this call!
1047    LastCALLSEQ_END = SDValue(CallEnd, 0);
1048    IsLegalizingCall = true;
1049
1050    // Legalize the call, starting from the CALLSEQ_END.
1051    LegalizeOp(LastCALLSEQ_END);
1052    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1053    return Result;
1054  }
1055  case ISD::CALLSEQ_END:
1056    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1057    // will cause this node to be legalized as well as handling libcalls right.
1058    if (LastCALLSEQ_END.getNode() != Node) {
1059      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1060      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1061      assert(I != LegalizedNodes.end() &&
1062             "Legalizing the call start should have legalized this node!");
1063      return I->second;
1064    }
1065
1066    // Otherwise, the call start has been legalized and everything is going
1067    // according to plan.  Just legalize ourselves normally here.
1068    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1069    // Do not try to legalize the target-specific arguments (#1+), except for
1070    // an optional flag input.
1071    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1072      if (Tmp1 != Node->getOperand(0)) {
1073        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1074        Ops[0] = Tmp1;
1075        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1076                                                &Ops[0], Ops.size()),
1077                         Result.getResNo());
1078      }
1079    } else {
1080      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1081      if (Tmp1 != Node->getOperand(0) ||
1082          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1083        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1084        Ops[0] = Tmp1;
1085        Ops.back() = Tmp2;
1086        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1087                                                &Ops[0], Ops.size()),
1088                         Result.getResNo());
1089      }
1090    }
1091    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1092    // This finishes up call legalization.
1093    IsLegalizingCall = false;
1094
1095    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1096    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1097    if (Node->getNumValues() == 2)
1098      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1099    return Result.getValue(Op.getResNo());
1100  case ISD::LOAD: {
1101    LoadSDNode *LD = cast<LoadSDNode>(Node);
1102    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1103    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1104
1105    ISD::LoadExtType ExtType = LD->getExtensionType();
1106    if (ExtType == ISD::NON_EXTLOAD) {
1107      EVT VT = Node->getValueType(0);
1108      Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1109                                              Tmp1, Tmp2, LD->getOffset()),
1110                       Result.getResNo());
1111      Tmp3 = Result.getValue(0);
1112      Tmp4 = Result.getValue(1);
1113
1114      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1115      default: assert(0 && "This action is not supported yet!");
1116      case TargetLowering::Legal:
1117        // If this is an unaligned load and the target doesn't support it,
1118        // expand it.
1119        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1120          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1121          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1122          if (LD->getAlignment() < ABIAlignment){
1123            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1124                                         DAG, TLI);
1125            Tmp3 = Result.getOperand(0);
1126            Tmp4 = Result.getOperand(1);
1127            Tmp3 = LegalizeOp(Tmp3);
1128            Tmp4 = LegalizeOp(Tmp4);
1129          }
1130        }
1131        break;
1132      case TargetLowering::Custom:
1133        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1134        if (Tmp1.getNode()) {
1135          Tmp3 = LegalizeOp(Tmp1);
1136          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1137        }
1138        break;
1139      case TargetLowering::Promote: {
1140        // Only promote a load of vector type to another.
1141        assert(VT.isVector() && "Cannot promote this load!");
1142        // Change base type to a different vector type.
1143        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1144
1145        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
1146                           LD->isVolatile(), LD->isNonTemporal(),
1147                           LD->getAlignment());
1148        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1149        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1150        break;
1151      }
1152      }
1153      // Since loads produce two values, make sure to remember that we
1154      // legalized both of them.
1155      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1156      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1157      return Op.getResNo() ? Tmp4 : Tmp3;
1158    }
1159
1160    EVT SrcVT = LD->getMemoryVT();
1161    unsigned SrcWidth = SrcVT.getSizeInBits();
1162    unsigned Alignment = LD->getAlignment();
1163    bool isVolatile = LD->isVolatile();
1164    bool isNonTemporal = LD->isNonTemporal();
1165
1166    if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1167        // Some targets pretend to have an i1 loading operation, and actually
1168        // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1169        // bits are guaranteed to be zero; it helps the optimizers understand
1170        // that these bits are zero.  It is also useful for EXTLOAD, since it
1171        // tells the optimizers that those bits are undefined.  It would be
1172        // nice to have an effective generic way of getting these benefits...
1173        // Until such a way is found, don't insist on promoting i1 here.
1174        (SrcVT != MVT::i1 ||
1175         TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1176      // Promote to a byte-sized load if not loading an integral number of
1177      // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1178      unsigned NewWidth = SrcVT.getStoreSizeInBits();
1179      EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1180      SDValue Ch;
1181
1182      // The extra bits are guaranteed to be zero, since we stored them that
1183      // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1184
1185      ISD::LoadExtType NewExtType =
1186        ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1187
1188      Result = DAG.getExtLoad(NewExtType, Node->getValueType(0), dl,
1189                              Tmp1, Tmp2, LD->getPointerInfo(),
1190                              NVT, isVolatile, isNonTemporal, Alignment);
1191
1192      Ch = Result.getValue(1); // The chain.
1193
1194      if (ExtType == ISD::SEXTLOAD)
1195        // Having the top bits zero doesn't help when sign extending.
1196        Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1197                             Result.getValueType(),
1198                             Result, DAG.getValueType(SrcVT));
1199      else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1200        // All the top bits are guaranteed to be zero - inform the optimizers.
1201        Result = DAG.getNode(ISD::AssertZext, dl,
1202                             Result.getValueType(), Result,
1203                             DAG.getValueType(SrcVT));
1204
1205      Tmp1 = LegalizeOp(Result);
1206      Tmp2 = LegalizeOp(Ch);
1207    } else if (SrcWidth & (SrcWidth - 1)) {
1208      // If not loading a power-of-2 number of bits, expand as two loads.
1209      assert(!SrcVT.isVector() && "Unsupported extload!");
1210      unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1211      assert(RoundWidth < SrcWidth);
1212      unsigned ExtraWidth = SrcWidth - RoundWidth;
1213      assert(ExtraWidth < RoundWidth);
1214      assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1215             "Load size not an integral number of bytes!");
1216      EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1217      EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1218      SDValue Lo, Hi, Ch;
1219      unsigned IncrementSize;
1220
1221      if (TLI.isLittleEndian()) {
1222        // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1223        // Load the bottom RoundWidth bits.
1224        Lo = DAG.getExtLoad(ISD::ZEXTLOAD, Node->getValueType(0), dl,
1225                            Tmp1, Tmp2,
1226                            LD->getPointerInfo(), RoundVT, isVolatile,
1227                            isNonTemporal, Alignment);
1228
1229        // Load the remaining ExtraWidth bits.
1230        IncrementSize = RoundWidth / 8;
1231        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1232                           DAG.getIntPtrConstant(IncrementSize));
1233        Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), dl, Tmp1, Tmp2,
1234                            LD->getPointerInfo().getWithOffset(IncrementSize),
1235                            ExtraVT, isVolatile, isNonTemporal,
1236                            MinAlign(Alignment, IncrementSize));
1237
1238        // Build a factor node to remember that this load is independent of
1239        // the other one.
1240        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1241                         Hi.getValue(1));
1242
1243        // Move the top bits to the right place.
1244        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1245                         DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1246
1247        // Join the hi and lo parts.
1248        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1249      } else {
1250        // Big endian - avoid unaligned loads.
1251        // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1252        // Load the top RoundWidth bits.
1253        Hi = DAG.getExtLoad(ExtType, Node->getValueType(0), dl, Tmp1, Tmp2,
1254                            LD->getPointerInfo(), RoundVT, isVolatile,
1255                            isNonTemporal, Alignment);
1256
1257        // Load the remaining ExtraWidth bits.
1258        IncrementSize = RoundWidth / 8;
1259        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1260                           DAG.getIntPtrConstant(IncrementSize));
1261        Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1262                            Node->getValueType(0), dl, Tmp1, Tmp2,
1263                            LD->getPointerInfo().getWithOffset(IncrementSize),
1264                            ExtraVT, isVolatile, isNonTemporal,
1265                            MinAlign(Alignment, IncrementSize));
1266
1267        // Build a factor node to remember that this load is independent of
1268        // the other one.
1269        Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1270                         Hi.getValue(1));
1271
1272        // Move the top bits to the right place.
1273        Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1274                         DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1275
1276        // Join the hi and lo parts.
1277        Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1278      }
1279
1280      Tmp1 = LegalizeOp(Result);
1281      Tmp2 = LegalizeOp(Ch);
1282    } else {
1283      switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1284      default: assert(0 && "This action is not supported yet!");
1285      case TargetLowering::Custom:
1286        isCustom = true;
1287        // FALLTHROUGH
1288      case TargetLowering::Legal:
1289        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1290                                                Tmp1, Tmp2, LD->getOffset()),
1291                         Result.getResNo());
1292        Tmp1 = Result.getValue(0);
1293        Tmp2 = Result.getValue(1);
1294
1295        if (isCustom) {
1296          Tmp3 = TLI.LowerOperation(Result, DAG);
1297          if (Tmp3.getNode()) {
1298            Tmp1 = LegalizeOp(Tmp3);
1299            Tmp2 = LegalizeOp(Tmp3.getValue(1));
1300          }
1301        } else {
1302          // If this is an unaligned load and the target doesn't support it,
1303          // expand it.
1304          if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1305            const Type *Ty =
1306              LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1307            unsigned ABIAlignment =
1308              TLI.getTargetData()->getABITypeAlignment(Ty);
1309            if (LD->getAlignment() < ABIAlignment){
1310              Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1311                                           DAG, TLI);
1312              Tmp1 = Result.getOperand(0);
1313              Tmp2 = Result.getOperand(1);
1314              Tmp1 = LegalizeOp(Tmp1);
1315              Tmp2 = LegalizeOp(Tmp2);
1316            }
1317          }
1318        }
1319        break;
1320      case TargetLowering::Expand:
1321        if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && isTypeLegal(SrcVT)) {
1322          SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1323                                     LD->getPointerInfo(),
1324                                     LD->isVolatile(), LD->isNonTemporal(),
1325                                     LD->getAlignment());
1326          unsigned ExtendOp;
1327          switch (ExtType) {
1328          case ISD::EXTLOAD:
1329            ExtendOp = (SrcVT.isFloatingPoint() ?
1330                        ISD::FP_EXTEND : ISD::ANY_EXTEND);
1331            break;
1332          case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1333          case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1334          default: llvm_unreachable("Unexpected extend load type!");
1335          }
1336          Result = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1337          Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1338          Tmp2 = LegalizeOp(Load.getValue(1));
1339          break;
1340        }
1341        // FIXME: This does not work for vectors on most targets.  Sign- and
1342        // zero-extend operations are currently folded into extending loads,
1343        // whether they are legal or not, and then we end up here without any
1344        // support for legalizing them.
1345        assert(ExtType != ISD::EXTLOAD &&
1346               "EXTLOAD should always be supported!");
1347        // Turn the unsupported load into an EXTLOAD followed by an explicit
1348        // zero/sign extend inreg.
1349        Result = DAG.getExtLoad(ISD::EXTLOAD, Node->getValueType(0), dl,
1350                                Tmp1, Tmp2, LD->getPointerInfo(), SrcVT,
1351                                LD->isVolatile(), LD->isNonTemporal(),
1352                                LD->getAlignment());
1353        SDValue ValRes;
1354        if (ExtType == ISD::SEXTLOAD)
1355          ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1356                               Result.getValueType(),
1357                               Result, DAG.getValueType(SrcVT));
1358        else
1359          ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1360        Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1361        Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1362        break;
1363      }
1364    }
1365
1366    // Since loads produce two values, make sure to remember that we legalized
1367    // both of them.
1368    AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1369    AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1370    return Op.getResNo() ? Tmp2 : Tmp1;
1371  }
1372  case ISD::STORE: {
1373    StoreSDNode *ST = cast<StoreSDNode>(Node);
1374    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1375    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1376    unsigned Alignment = ST->getAlignment();
1377    bool isVolatile = ST->isVolatile();
1378    bool isNonTemporal = ST->isNonTemporal();
1379
1380    if (!ST->isTruncatingStore()) {
1381      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1382        Result = SDValue(OptStore, 0);
1383        break;
1384      }
1385
1386      {
1387        Tmp3 = LegalizeOp(ST->getValue());
1388        Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1389                                                Tmp1, Tmp3, Tmp2,
1390                                                ST->getOffset()),
1391                         Result.getResNo());
1392
1393        EVT VT = Tmp3.getValueType();
1394        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1395        default: assert(0 && "This action is not supported yet!");
1396        case TargetLowering::Legal:
1397          // If this is an unaligned store and the target doesn't support it,
1398          // expand it.
1399          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1400            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1401            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1402            if (ST->getAlignment() < ABIAlignment)
1403              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1404                                            DAG, TLI);
1405          }
1406          break;
1407        case TargetLowering::Custom:
1408          Tmp1 = TLI.LowerOperation(Result, DAG);
1409          if (Tmp1.getNode()) Result = Tmp1;
1410          break;
1411        case TargetLowering::Promote:
1412          assert(VT.isVector() && "Unknown legal promote case!");
1413          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1414                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1415          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1416                                ST->getPointerInfo(), isVolatile,
1417                                isNonTemporal, Alignment);
1418          break;
1419        }
1420        break;
1421      }
1422    } else {
1423      Tmp3 = LegalizeOp(ST->getValue());
1424
1425      EVT StVT = ST->getMemoryVT();
1426      unsigned StWidth = StVT.getSizeInBits();
1427
1428      if (StWidth != StVT.getStoreSizeInBits()) {
1429        // Promote to a byte-sized store with upper bits zero if not
1430        // storing an integral number of bytes.  For example, promote
1431        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1432        EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1433                                    StVT.getStoreSizeInBits());
1434        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1435        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1436                                   NVT, isVolatile, isNonTemporal, Alignment);
1437      } else if (StWidth & (StWidth - 1)) {
1438        // If not storing a power-of-2 number of bits, expand as two stores.
1439        assert(!StVT.isVector() && "Unsupported truncstore!");
1440        unsigned RoundWidth = 1 << Log2_32(StWidth);
1441        assert(RoundWidth < StWidth);
1442        unsigned ExtraWidth = StWidth - RoundWidth;
1443        assert(ExtraWidth < RoundWidth);
1444        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1445               "Store size not an integral number of bytes!");
1446        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1447        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1448        SDValue Lo, Hi;
1449        unsigned IncrementSize;
1450
1451        if (TLI.isLittleEndian()) {
1452          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1453          // Store the bottom RoundWidth bits.
1454          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1455                                 RoundVT,
1456                                 isVolatile, isNonTemporal, Alignment);
1457
1458          // Store the remaining ExtraWidth bits.
1459          IncrementSize = RoundWidth / 8;
1460          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1461                             DAG.getIntPtrConstant(IncrementSize));
1462          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1463                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1464          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2,
1465                             ST->getPointerInfo().getWithOffset(IncrementSize),
1466                                 ExtraVT, isVolatile, isNonTemporal,
1467                                 MinAlign(Alignment, IncrementSize));
1468        } else {
1469          // Big endian - avoid unaligned stores.
1470          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1471          // Store the top RoundWidth bits.
1472          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1473                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1474          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(),
1475                                 RoundVT, isVolatile, isNonTemporal, Alignment);
1476
1477          // Store the remaining ExtraWidth bits.
1478          IncrementSize = RoundWidth / 8;
1479          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1480                             DAG.getIntPtrConstant(IncrementSize));
1481          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
1482                              ST->getPointerInfo().getWithOffset(IncrementSize),
1483                                 ExtraVT, isVolatile, isNonTemporal,
1484                                 MinAlign(Alignment, IncrementSize));
1485        }
1486
1487        // The order of the stores doesn't matter.
1488        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1489      } else {
1490        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1491            Tmp2 != ST->getBasePtr())
1492          Result = SDValue(DAG.UpdateNodeOperands(Result.getNode(),
1493                                                  Tmp1, Tmp3, Tmp2,
1494                                                  ST->getOffset()),
1495                           Result.getResNo());
1496
1497        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1498        default: assert(0 && "This action is not supported yet!");
1499        case TargetLowering::Legal:
1500          // If this is an unaligned store and the target doesn't support it,
1501          // expand it.
1502          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1503            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1504            unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1505            if (ST->getAlignment() < ABIAlignment)
1506              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1507                                            DAG, TLI);
1508          }
1509          break;
1510        case TargetLowering::Custom:
1511          Result = TLI.LowerOperation(Result, DAG);
1512          break;
1513        case Expand:
1514          // TRUNCSTORE:i16 i32 -> STORE i16
1515          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1516          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1517          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1518                                isVolatile, isNonTemporal, Alignment);
1519          break;
1520        }
1521      }
1522    }
1523    break;
1524  }
1525  }
1526  assert(Result.getValueType() == Op.getValueType() &&
1527         "Bad legalization!");
1528
1529  // Make sure that the generated code is itself legal.
1530  if (Result != Op)
1531    Result = LegalizeOp(Result);
1532
1533  // Note that LegalizeOp may be reentered even from single-use nodes, which
1534  // means that we always must cache transformed nodes.
1535  AddLegalizedOperand(Op, Result);
1536  return Result;
1537}
1538
1539SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1540  SDValue Vec = Op.getOperand(0);
1541  SDValue Idx = Op.getOperand(1);
1542  DebugLoc dl = Op.getDebugLoc();
1543  // Store the value to a temporary stack slot, then LOAD the returned part.
1544  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1545  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1546                            MachinePointerInfo(), false, false, 0);
1547
1548  // Add the offset to the index.
1549  unsigned EltSize =
1550      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1551  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1552                    DAG.getConstant(EltSize, Idx.getValueType()));
1553
1554  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1555    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1556  else
1557    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1558
1559  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1560
1561  if (Op.getValueType().isVector())
1562    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1563                       false, false, 0);
1564  return DAG.getExtLoad(ISD::EXTLOAD, Op.getValueType(), dl, Ch, StackPtr,
1565                        MachinePointerInfo(),
1566                        Vec.getValueType().getVectorElementType(),
1567                        false, false, 0);
1568}
1569
1570SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1571  // We can't handle this case efficiently.  Allocate a sufficiently
1572  // aligned object on the stack, store each element into it, then load
1573  // the result as a vector.
1574  // Create the stack frame object.
1575  EVT VT = Node->getValueType(0);
1576  EVT EltVT = VT.getVectorElementType();
1577  DebugLoc dl = Node->getDebugLoc();
1578  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1579  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1580  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1581
1582  // Emit a store of each element to the stack slot.
1583  SmallVector<SDValue, 8> Stores;
1584  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1585  // Store (in the right endianness) the elements to memory.
1586  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1587    // Ignore undef elements.
1588    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1589
1590    unsigned Offset = TypeByteSize*i;
1591
1592    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1593    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1594
1595    // If the destination vector element type is narrower than the source
1596    // element type, only store the bits necessary.
1597    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1598      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1599                                         Node->getOperand(i), Idx,
1600                                         PtrInfo.getWithOffset(Offset),
1601                                         EltVT, false, false, 0));
1602    } else
1603      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1604                                    Node->getOperand(i), Idx,
1605                                    PtrInfo.getWithOffset(Offset),
1606                                    false, false, 0));
1607  }
1608
1609  SDValue StoreChain;
1610  if (!Stores.empty())    // Not all undef elements?
1611    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1612                             &Stores[0], Stores.size());
1613  else
1614    StoreChain = DAG.getEntryNode();
1615
1616  // Result is a load from the stack slot.
1617  return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, false, false, 0);
1618}
1619
1620SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1621  DebugLoc dl = Node->getDebugLoc();
1622  SDValue Tmp1 = Node->getOperand(0);
1623  SDValue Tmp2 = Node->getOperand(1);
1624
1625  // Get the sign bit of the RHS.  First obtain a value that has the same
1626  // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1627  SDValue SignBit;
1628  EVT FloatVT = Tmp2.getValueType();
1629  EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1630  if (isTypeLegal(IVT)) {
1631    // Convert to an integer with the same sign bit.
1632    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1633  } else {
1634    // Store the float to memory, then load the sign part out as an integer.
1635    MVT LoadTy = TLI.getPointerTy();
1636    // First create a temporary that is aligned for both the load and store.
1637    SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1638    // Then store the float to it.
1639    SDValue Ch =
1640      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1641                   false, false, 0);
1642    if (TLI.isBigEndian()) {
1643      assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1644      // Load out a legal integer with the same sign bit as the float.
1645      SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1646                            false, false, 0);
1647    } else { // Little endian
1648      SDValue LoadPtr = StackPtr;
1649      // The float may be wider than the integer we are going to load.  Advance
1650      // the pointer so that the loaded integer will contain the sign bit.
1651      unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1652      unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1653      LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1654                            LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1655      // Load a legal integer containing the sign bit.
1656      SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1657                            false, false, 0);
1658      // Move the sign bit to the top bit of the loaded integer.
1659      unsigned BitShift = LoadTy.getSizeInBits() -
1660        (FloatVT.getSizeInBits() - 8 * ByteOffset);
1661      assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1662      if (BitShift)
1663        SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1664                              DAG.getConstant(BitShift,TLI.getShiftAmountTy()));
1665    }
1666  }
1667  // Now get the sign bit proper, by seeing whether the value is negative.
1668  SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1669                         SignBit, DAG.getConstant(0, SignBit.getValueType()),
1670                         ISD::SETLT);
1671  // Get the absolute value of the result.
1672  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1673  // Select between the nabs and abs value based on the sign bit of
1674  // the input.
1675  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1676                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1677                     AbsVal);
1678}
1679
1680void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1681                                           SmallVectorImpl<SDValue> &Results) {
1682  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1683  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1684          " not tell us which reg is the stack pointer!");
1685  DebugLoc dl = Node->getDebugLoc();
1686  EVT VT = Node->getValueType(0);
1687  SDValue Tmp1 = SDValue(Node, 0);
1688  SDValue Tmp2 = SDValue(Node, 1);
1689  SDValue Tmp3 = Node->getOperand(2);
1690  SDValue Chain = Tmp1.getOperand(0);
1691
1692  // Chain the dynamic stack allocation so that it doesn't modify the stack
1693  // pointer when other instructions are using the stack.
1694  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1695
1696  SDValue Size  = Tmp2.getOperand(1);
1697  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1698  Chain = SP.getValue(1);
1699  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1700  unsigned StackAlign = TM.getFrameInfo()->getStackAlignment();
1701  if (Align > StackAlign)
1702    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1703                      DAG.getConstant(-(uint64_t)Align, VT));
1704  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1705  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1706
1707  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1708                            DAG.getIntPtrConstant(0, true), SDValue());
1709
1710  Results.push_back(Tmp1);
1711  Results.push_back(Tmp2);
1712}
1713
1714/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1715/// condition code CC on the current target. This routine expands SETCC with
1716/// illegal condition code into AND / OR of multiple SETCC values.
1717void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1718                                                 SDValue &LHS, SDValue &RHS,
1719                                                 SDValue &CC,
1720                                                 DebugLoc dl) {
1721  EVT OpVT = LHS.getValueType();
1722  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1723  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1724  default: assert(0 && "Unknown condition code action!");
1725  case TargetLowering::Legal:
1726    // Nothing to do.
1727    break;
1728  case TargetLowering::Expand: {
1729    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1730    unsigned Opc = 0;
1731    switch (CCCode) {
1732    default: assert(0 && "Don't know how to expand this condition!");
1733    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1734    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1735    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1736    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1737    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1738    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1739    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1740    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1741    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1742    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1743    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1744    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1745    // FIXME: Implement more expansions.
1746    }
1747
1748    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1749    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1750    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1751    RHS = SDValue();
1752    CC  = SDValue();
1753    break;
1754  }
1755  }
1756}
1757
1758/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1759/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1760/// a load from the stack slot to DestVT, extending it if needed.
1761/// The resultant code need not be legal.
1762SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1763                                               EVT SlotVT,
1764                                               EVT DestVT,
1765                                               DebugLoc dl) {
1766  // Create the stack frame object.
1767  unsigned SrcAlign =
1768    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1769                                              getTypeForEVT(*DAG.getContext()));
1770  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1771
1772  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1773  int SPFI = StackPtrFI->getIndex();
1774  MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1775
1776  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1777  unsigned SlotSize = SlotVT.getSizeInBits();
1778  unsigned DestSize = DestVT.getSizeInBits();
1779  const Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1780  unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1781
1782  // Emit a store to the stack slot.  Use a truncstore if the input value is
1783  // later than DestVT.
1784  SDValue Store;
1785
1786  if (SrcSize > SlotSize)
1787    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1788                              PtrInfo, SlotVT, false, false, SrcAlign);
1789  else {
1790    assert(SrcSize == SlotSize && "Invalid store");
1791    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1792                         PtrInfo, false, false, SrcAlign);
1793  }
1794
1795  // Result is a load from the stack slot.
1796  if (SlotSize == DestSize)
1797    return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1798                       false, false, DestAlign);
1799
1800  assert(SlotSize < DestSize && "Unknown extension!");
1801  return DAG.getExtLoad(ISD::EXTLOAD, DestVT, dl, Store, FIPtr,
1802                        PtrInfo, SlotVT, false, false, DestAlign);
1803}
1804
1805SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1806  DebugLoc dl = Node->getDebugLoc();
1807  // Create a vector sized/aligned stack slot, store the value to element #0,
1808  // then load the whole vector back out.
1809  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1810
1811  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1812  int SPFI = StackPtrFI->getIndex();
1813
1814  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1815                                 StackPtr,
1816                                 MachinePointerInfo::getFixedStack(SPFI),
1817                                 Node->getValueType(0).getVectorElementType(),
1818                                 false, false, 0);
1819  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1820                     MachinePointerInfo::getFixedStack(SPFI),
1821                     false, false, 0);
1822}
1823
1824
1825/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1826/// support the operation, but do support the resultant vector type.
1827SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1828  unsigned NumElems = Node->getNumOperands();
1829  SDValue Value1, Value2;
1830  DebugLoc dl = Node->getDebugLoc();
1831  EVT VT = Node->getValueType(0);
1832  EVT OpVT = Node->getOperand(0).getValueType();
1833  EVT EltVT = VT.getVectorElementType();
1834
1835  // If the only non-undef value is the low element, turn this into a
1836  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1837  bool isOnlyLowElement = true;
1838  bool MoreThanTwoValues = false;
1839  bool isConstant = true;
1840  for (unsigned i = 0; i < NumElems; ++i) {
1841    SDValue V = Node->getOperand(i);
1842    if (V.getOpcode() == ISD::UNDEF)
1843      continue;
1844    if (i > 0)
1845      isOnlyLowElement = false;
1846    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1847      isConstant = false;
1848
1849    if (!Value1.getNode()) {
1850      Value1 = V;
1851    } else if (!Value2.getNode()) {
1852      if (V != Value1)
1853        Value2 = V;
1854    } else if (V != Value1 && V != Value2) {
1855      MoreThanTwoValues = true;
1856    }
1857  }
1858
1859  if (!Value1.getNode())
1860    return DAG.getUNDEF(VT);
1861
1862  if (isOnlyLowElement)
1863    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1864
1865  // If all elements are constants, create a load from the constant pool.
1866  if (isConstant) {
1867    std::vector<Constant*> CV;
1868    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1869      if (ConstantFPSDNode *V =
1870          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1871        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1872      } else if (ConstantSDNode *V =
1873                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1874        if (OpVT==EltVT)
1875          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1876        else {
1877          // If OpVT and EltVT don't match, EltVT is not legal and the
1878          // element values have been promoted/truncated earlier.  Undo this;
1879          // we don't want a v16i8 to become a v16i32 for example.
1880          const ConstantInt *CI = V->getConstantIntValue();
1881          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1882                                        CI->getZExtValue()));
1883        }
1884      } else {
1885        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1886        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1887        CV.push_back(UndefValue::get(OpNTy));
1888      }
1889    }
1890    Constant *CP = ConstantVector::get(CV);
1891    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1892    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1893    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1894                       MachinePointerInfo::getConstantPool(),
1895                       false, false, Alignment);
1896  }
1897
1898  if (!MoreThanTwoValues) {
1899    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1900    for (unsigned i = 0; i < NumElems; ++i) {
1901      SDValue V = Node->getOperand(i);
1902      if (V.getOpcode() == ISD::UNDEF)
1903        continue;
1904      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1905    }
1906    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1907      // Get the splatted value into the low element of a vector register.
1908      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1909      SDValue Vec2;
1910      if (Value2.getNode())
1911        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1912      else
1913        Vec2 = DAG.getUNDEF(VT);
1914
1915      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1916      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1917    }
1918  }
1919
1920  // Otherwise, we can't handle this case efficiently.
1921  return ExpandVectorBuildThroughStack(Node);
1922}
1923
1924// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1925// does not fit into a register, return the lo part and set the hi part to the
1926// by-reg argument.  If it does fit into a single register, return the result
1927// and leave the Hi part unset.
1928SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1929                                            bool isSigned) {
1930  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1931  // The input chain to this libcall is the entry node of the function.
1932  // Legalizing the call will automatically add the previous call to the
1933  // dependence.
1934  SDValue InChain = DAG.getEntryNode();
1935
1936  TargetLowering::ArgListTy Args;
1937  TargetLowering::ArgListEntry Entry;
1938  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1939    EVT ArgVT = Node->getOperand(i).getValueType();
1940    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1941    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1942    Entry.isSExt = isSigned;
1943    Entry.isZExt = !isSigned;
1944    Args.push_back(Entry);
1945  }
1946  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1947                                         TLI.getPointerTy());
1948
1949  // Splice the libcall in wherever FindInputOutputChains tells us to.
1950  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1951  std::pair<SDValue, SDValue> CallInfo =
1952    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1953                    0, TLI.getLibcallCallingConv(LC), false,
1954                    /*isReturnValueUsed=*/true,
1955                    Callee, Args, DAG, Node->getDebugLoc());
1956
1957  // Legalize the call sequence, starting with the chain.  This will advance
1958  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1959  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1960  LegalizeOp(CallInfo.second);
1961  return CallInfo.first;
1962}
1963
1964// ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1965// ExpandLibCall except that the first operand is the in-chain.
1966std::pair<SDValue, SDValue>
1967SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1968                                         SDNode *Node,
1969                                         bool isSigned) {
1970  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1971  SDValue InChain = Node->getOperand(0);
1972
1973  TargetLowering::ArgListTy Args;
1974  TargetLowering::ArgListEntry Entry;
1975  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1976    EVT ArgVT = Node->getOperand(i).getValueType();
1977    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1978    Entry.Node = Node->getOperand(i);
1979    Entry.Ty = ArgTy;
1980    Entry.isSExt = isSigned;
1981    Entry.isZExt = !isSigned;
1982    Args.push_back(Entry);
1983  }
1984  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1985                                         TLI.getPointerTy());
1986
1987  // Splice the libcall in wherever FindInputOutputChains tells us to.
1988  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1989  std::pair<SDValue, SDValue> CallInfo =
1990    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1991                    0, TLI.getLibcallCallingConv(LC), false,
1992                    /*isReturnValueUsed=*/true,
1993                    Callee, Args, DAG, Node->getDebugLoc());
1994
1995  // Legalize the call sequence, starting with the chain.  This will advance
1996  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1997  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1998  LegalizeOp(CallInfo.second);
1999  return CallInfo;
2000}
2001
2002SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2003                                              RTLIB::Libcall Call_F32,
2004                                              RTLIB::Libcall Call_F64,
2005                                              RTLIB::Libcall Call_F80,
2006                                              RTLIB::Libcall Call_PPCF128) {
2007  RTLIB::Libcall LC;
2008  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2009  default: assert(0 && "Unexpected request for libcall!");
2010  case MVT::f32: LC = Call_F32; break;
2011  case MVT::f64: LC = Call_F64; break;
2012  case MVT::f80: LC = Call_F80; break;
2013  case MVT::ppcf128: LC = Call_PPCF128; break;
2014  }
2015  return ExpandLibCall(LC, Node, false);
2016}
2017
2018SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2019                                               RTLIB::Libcall Call_I8,
2020                                               RTLIB::Libcall Call_I16,
2021                                               RTLIB::Libcall Call_I32,
2022                                               RTLIB::Libcall Call_I64,
2023                                               RTLIB::Libcall Call_I128) {
2024  RTLIB::Libcall LC;
2025  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
2026  default: assert(0 && "Unexpected request for libcall!");
2027  case MVT::i8:   LC = Call_I8; break;
2028  case MVT::i16:  LC = Call_I16; break;
2029  case MVT::i32:  LC = Call_I32; break;
2030  case MVT::i64:  LC = Call_I64; break;
2031  case MVT::i128: LC = Call_I128; break;
2032  }
2033  return ExpandLibCall(LC, Node, isSigned);
2034}
2035
2036/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2037/// INT_TO_FP operation of the specified operand when the target requests that
2038/// we expand it.  At this point, we know that the result and operand types are
2039/// legal for the target.
2040SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2041                                                   SDValue Op0,
2042                                                   EVT DestVT,
2043                                                   DebugLoc dl) {
2044  if (Op0.getValueType() == MVT::i32) {
2045    // simple 32-bit [signed|unsigned] integer to float/double expansion
2046
2047    // Get the stack frame index of a 8 byte buffer.
2048    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2049
2050    // word offset constant for Hi/Lo address computation
2051    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2052    // set up Hi and Lo (into buffer) address based on endian
2053    SDValue Hi = StackSlot;
2054    SDValue Lo = DAG.getNode(ISD::ADD, dl,
2055                             TLI.getPointerTy(), StackSlot, WordOff);
2056    if (TLI.isLittleEndian())
2057      std::swap(Hi, Lo);
2058
2059    // if signed map to unsigned space
2060    SDValue Op0Mapped;
2061    if (isSigned) {
2062      // constant used to invert sign bit (signed to unsigned mapping)
2063      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2064      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2065    } else {
2066      Op0Mapped = Op0;
2067    }
2068    // store the lo of the constructed double - based on integer input
2069    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2070                                  Op0Mapped, Lo, MachinePointerInfo(),
2071                                  false, false, 0);
2072    // initial hi portion of constructed double
2073    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2074    // store the hi of the constructed double - biased exponent
2075    SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2076                                  MachinePointerInfo(),
2077                                  false, false, 0);
2078    // load the constructed double
2079    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2080                               MachinePointerInfo(), false, false, 0);
2081    // FP constant to bias correct the final result
2082    SDValue Bias = DAG.getConstantFP(isSigned ?
2083                                     BitsToDouble(0x4330000080000000ULL) :
2084                                     BitsToDouble(0x4330000000000000ULL),
2085                                     MVT::f64);
2086    // subtract the bias
2087    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2088    // final result
2089    SDValue Result;
2090    // handle final rounding
2091    if (DestVT == MVT::f64) {
2092      // do nothing
2093      Result = Sub;
2094    } else if (DestVT.bitsLT(MVT::f64)) {
2095      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2096                           DAG.getIntPtrConstant(0));
2097    } else if (DestVT.bitsGT(MVT::f64)) {
2098      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2099    }
2100    return Result;
2101  }
2102  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2103  // Code below here assumes !isSigned without checking again.
2104
2105  // Implementation of unsigned i64 to f64 following the algorithm in
2106  // __floatundidf in compiler_rt. This implementation has the advantage
2107  // of performing rounding correctly, both in the default rounding mode
2108  // and in all alternate rounding modes.
2109  // TODO: Generalize this for use with other types.
2110  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2111    SDValue TwoP52 =
2112      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2113    SDValue TwoP84PlusTwoP52 =
2114      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2115    SDValue TwoP84 =
2116      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2117
2118    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2119    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2120                             DAG.getConstant(32, MVT::i64));
2121    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2122    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2123    SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
2124    SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
2125    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2126                                TwoP84PlusTwoP52);
2127    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2128  }
2129
2130  // Implementation of unsigned i64 to f32.
2131  // TODO: Generalize this for use with other types.
2132  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2133    // For unsigned conversions, convert them to signed conversions using the
2134    // algorithm from the x86_64 __floatundidf in compiler_rt.
2135    if (!isSigned) {
2136      SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2137
2138      SDValue ShiftConst = DAG.getConstant(1, TLI.getShiftAmountTy());
2139      SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2140      SDValue AndConst = DAG.getConstant(1, MVT::i64);
2141      SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2142      SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2143
2144      SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2145      SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2146
2147      // TODO: This really should be implemented using a branch rather than a
2148      // select.  We happen to get lucky and machinesink does the right
2149      // thing most of the time.  This would be a good candidate for a
2150      //pseudo-op, or, even better, for whole-function isel.
2151      SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2152        Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2153      return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2154    }
2155
2156    // Otherwise, implement the fully general conversion.
2157    EVT SHVT = TLI.getShiftAmountTy();
2158
2159    SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2160         DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2161    SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2162         DAG.getConstant(UINT64_C(0x800), MVT::i64));
2163    SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2164         DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2165    SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2166                   And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2167    SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2168    SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2169                   Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2170                   ISD::SETUGE);
2171    SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2172
2173    SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2174                             DAG.getConstant(32, SHVT));
2175    SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2176    SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2177    SDValue TwoP32 =
2178      DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2179    SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2180    SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2181    SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2182    SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2183    return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2184                       DAG.getIntPtrConstant(0));
2185  }
2186
2187  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2188
2189  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2190                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2191                                 ISD::SETLT);
2192  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2193  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2194                                    SignSet, Four, Zero);
2195
2196  // If the sign bit of the integer is set, the large number will be treated
2197  // as a negative number.  To counteract this, the dynamic code adds an
2198  // offset depending on the data type.
2199  uint64_t FF;
2200  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2201  default: assert(0 && "Unsupported integer type!");
2202  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2203  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2204  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2205  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2206  }
2207  if (TLI.isLittleEndian()) FF <<= 32;
2208  Constant *FudgeFactor = ConstantInt::get(
2209                                       Type::getInt64Ty(*DAG.getContext()), FF);
2210
2211  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2212  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2213  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2214  Alignment = std::min(Alignment, 4u);
2215  SDValue FudgeInReg;
2216  if (DestVT == MVT::f32)
2217    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2218                             MachinePointerInfo::getConstantPool(),
2219                             false, false, Alignment);
2220  else {
2221    FudgeInReg =
2222      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, DestVT, dl,
2223                                DAG.getEntryNode(), CPIdx,
2224                                MachinePointerInfo::getConstantPool(),
2225                                MVT::f32, false, false, Alignment));
2226  }
2227
2228  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2229}
2230
2231/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2232/// *INT_TO_FP operation of the specified operand when the target requests that
2233/// we promote it.  At this point, we know that the result and operand types are
2234/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2235/// operation that takes a larger input.
2236SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2237                                                    EVT DestVT,
2238                                                    bool isSigned,
2239                                                    DebugLoc dl) {
2240  // First step, figure out the appropriate *INT_TO_FP operation to use.
2241  EVT NewInTy = LegalOp.getValueType();
2242
2243  unsigned OpToUse = 0;
2244
2245  // Scan for the appropriate larger type to use.
2246  while (1) {
2247    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2248    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2249
2250    // If the target supports SINT_TO_FP of this type, use it.
2251    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2252      OpToUse = ISD::SINT_TO_FP;
2253      break;
2254    }
2255    if (isSigned) continue;
2256
2257    // If the target supports UINT_TO_FP of this type, use it.
2258    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2259      OpToUse = ISD::UINT_TO_FP;
2260      break;
2261    }
2262
2263    // Otherwise, try a larger type.
2264  }
2265
2266  // Okay, we found the operation and type to use.  Zero extend our input to the
2267  // desired type then run the operation on it.
2268  return DAG.getNode(OpToUse, dl, DestVT,
2269                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2270                                 dl, NewInTy, LegalOp));
2271}
2272
2273/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2274/// FP_TO_*INT operation of the specified operand when the target requests that
2275/// we promote it.  At this point, we know that the result and operand types are
2276/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2277/// operation that returns a larger result.
2278SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2279                                                    EVT DestVT,
2280                                                    bool isSigned,
2281                                                    DebugLoc dl) {
2282  // First step, figure out the appropriate FP_TO*INT operation to use.
2283  EVT NewOutTy = DestVT;
2284
2285  unsigned OpToUse = 0;
2286
2287  // Scan for the appropriate larger type to use.
2288  while (1) {
2289    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2290    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2291
2292    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2293      OpToUse = ISD::FP_TO_SINT;
2294      break;
2295    }
2296
2297    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2298      OpToUse = ISD::FP_TO_UINT;
2299      break;
2300    }
2301
2302    // Otherwise, try a larger type.
2303  }
2304
2305
2306  // Okay, we found the operation and type to use.
2307  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2308
2309  // Truncate the result of the extended FP_TO_*INT operation to the desired
2310  // size.
2311  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2312}
2313
2314/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2315///
2316SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2317  EVT VT = Op.getValueType();
2318  EVT SHVT = TLI.getShiftAmountTy();
2319  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2320  switch (VT.getSimpleVT().SimpleTy) {
2321  default: assert(0 && "Unhandled Expand type in BSWAP!");
2322  case MVT::i16:
2323    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2324    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2325    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2326  case MVT::i32:
2327    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2328    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2329    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2330    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2331    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2332    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2333    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2334    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2335    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2336  case MVT::i64:
2337    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2338    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2339    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2340    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2341    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2342    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2343    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2344    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2345    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2346    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2347    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2348    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2349    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2350    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2351    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2352    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2353    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2354    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2355    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2356    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2357    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2358  }
2359}
2360
2361/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2362///
2363SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2364                                             DebugLoc dl) {
2365  switch (Opc) {
2366  default: assert(0 && "Cannot expand this yet!");
2367  case ISD::CTPOP: {
2368    static const uint64_t mask[6] = {
2369      0x5555555555555555ULL, 0x3333333333333333ULL,
2370      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2371      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2372    };
2373    EVT VT = Op.getValueType();
2374    EVT ShVT = TLI.getShiftAmountTy();
2375    unsigned len = VT.getSizeInBits();
2376    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2377      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2378      unsigned EltSize = VT.isVector() ?
2379        VT.getVectorElementType().getSizeInBits() : len;
2380      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2381      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2382      Op = DAG.getNode(ISD::ADD, dl, VT,
2383                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2384                       DAG.getNode(ISD::AND, dl, VT,
2385                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2386                                   Tmp2));
2387    }
2388    return Op;
2389  }
2390  case ISD::CTLZ: {
2391    // for now, we do this:
2392    // x = x | (x >> 1);
2393    // x = x | (x >> 2);
2394    // ...
2395    // x = x | (x >>16);
2396    // x = x | (x >>32); // for 64-bit input
2397    // return popcount(~x);
2398    //
2399    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2400    EVT VT = Op.getValueType();
2401    EVT ShVT = TLI.getShiftAmountTy();
2402    unsigned len = VT.getSizeInBits();
2403    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2404      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2405      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2406                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2407    }
2408    Op = DAG.getNOT(dl, Op, VT);
2409    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2410  }
2411  case ISD::CTTZ: {
2412    // for now, we use: { return popcount(~x & (x - 1)); }
2413    // unless the target has ctlz but not ctpop, in which case we use:
2414    // { return 32 - nlz(~x & (x-1)); }
2415    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2416    EVT VT = Op.getValueType();
2417    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2418                               DAG.getNOT(dl, Op, VT),
2419                               DAG.getNode(ISD::SUB, dl, VT, Op,
2420                                           DAG.getConstant(1, VT)));
2421    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2422    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2423        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2424      return DAG.getNode(ISD::SUB, dl, VT,
2425                         DAG.getConstant(VT.getSizeInBits(), VT),
2426                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2427    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2428  }
2429  }
2430}
2431
2432std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2433  unsigned Opc = Node->getOpcode();
2434  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2435  RTLIB::Libcall LC;
2436
2437  switch (Opc) {
2438  default:
2439    llvm_unreachable("Unhandled atomic intrinsic Expand!");
2440    break;
2441  case ISD::ATOMIC_SWAP:
2442    switch (VT.SimpleTy) {
2443    default: llvm_unreachable("Unexpected value type for atomic!");
2444    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2445    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2446    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2447    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2448    }
2449    break;
2450  case ISD::ATOMIC_CMP_SWAP:
2451    switch (VT.SimpleTy) {
2452    default: llvm_unreachable("Unexpected value type for atomic!");
2453    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2454    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2455    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2456    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2457    }
2458    break;
2459  case ISD::ATOMIC_LOAD_ADD:
2460    switch (VT.SimpleTy) {
2461    default: llvm_unreachable("Unexpected value type for atomic!");
2462    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2463    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2464    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2465    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2466    }
2467    break;
2468  case ISD::ATOMIC_LOAD_SUB:
2469    switch (VT.SimpleTy) {
2470    default: llvm_unreachable("Unexpected value type for atomic!");
2471    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2472    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2473    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2474    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2475    }
2476    break;
2477  case ISD::ATOMIC_LOAD_AND:
2478    switch (VT.SimpleTy) {
2479    default: llvm_unreachable("Unexpected value type for atomic!");
2480    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2481    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2482    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2483    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2484    }
2485    break;
2486  case ISD::ATOMIC_LOAD_OR:
2487    switch (VT.SimpleTy) {
2488    default: llvm_unreachable("Unexpected value type for atomic!");
2489    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2490    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2491    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2492    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2493    }
2494    break;
2495  case ISD::ATOMIC_LOAD_XOR:
2496    switch (VT.SimpleTy) {
2497    default: llvm_unreachable("Unexpected value type for atomic!");
2498    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2499    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2500    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2501    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2502    }
2503    break;
2504  case ISD::ATOMIC_LOAD_NAND:
2505    switch (VT.SimpleTy) {
2506    default: llvm_unreachable("Unexpected value type for atomic!");
2507    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2508    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2509    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2510    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2511    }
2512    break;
2513  }
2514
2515  return ExpandChainLibCall(LC, Node, false);
2516}
2517
2518void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2519                                      SmallVectorImpl<SDValue> &Results) {
2520  DebugLoc dl = Node->getDebugLoc();
2521  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2522  switch (Node->getOpcode()) {
2523  case ISD::CTPOP:
2524  case ISD::CTLZ:
2525  case ISD::CTTZ:
2526    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2527    Results.push_back(Tmp1);
2528    break;
2529  case ISD::BSWAP:
2530    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2531    break;
2532  case ISD::FRAMEADDR:
2533  case ISD::RETURNADDR:
2534  case ISD::FRAME_TO_ARGS_OFFSET:
2535    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2536    break;
2537  case ISD::FLT_ROUNDS_:
2538    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2539    break;
2540  case ISD::EH_RETURN:
2541  case ISD::EH_LABEL:
2542  case ISD::PREFETCH:
2543  case ISD::VAEND:
2544  case ISD::EH_SJLJ_LONGJMP:
2545  case ISD::EH_SJLJ_DISPATCHSETUP:
2546    // If the target didn't expand these, there's nothing to do, so just
2547    // preserve the chain and be done.
2548    Results.push_back(Node->getOperand(0));
2549    break;
2550  case ISD::EH_SJLJ_SETJMP:
2551    // If the target didn't expand this, just return 'zero' and preserve the
2552    // chain.
2553    Results.push_back(DAG.getConstant(0, MVT::i32));
2554    Results.push_back(Node->getOperand(0));
2555    break;
2556  case ISD::MEMBARRIER: {
2557    // If the target didn't lower this, lower it to '__sync_synchronize()' call
2558    TargetLowering::ArgListTy Args;
2559    std::pair<SDValue, SDValue> CallResult =
2560      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2561                      false, false, false, false, 0, CallingConv::C, false,
2562                      /*isReturnValueUsed=*/true,
2563                      DAG.getExternalSymbol("__sync_synchronize",
2564                                            TLI.getPointerTy()),
2565                      Args, DAG, dl);
2566    Results.push_back(CallResult.second);
2567    break;
2568  }
2569  // By default, atomic intrinsics are marked Legal and lowered. Targets
2570  // which don't support them directly, however, may want libcalls, in which
2571  // case they mark them Expand, and we get here.
2572  // FIXME: Unimplemented for now. Add libcalls.
2573  case ISD::ATOMIC_SWAP:
2574  case ISD::ATOMIC_LOAD_ADD:
2575  case ISD::ATOMIC_LOAD_SUB:
2576  case ISD::ATOMIC_LOAD_AND:
2577  case ISD::ATOMIC_LOAD_OR:
2578  case ISD::ATOMIC_LOAD_XOR:
2579  case ISD::ATOMIC_LOAD_NAND:
2580  case ISD::ATOMIC_LOAD_MIN:
2581  case ISD::ATOMIC_LOAD_MAX:
2582  case ISD::ATOMIC_LOAD_UMIN:
2583  case ISD::ATOMIC_LOAD_UMAX:
2584  case ISD::ATOMIC_CMP_SWAP: {
2585    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2586    Results.push_back(Tmp.first);
2587    Results.push_back(Tmp.second);
2588    break;
2589  }
2590  case ISD::DYNAMIC_STACKALLOC:
2591    ExpandDYNAMIC_STACKALLOC(Node, Results);
2592    break;
2593  case ISD::MERGE_VALUES:
2594    for (unsigned i = 0; i < Node->getNumValues(); i++)
2595      Results.push_back(Node->getOperand(i));
2596    break;
2597  case ISD::UNDEF: {
2598    EVT VT = Node->getValueType(0);
2599    if (VT.isInteger())
2600      Results.push_back(DAG.getConstant(0, VT));
2601    else {
2602      assert(VT.isFloatingPoint() && "Unknown value type!");
2603      Results.push_back(DAG.getConstantFP(0, VT));
2604    }
2605    break;
2606  }
2607  case ISD::TRAP: {
2608    // If this operation is not supported, lower it to 'abort()' call
2609    TargetLowering::ArgListTy Args;
2610    std::pair<SDValue, SDValue> CallResult =
2611      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2612                      false, false, false, false, 0, CallingConv::C, false,
2613                      /*isReturnValueUsed=*/true,
2614                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2615                      Args, DAG, dl);
2616    Results.push_back(CallResult.second);
2617    break;
2618  }
2619  case ISD::FP_ROUND:
2620  case ISD::BIT_CONVERT:
2621    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2622                            Node->getValueType(0), dl);
2623    Results.push_back(Tmp1);
2624    break;
2625  case ISD::FP_EXTEND:
2626    Tmp1 = EmitStackConvert(Node->getOperand(0),
2627                            Node->getOperand(0).getValueType(),
2628                            Node->getValueType(0), dl);
2629    Results.push_back(Tmp1);
2630    break;
2631  case ISD::SIGN_EXTEND_INREG: {
2632    // NOTE: we could fall back on load/store here too for targets without
2633    // SAR.  However, it is doubtful that any exist.
2634    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2635    EVT VT = Node->getValueType(0);
2636    EVT ShiftAmountTy = TLI.getShiftAmountTy();
2637    if (VT.isVector())
2638      ShiftAmountTy = VT;
2639    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2640                        ExtraVT.getScalarType().getSizeInBits();
2641    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2642    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2643                       Node->getOperand(0), ShiftCst);
2644    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2645    Results.push_back(Tmp1);
2646    break;
2647  }
2648  case ISD::FP_ROUND_INREG: {
2649    // The only way we can lower this is to turn it into a TRUNCSTORE,
2650    // EXTLOAD pair, targetting a temporary location (a stack slot).
2651
2652    // NOTE: there is a choice here between constantly creating new stack
2653    // slots and always reusing the same one.  We currently always create
2654    // new ones, as reuse may inhibit scheduling.
2655    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2656    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2657                            Node->getValueType(0), dl);
2658    Results.push_back(Tmp1);
2659    break;
2660  }
2661  case ISD::SINT_TO_FP:
2662  case ISD::UINT_TO_FP:
2663    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2664                                Node->getOperand(0), Node->getValueType(0), dl);
2665    Results.push_back(Tmp1);
2666    break;
2667  case ISD::FP_TO_UINT: {
2668    SDValue True, False;
2669    EVT VT =  Node->getOperand(0).getValueType();
2670    EVT NVT = Node->getValueType(0);
2671    const uint64_t zero[] = {0, 0};
2672    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2673    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2674    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2675    Tmp1 = DAG.getConstantFP(apf, VT);
2676    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2677                        Node->getOperand(0),
2678                        Tmp1, ISD::SETLT);
2679    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2680    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2681                        DAG.getNode(ISD::FSUB, dl, VT,
2682                                    Node->getOperand(0), Tmp1));
2683    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2684                        DAG.getConstant(x, NVT));
2685    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2686    Results.push_back(Tmp1);
2687    break;
2688  }
2689  case ISD::VAARG: {
2690    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2691    EVT VT = Node->getValueType(0);
2692    Tmp1 = Node->getOperand(0);
2693    Tmp2 = Node->getOperand(1);
2694    unsigned Align = Node->getConstantOperandVal(3);
2695
2696    SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2697                                     MachinePointerInfo(V), false, false, 0);
2698    SDValue VAList = VAListLoad;
2699
2700    if (Align > TLI.getMinStackArgumentAlignment()) {
2701      assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2702
2703      VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2704                           DAG.getConstant(Align - 1,
2705                                           TLI.getPointerTy()));
2706
2707      VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2708                           DAG.getConstant(-(int64_t)Align,
2709                                           TLI.getPointerTy()));
2710    }
2711
2712    // Increment the pointer, VAList, to the next vaarg
2713    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2714                       DAG.getConstant(TLI.getTargetData()->
2715                          getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2716                                       TLI.getPointerTy()));
2717    // Store the incremented VAList to the legalized pointer
2718    Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2719                        MachinePointerInfo(V), false, false, 0);
2720    // Load the actual argument out of the pointer VAList
2721    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2722                                  false, false, 0));
2723    Results.push_back(Results[0].getValue(1));
2724    break;
2725  }
2726  case ISD::VACOPY: {
2727    // This defaults to loading a pointer from the input and storing it to the
2728    // output, returning the chain.
2729    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2730    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2731    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2732                       Node->getOperand(2), MachinePointerInfo(VS),
2733                       false, false, 0);
2734    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2735                        MachinePointerInfo(VD), false, false, 0);
2736    Results.push_back(Tmp1);
2737    break;
2738  }
2739  case ISD::EXTRACT_VECTOR_ELT:
2740    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2741      // This must be an access of the only element.  Return it.
2742      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2743                         Node->getOperand(0));
2744    else
2745      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2746    Results.push_back(Tmp1);
2747    break;
2748  case ISD::EXTRACT_SUBVECTOR:
2749    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2750    break;
2751  case ISD::CONCAT_VECTORS: {
2752    Results.push_back(ExpandVectorBuildThroughStack(Node));
2753    break;
2754  }
2755  case ISD::SCALAR_TO_VECTOR:
2756    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2757    break;
2758  case ISD::INSERT_VECTOR_ELT:
2759    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2760                                              Node->getOperand(1),
2761                                              Node->getOperand(2), dl));
2762    break;
2763  case ISD::VECTOR_SHUFFLE: {
2764    SmallVector<int, 8> Mask;
2765    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2766
2767    EVT VT = Node->getValueType(0);
2768    EVT EltVT = VT.getVectorElementType();
2769    if (getTypeAction(EltVT) == Promote)
2770      EltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2771    unsigned NumElems = VT.getVectorNumElements();
2772    SmallVector<SDValue, 8> Ops;
2773    for (unsigned i = 0; i != NumElems; ++i) {
2774      if (Mask[i] < 0) {
2775        Ops.push_back(DAG.getUNDEF(EltVT));
2776        continue;
2777      }
2778      unsigned Idx = Mask[i];
2779      if (Idx < NumElems)
2780        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2781                                  Node->getOperand(0),
2782                                  DAG.getIntPtrConstant(Idx)));
2783      else
2784        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2785                                  Node->getOperand(1),
2786                                  DAG.getIntPtrConstant(Idx - NumElems)));
2787    }
2788    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2789    Results.push_back(Tmp1);
2790    break;
2791  }
2792  case ISD::EXTRACT_ELEMENT: {
2793    EVT OpTy = Node->getOperand(0).getValueType();
2794    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2795      // 1 -> Hi
2796      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2797                         DAG.getConstant(OpTy.getSizeInBits()/2,
2798                                         TLI.getShiftAmountTy()));
2799      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2800    } else {
2801      // 0 -> Lo
2802      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2803                         Node->getOperand(0));
2804    }
2805    Results.push_back(Tmp1);
2806    break;
2807  }
2808  case ISD::STACKSAVE:
2809    // Expand to CopyFromReg if the target set
2810    // StackPointerRegisterToSaveRestore.
2811    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2812      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2813                                           Node->getValueType(0)));
2814      Results.push_back(Results[0].getValue(1));
2815    } else {
2816      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2817      Results.push_back(Node->getOperand(0));
2818    }
2819    break;
2820  case ISD::STACKRESTORE:
2821    // Expand to CopyToReg if the target set
2822    // StackPointerRegisterToSaveRestore.
2823    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2824      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2825                                         Node->getOperand(1)));
2826    } else {
2827      Results.push_back(Node->getOperand(0));
2828    }
2829    break;
2830  case ISD::FCOPYSIGN:
2831    Results.push_back(ExpandFCOPYSIGN(Node));
2832    break;
2833  case ISD::FNEG:
2834    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2835    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2836    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2837                       Node->getOperand(0));
2838    Results.push_back(Tmp1);
2839    break;
2840  case ISD::FABS: {
2841    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2842    EVT VT = Node->getValueType(0);
2843    Tmp1 = Node->getOperand(0);
2844    Tmp2 = DAG.getConstantFP(0.0, VT);
2845    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2846                        Tmp1, Tmp2, ISD::SETUGT);
2847    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2848    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2849    Results.push_back(Tmp1);
2850    break;
2851  }
2852  case ISD::FSQRT:
2853    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2854                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2855    break;
2856  case ISD::FSIN:
2857    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2858                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2859    break;
2860  case ISD::FCOS:
2861    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2862                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2863    break;
2864  case ISD::FLOG:
2865    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2866                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2867    break;
2868  case ISD::FLOG2:
2869    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2870                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2871    break;
2872  case ISD::FLOG10:
2873    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2874                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2875    break;
2876  case ISD::FEXP:
2877    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2878                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2879    break;
2880  case ISD::FEXP2:
2881    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2882                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2883    break;
2884  case ISD::FTRUNC:
2885    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2886                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2887    break;
2888  case ISD::FFLOOR:
2889    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2890                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2891    break;
2892  case ISD::FCEIL:
2893    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2894                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2895    break;
2896  case ISD::FRINT:
2897    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2898                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2899    break;
2900  case ISD::FNEARBYINT:
2901    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2902                                      RTLIB::NEARBYINT_F64,
2903                                      RTLIB::NEARBYINT_F80,
2904                                      RTLIB::NEARBYINT_PPCF128));
2905    break;
2906  case ISD::FPOWI:
2907    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2908                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2909    break;
2910  case ISD::FPOW:
2911    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2912                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2913    break;
2914  case ISD::FDIV:
2915    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2916                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2917    break;
2918  case ISD::FREM:
2919    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2920                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2921    break;
2922  case ISD::FP16_TO_FP32:
2923    Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
2924    break;
2925  case ISD::FP32_TO_FP16:
2926    Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
2927    break;
2928  case ISD::ConstantFP: {
2929    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2930    // Check to see if this FP immediate is already legal.
2931    // If this is a legal constant, turn it into a TargetConstantFP node.
2932    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2933      Results.push_back(SDValue(Node, 0));
2934    else
2935      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2936    break;
2937  }
2938  case ISD::EHSELECTION: {
2939    unsigned Reg = TLI.getExceptionSelectorRegister();
2940    assert(Reg && "Can't expand to unknown register!");
2941    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2942                                         Node->getValueType(0)));
2943    Results.push_back(Results[0].getValue(1));
2944    break;
2945  }
2946  case ISD::EXCEPTIONADDR: {
2947    unsigned Reg = TLI.getExceptionAddressRegister();
2948    assert(Reg && "Can't expand to unknown register!");
2949    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2950                                         Node->getValueType(0)));
2951    Results.push_back(Results[0].getValue(1));
2952    break;
2953  }
2954  case ISD::SUB: {
2955    EVT VT = Node->getValueType(0);
2956    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2957           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2958           "Don't know how to expand this subtraction!");
2959    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2960               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2961    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2962    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2963    break;
2964  }
2965  case ISD::UREM:
2966  case ISD::SREM: {
2967    EVT VT = Node->getValueType(0);
2968    SDVTList VTs = DAG.getVTList(VT, VT);
2969    bool isSigned = Node->getOpcode() == ISD::SREM;
2970    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2971    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2972    Tmp2 = Node->getOperand(0);
2973    Tmp3 = Node->getOperand(1);
2974    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2975      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2976    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2977      // X % Y -> X-X/Y*Y
2978      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2979      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2980      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2981    } else if (isSigned) {
2982      Tmp1 = ExpandIntLibCall(Node, true,
2983                              RTLIB::SREM_I8,
2984                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2985                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2986    } else {
2987      Tmp1 = ExpandIntLibCall(Node, false,
2988                              RTLIB::UREM_I8,
2989                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2990                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2991    }
2992    Results.push_back(Tmp1);
2993    break;
2994  }
2995  case ISD::UDIV:
2996  case ISD::SDIV: {
2997    bool isSigned = Node->getOpcode() == ISD::SDIV;
2998    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2999    EVT VT = Node->getValueType(0);
3000    SDVTList VTs = DAG.getVTList(VT, VT);
3001    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
3002      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3003                         Node->getOperand(1));
3004    else if (isSigned)
3005      Tmp1 = ExpandIntLibCall(Node, true,
3006                              RTLIB::SDIV_I8,
3007                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3008                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3009    else
3010      Tmp1 = ExpandIntLibCall(Node, false,
3011                              RTLIB::UDIV_I8,
3012                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3013                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3014    Results.push_back(Tmp1);
3015    break;
3016  }
3017  case ISD::MULHU:
3018  case ISD::MULHS: {
3019    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3020                                                              ISD::SMUL_LOHI;
3021    EVT VT = Node->getValueType(0);
3022    SDVTList VTs = DAG.getVTList(VT, VT);
3023    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3024           "If this wasn't legal, it shouldn't have been created!");
3025    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3026                       Node->getOperand(1));
3027    Results.push_back(Tmp1.getValue(1));
3028    break;
3029  }
3030  case ISD::MUL: {
3031    EVT VT = Node->getValueType(0);
3032    SDVTList VTs = DAG.getVTList(VT, VT);
3033    // See if multiply or divide can be lowered using two-result operations.
3034    // We just need the low half of the multiply; try both the signed
3035    // and unsigned forms. If the target supports both SMUL_LOHI and
3036    // UMUL_LOHI, form a preference by checking which forms of plain
3037    // MULH it supports.
3038    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3039    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3040    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3041    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3042    unsigned OpToUse = 0;
3043    if (HasSMUL_LOHI && !HasMULHS) {
3044      OpToUse = ISD::SMUL_LOHI;
3045    } else if (HasUMUL_LOHI && !HasMULHU) {
3046      OpToUse = ISD::UMUL_LOHI;
3047    } else if (HasSMUL_LOHI) {
3048      OpToUse = ISD::SMUL_LOHI;
3049    } else if (HasUMUL_LOHI) {
3050      OpToUse = ISD::UMUL_LOHI;
3051    }
3052    if (OpToUse) {
3053      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3054                                    Node->getOperand(1)));
3055      break;
3056    }
3057    Tmp1 = ExpandIntLibCall(Node, false,
3058                            RTLIB::MUL_I8,
3059                            RTLIB::MUL_I16, RTLIB::MUL_I32,
3060                            RTLIB::MUL_I64, RTLIB::MUL_I128);
3061    Results.push_back(Tmp1);
3062    break;
3063  }
3064  case ISD::SADDO:
3065  case ISD::SSUBO: {
3066    SDValue LHS = Node->getOperand(0);
3067    SDValue RHS = Node->getOperand(1);
3068    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3069                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3070                              LHS, RHS);
3071    Results.push_back(Sum);
3072    EVT OType = Node->getValueType(1);
3073
3074    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3075
3076    //   LHSSign -> LHS >= 0
3077    //   RHSSign -> RHS >= 0
3078    //   SumSign -> Sum >= 0
3079    //
3080    //   Add:
3081    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3082    //   Sub:
3083    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3084    //
3085    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3086    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3087    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3088                                      Node->getOpcode() == ISD::SADDO ?
3089                                      ISD::SETEQ : ISD::SETNE);
3090
3091    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3092    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3093
3094    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3095    Results.push_back(Cmp);
3096    break;
3097  }
3098  case ISD::UADDO:
3099  case ISD::USUBO: {
3100    SDValue LHS = Node->getOperand(0);
3101    SDValue RHS = Node->getOperand(1);
3102    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3103                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3104                              LHS, RHS);
3105    Results.push_back(Sum);
3106    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3107                                   Node->getOpcode () == ISD::UADDO ?
3108                                   ISD::SETULT : ISD::SETUGT));
3109    break;
3110  }
3111  case ISD::UMULO:
3112  case ISD::SMULO: {
3113    EVT VT = Node->getValueType(0);
3114    SDValue LHS = Node->getOperand(0);
3115    SDValue RHS = Node->getOperand(1);
3116    SDValue BottomHalf;
3117    SDValue TopHalf;
3118    static const unsigned Ops[2][3] =
3119        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3120          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3121    bool isSigned = Node->getOpcode() == ISD::SMULO;
3122    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3123      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3124      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3125    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3126      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3127                               RHS);
3128      TopHalf = BottomHalf.getValue(1);
3129    } else {
3130      // FIXME: We should be able to fall back to a libcall with an illegal
3131      // type in some cases.
3132      // Also, we can fall back to a division in some cases, but that's a big
3133      // performance hit in the general case.
3134      assert(TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3135                                               VT.getSizeInBits() * 2)) &&
3136             "Don't know how to expand this operation yet!");
3137      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3138      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3139      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3140      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3141      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3142                               DAG.getIntPtrConstant(0));
3143      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3144                            DAG.getIntPtrConstant(1));
3145    }
3146    if (isSigned) {
3147      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
3148      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3149      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3150                             ISD::SETNE);
3151    } else {
3152      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3153                             DAG.getConstant(0, VT), ISD::SETNE);
3154    }
3155    Results.push_back(BottomHalf);
3156    Results.push_back(TopHalf);
3157    break;
3158  }
3159  case ISD::BUILD_PAIR: {
3160    EVT PairTy = Node->getValueType(0);
3161    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3162    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3163    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3164                       DAG.getConstant(PairTy.getSizeInBits()/2,
3165                                       TLI.getShiftAmountTy()));
3166    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3167    break;
3168  }
3169  case ISD::SELECT:
3170    Tmp1 = Node->getOperand(0);
3171    Tmp2 = Node->getOperand(1);
3172    Tmp3 = Node->getOperand(2);
3173    if (Tmp1.getOpcode() == ISD::SETCC) {
3174      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3175                             Tmp2, Tmp3,
3176                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3177    } else {
3178      Tmp1 = DAG.getSelectCC(dl, Tmp1,
3179                             DAG.getConstant(0, Tmp1.getValueType()),
3180                             Tmp2, Tmp3, ISD::SETNE);
3181    }
3182    Results.push_back(Tmp1);
3183    break;
3184  case ISD::BR_JT: {
3185    SDValue Chain = Node->getOperand(0);
3186    SDValue Table = Node->getOperand(1);
3187    SDValue Index = Node->getOperand(2);
3188
3189    EVT PTy = TLI.getPointerTy();
3190
3191    const TargetData &TD = *TLI.getTargetData();
3192    unsigned EntrySize =
3193      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3194
3195    Index = DAG.getNode(ISD::MUL, dl, PTy,
3196                        Index, DAG.getConstant(EntrySize, PTy));
3197    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3198
3199    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3200    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, PTy, dl, Chain, Addr,
3201                                MachinePointerInfo::getJumpTable(), MemVT,
3202                                false, false, 0);
3203    Addr = LD;
3204    if (TM.getRelocationModel() == Reloc::PIC_) {
3205      // For PIC, the sequence is:
3206      // BRIND(load(Jumptable + index) + RelocBase)
3207      // RelocBase can be JumpTable, GOT or some sort of global base.
3208      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3209                          TLI.getPICJumpTableRelocBase(Table, DAG));
3210    }
3211    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3212    Results.push_back(Tmp1);
3213    break;
3214  }
3215  case ISD::BRCOND:
3216    // Expand brcond's setcc into its constituent parts and create a BR_CC
3217    // Node.
3218    Tmp1 = Node->getOperand(0);
3219    Tmp2 = Node->getOperand(1);
3220    if (Tmp2.getOpcode() == ISD::SETCC) {
3221      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3222                         Tmp1, Tmp2.getOperand(2),
3223                         Tmp2.getOperand(0), Tmp2.getOperand(1),
3224                         Node->getOperand(2));
3225    } else {
3226      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3227                         DAG.getCondCode(ISD::SETNE), Tmp2,
3228                         DAG.getConstant(0, Tmp2.getValueType()),
3229                         Node->getOperand(2));
3230    }
3231    Results.push_back(Tmp1);
3232    break;
3233  case ISD::SETCC: {
3234    Tmp1 = Node->getOperand(0);
3235    Tmp2 = Node->getOperand(1);
3236    Tmp3 = Node->getOperand(2);
3237    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3238
3239    // If we expanded the SETCC into an AND/OR, return the new node
3240    if (Tmp2.getNode() == 0) {
3241      Results.push_back(Tmp1);
3242      break;
3243    }
3244
3245    // Otherwise, SETCC for the given comparison type must be completely
3246    // illegal; expand it into a SELECT_CC.
3247    EVT VT = Node->getValueType(0);
3248    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3249                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3250    Results.push_back(Tmp1);
3251    break;
3252  }
3253  case ISD::SELECT_CC: {
3254    Tmp1 = Node->getOperand(0);   // LHS
3255    Tmp2 = Node->getOperand(1);   // RHS
3256    Tmp3 = Node->getOperand(2);   // True
3257    Tmp4 = Node->getOperand(3);   // False
3258    SDValue CC = Node->getOperand(4);
3259
3260    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3261                          Tmp1, Tmp2, CC, dl);
3262
3263    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3264    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3265    CC = DAG.getCondCode(ISD::SETNE);
3266    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3267                       Tmp3, Tmp4, CC);
3268    Results.push_back(Tmp1);
3269    break;
3270  }
3271  case ISD::BR_CC: {
3272    Tmp1 = Node->getOperand(0);              // Chain
3273    Tmp2 = Node->getOperand(2);              // LHS
3274    Tmp3 = Node->getOperand(3);              // RHS
3275    Tmp4 = Node->getOperand(1);              // CC
3276
3277    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3278                          Tmp2, Tmp3, Tmp4, dl);
3279    LastCALLSEQ_END = DAG.getEntryNode();
3280
3281    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3282    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3283    Tmp4 = DAG.getCondCode(ISD::SETNE);
3284    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3285                       Tmp3, Node->getOperand(4));
3286    Results.push_back(Tmp1);
3287    break;
3288  }
3289  case ISD::GLOBAL_OFFSET_TABLE:
3290  case ISD::GlobalAddress:
3291  case ISD::GlobalTLSAddress:
3292  case ISD::ExternalSymbol:
3293  case ISD::ConstantPool:
3294  case ISD::JumpTable:
3295  case ISD::INTRINSIC_W_CHAIN:
3296  case ISD::INTRINSIC_WO_CHAIN:
3297  case ISD::INTRINSIC_VOID:
3298    // FIXME: Custom lowering for these operations shouldn't return null!
3299    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
3300      Results.push_back(SDValue(Node, i));
3301    break;
3302  }
3303}
3304void SelectionDAGLegalize::PromoteNode(SDNode *Node,
3305                                       SmallVectorImpl<SDValue> &Results) {
3306  EVT OVT = Node->getValueType(0);
3307  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3308      Node->getOpcode() == ISD::SINT_TO_FP ||
3309      Node->getOpcode() == ISD::SETCC) {
3310    OVT = Node->getOperand(0).getValueType();
3311  }
3312  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3313  DebugLoc dl = Node->getDebugLoc();
3314  SDValue Tmp1, Tmp2, Tmp3;
3315  switch (Node->getOpcode()) {
3316  case ISD::CTTZ:
3317  case ISD::CTLZ:
3318  case ISD::CTPOP:
3319    // Zero extend the argument.
3320    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3321    // Perform the larger operation.
3322    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3323    if (Node->getOpcode() == ISD::CTTZ) {
3324      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3325      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3326                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3327                          ISD::SETEQ);
3328      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3329                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3330    } else if (Node->getOpcode() == ISD::CTLZ) {
3331      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3332      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3333                          DAG.getConstant(NVT.getSizeInBits() -
3334                                          OVT.getSizeInBits(), NVT));
3335    }
3336    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3337    break;
3338  case ISD::BSWAP: {
3339    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3340    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3341    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3342    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3343                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3344    Results.push_back(Tmp1);
3345    break;
3346  }
3347  case ISD::FP_TO_UINT:
3348  case ISD::FP_TO_SINT:
3349    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3350                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3351    Results.push_back(Tmp1);
3352    break;
3353  case ISD::UINT_TO_FP:
3354  case ISD::SINT_TO_FP:
3355    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3356                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3357    Results.push_back(Tmp1);
3358    break;
3359  case ISD::AND:
3360  case ISD::OR:
3361  case ISD::XOR: {
3362    unsigned ExtOp, TruncOp;
3363    if (OVT.isVector()) {
3364      ExtOp   = ISD::BIT_CONVERT;
3365      TruncOp = ISD::BIT_CONVERT;
3366    } else {
3367      assert(OVT.isInteger() && "Cannot promote logic operation");
3368      ExtOp   = ISD::ANY_EXTEND;
3369      TruncOp = ISD::TRUNCATE;
3370    }
3371    // Promote each of the values to the new type.
3372    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3373    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3374    // Perform the larger operation, then convert back
3375    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3376    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3377    break;
3378  }
3379  case ISD::SELECT: {
3380    unsigned ExtOp, TruncOp;
3381    if (Node->getValueType(0).isVector()) {
3382      ExtOp   = ISD::BIT_CONVERT;
3383      TruncOp = ISD::BIT_CONVERT;
3384    } else if (Node->getValueType(0).isInteger()) {
3385      ExtOp   = ISD::ANY_EXTEND;
3386      TruncOp = ISD::TRUNCATE;
3387    } else {
3388      ExtOp   = ISD::FP_EXTEND;
3389      TruncOp = ISD::FP_ROUND;
3390    }
3391    Tmp1 = Node->getOperand(0);
3392    // Promote each of the values to the new type.
3393    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3394    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3395    // Perform the larger operation, then round down.
3396    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3397    if (TruncOp != ISD::FP_ROUND)
3398      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3399    else
3400      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3401                         DAG.getIntPtrConstant(0));
3402    Results.push_back(Tmp1);
3403    break;
3404  }
3405  case ISD::VECTOR_SHUFFLE: {
3406    SmallVector<int, 8> Mask;
3407    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3408
3409    // Cast the two input vectors.
3410    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3411    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3412
3413    // Convert the shuffle mask to the right # elements.
3414    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3415    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3416    Results.push_back(Tmp1);
3417    break;
3418  }
3419  case ISD::SETCC: {
3420    unsigned ExtOp = ISD::FP_EXTEND;
3421    if (NVT.isInteger()) {
3422      ISD::CondCode CCCode =
3423        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3424      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3425    }
3426    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3427    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3428    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3429                                  Tmp1, Tmp2, Node->getOperand(2)));
3430    break;
3431  }
3432  }
3433}
3434
3435// SelectionDAG::Legalize - This is the entry point for the file.
3436//
3437void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3438  /// run - This is the main entry point to this class.
3439  ///
3440  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3441}
3442
3443