LegalizeDAG.cpp revision 0fa9d1d9011a98212b66daf27f6a8a3d734ae818
1//===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SelectionDAG::Legalize method.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/CodeGen/MachineFrameInfo.h"
17#include "llvm/CodeGen/MachineJumpTableInfo.h"
18#include "llvm/CodeGen/MachineModuleInfo.h"
19#include "llvm/CodeGen/DwarfWriter.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/CodeGen/PseudoSourceValue.h"
22#include "llvm/Target/TargetFrameInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetOptions.h"
27#include "llvm/Target/TargetSubtarget.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/DerivedTypes.h"
31#include "llvm/Function.h"
32#include "llvm/GlobalVariable.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/ADT/DenseMap.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/SmallPtrSet.h"
42#include <map>
43using namespace llvm;
44
45//===----------------------------------------------------------------------===//
46/// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
47/// hacks on it until the target machine can handle it.  This involves
48/// eliminating value sizes the machine cannot handle (promoting small sizes to
49/// large sizes or splitting up large values into small values) as well as
50/// eliminating operations the machine cannot handle.
51///
52/// This code also does a small amount of optimization and recognition of idioms
53/// as part of its processing.  For example, if a target does not support a
54/// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
55/// will attempt merge setcc and brc instructions into brcc's.
56///
57namespace {
58class SelectionDAGLegalize {
59  TargetLowering &TLI;
60  SelectionDAG &DAG;
61  CodeGenOpt::Level OptLevel;
62
63  // Libcall insertion helpers.
64
65  /// LastCALLSEQ_END - This keeps track of the CALLSEQ_END node that has been
66  /// legalized.  We use this to ensure that calls are properly serialized
67  /// against each other, including inserted libcalls.
68  SDValue LastCALLSEQ_END;
69
70  /// IsLegalizingCall - This member is used *only* for purposes of providing
71  /// helpful assertions that a libcall isn't created while another call is
72  /// being legalized (which could lead to non-serialized call sequences).
73  bool IsLegalizingCall;
74
75  enum LegalizeAction {
76    Legal,      // The target natively supports this operation.
77    Promote,    // This operation should be executed in a larger type.
78    Expand      // Try to expand this to other ops, otherwise use a libcall.
79  };
80
81  /// ValueTypeActions - This is a bitvector that contains two bits for each
82  /// value type, where the two bits correspond to the LegalizeAction enum.
83  /// This can be queried with "getTypeAction(VT)".
84  TargetLowering::ValueTypeActionImpl ValueTypeActions;
85
86  /// LegalizedNodes - For nodes that are of legal width, and that have more
87  /// than one use, this map indicates what regularized operand to use.  This
88  /// allows us to avoid legalizing the same thing more than once.
89  DenseMap<SDValue, SDValue> LegalizedNodes;
90
91  void AddLegalizedOperand(SDValue From, SDValue To) {
92    LegalizedNodes.insert(std::make_pair(From, To));
93    // If someone requests legalization of the new node, return itself.
94    if (From != To)
95      LegalizedNodes.insert(std::make_pair(To, To));
96  }
97
98public:
99  SelectionDAGLegalize(SelectionDAG &DAG, CodeGenOpt::Level ol);
100
101  /// getTypeAction - Return how we should legalize values of this type, either
102  /// it is already legal or we need to expand it into multiple registers of
103  /// smaller integer type, or we need to promote it to a larger type.
104  LegalizeAction getTypeAction(EVT VT) const {
105    return
106        (LegalizeAction)ValueTypeActions.getTypeAction(*DAG.getContext(), VT);
107  }
108
109  /// isTypeLegal - Return true if this type is legal on this target.
110  ///
111  bool isTypeLegal(EVT VT) const {
112    return getTypeAction(VT) == Legal;
113  }
114
115  void LegalizeDAG();
116
117private:
118  /// LegalizeOp - We know that the specified value has a legal type.
119  /// Recursively ensure that the operands have legal types, then return the
120  /// result.
121  SDValue LegalizeOp(SDValue O);
122
123  SDValue OptimizeFloatStore(StoreSDNode *ST);
124
125  /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
126  /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
127  /// is necessary to spill the vector being inserted into to memory, perform
128  /// the insert there, and then read the result back.
129  SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
130                                         SDValue Idx, DebugLoc dl);
131  SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
132                                  SDValue Idx, DebugLoc dl);
133
134  /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
135  /// performs the same shuffe in terms of order or result bytes, but on a type
136  /// whose vector element type is narrower than the original shuffle type.
137  /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
138  SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
139                                     SDValue N1, SDValue N2,
140                                     SmallVectorImpl<int> &Mask) const;
141
142  bool LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
143                                    SmallPtrSet<SDNode*, 32> &NodesLeadingTo);
144
145  void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
146                             DebugLoc dl);
147
148  SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
149  SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
150                          RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
151                          RTLIB::Libcall Call_PPCF128);
152  SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
153                           RTLIB::Libcall Call_I8,
154                           RTLIB::Libcall Call_I16,
155                           RTLIB::Libcall Call_I32,
156                           RTLIB::Libcall Call_I64,
157                           RTLIB::Libcall Call_I128);
158
159  SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
160  SDValue ExpandBUILD_VECTOR(SDNode *Node);
161  SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
162  void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
163                                SmallVectorImpl<SDValue> &Results);
164  SDValue ExpandFCOPYSIGN(SDNode *Node);
165  SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
166                               DebugLoc dl);
167  SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
168                                DebugLoc dl);
169  SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
170                                DebugLoc dl);
171
172  SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
173  SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
174
175  SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
176  SDValue ExpandVectorBuildThroughStack(SDNode* Node);
177
178  void ExpandNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
179  void PromoteNode(SDNode *Node, SmallVectorImpl<SDValue> &Results);
180};
181}
182
183/// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
184/// performs the same shuffe in terms of order or result bytes, but on a type
185/// whose vector element type is narrower than the original shuffle type.
186/// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
187SDValue
188SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
189                                                 SDValue N1, SDValue N2,
190                                             SmallVectorImpl<int> &Mask) const {
191  unsigned NumMaskElts = VT.getVectorNumElements();
192  unsigned NumDestElts = NVT.getVectorNumElements();
193  unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
194
195  assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
196
197  if (NumEltsGrowth == 1)
198    return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
199
200  SmallVector<int, 8> NewMask;
201  for (unsigned i = 0; i != NumMaskElts; ++i) {
202    int Idx = Mask[i];
203    for (unsigned j = 0; j != NumEltsGrowth; ++j) {
204      if (Idx < 0)
205        NewMask.push_back(-1);
206      else
207        NewMask.push_back(Idx * NumEltsGrowth + j);
208    }
209  }
210  assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
211  assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
212  return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
213}
214
215SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag,
216                                           CodeGenOpt::Level ol)
217  : TLI(dag.getTargetLoweringInfo()), DAG(dag), OptLevel(ol),
218    ValueTypeActions(TLI.getValueTypeActions()) {
219  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
220         "Too many value types for ValueTypeActions to hold!");
221}
222
223void SelectionDAGLegalize::LegalizeDAG() {
224  LastCALLSEQ_END = DAG.getEntryNode();
225  IsLegalizingCall = false;
226
227  // The legalize process is inherently a bottom-up recursive process (users
228  // legalize their uses before themselves).  Given infinite stack space, we
229  // could just start legalizing on the root and traverse the whole graph.  In
230  // practice however, this causes us to run out of stack space on large basic
231  // blocks.  To avoid this problem, compute an ordering of the nodes where each
232  // node is only legalized after all of its operands are legalized.
233  DAG.AssignTopologicalOrder();
234  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
235       E = prior(DAG.allnodes_end()); I != llvm::next(E); ++I)
236    LegalizeOp(SDValue(I, 0));
237
238  // Finally, it's possible the root changed.  Get the new root.
239  SDValue OldRoot = DAG.getRoot();
240  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
241  DAG.setRoot(LegalizedNodes[OldRoot]);
242
243  LegalizedNodes.clear();
244
245  // Remove dead nodes now.
246  DAG.RemoveDeadNodes();
247}
248
249
250/// FindCallEndFromCallStart - Given a chained node that is part of a call
251/// sequence, find the CALLSEQ_END node that terminates the call sequence.
252static SDNode *FindCallEndFromCallStart(SDNode *Node) {
253  if (Node->getOpcode() == ISD::CALLSEQ_END)
254    return Node;
255  if (Node->use_empty())
256    return 0;   // No CallSeqEnd
257
258  // The chain is usually at the end.
259  SDValue TheChain(Node, Node->getNumValues()-1);
260  if (TheChain.getValueType() != MVT::Other) {
261    // Sometimes it's at the beginning.
262    TheChain = SDValue(Node, 0);
263    if (TheChain.getValueType() != MVT::Other) {
264      // Otherwise, hunt for it.
265      for (unsigned i = 1, e = Node->getNumValues(); i != e; ++i)
266        if (Node->getValueType(i) == MVT::Other) {
267          TheChain = SDValue(Node, i);
268          break;
269        }
270
271      // Otherwise, we walked into a node without a chain.
272      if (TheChain.getValueType() != MVT::Other)
273        return 0;
274    }
275  }
276
277  for (SDNode::use_iterator UI = Node->use_begin(),
278       E = Node->use_end(); UI != E; ++UI) {
279
280    // Make sure to only follow users of our token chain.
281    SDNode *User = *UI;
282    for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
283      if (User->getOperand(i) == TheChain)
284        if (SDNode *Result = FindCallEndFromCallStart(User))
285          return Result;
286  }
287  return 0;
288}
289
290/// FindCallStartFromCallEnd - Given a chained node that is part of a call
291/// sequence, find the CALLSEQ_START node that initiates the call sequence.
292static SDNode *FindCallStartFromCallEnd(SDNode *Node) {
293  assert(Node && "Didn't find callseq_start for a call??");
294  if (Node->getOpcode() == ISD::CALLSEQ_START) return Node;
295
296  assert(Node->getOperand(0).getValueType() == MVT::Other &&
297         "Node doesn't have a token chain argument!");
298  return FindCallStartFromCallEnd(Node->getOperand(0).getNode());
299}
300
301/// LegalizeAllNodesNotLeadingTo - Recursively walk the uses of N, looking to
302/// see if any uses can reach Dest.  If no dest operands can get to dest,
303/// legalize them, legalize ourself, and return false, otherwise, return true.
304///
305/// Keep track of the nodes we fine that actually do lead to Dest in
306/// NodesLeadingTo.  This avoids retraversing them exponential number of times.
307///
308bool SelectionDAGLegalize::LegalizeAllNodesNotLeadingTo(SDNode *N, SDNode *Dest,
309                                     SmallPtrSet<SDNode*, 32> &NodesLeadingTo) {
310  if (N == Dest) return true;  // N certainly leads to Dest :)
311
312  // If we've already processed this node and it does lead to Dest, there is no
313  // need to reprocess it.
314  if (NodesLeadingTo.count(N)) return true;
315
316  // If the first result of this node has been already legalized, then it cannot
317  // reach N.
318  if (LegalizedNodes.count(SDValue(N, 0))) return false;
319
320  // Okay, this node has not already been legalized.  Check and legalize all
321  // operands.  If none lead to Dest, then we can legalize this node.
322  bool OperandsLeadToDest = false;
323  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
324    OperandsLeadToDest |=     // If an operand leads to Dest, so do we.
325      LegalizeAllNodesNotLeadingTo(N->getOperand(i).getNode(), Dest, NodesLeadingTo);
326
327  if (OperandsLeadToDest) {
328    NodesLeadingTo.insert(N);
329    return true;
330  }
331
332  // Okay, this node looks safe, legalize it and return false.
333  LegalizeOp(SDValue(N, 0));
334  return false;
335}
336
337/// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
338/// a load from the constant pool.
339static SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP,
340                                SelectionDAG &DAG, const TargetLowering &TLI) {
341  bool Extend = false;
342  DebugLoc dl = CFP->getDebugLoc();
343
344  // If a FP immediate is precise when represented as a float and if the
345  // target can do an extending load from float to double, we put it into
346  // the constant pool as a float, even if it's is statically typed as a
347  // double.  This shrinks FP constants and canonicalizes them for targets where
348  // an FP extending load is the same cost as a normal load (such as on the x87
349  // fp stack or PPC FP unit).
350  EVT VT = CFP->getValueType(0);
351  ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
352  if (!UseCP) {
353    assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
354    return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
355                           (VT == MVT::f64) ? MVT::i64 : MVT::i32);
356  }
357
358  EVT OrigVT = VT;
359  EVT SVT = VT;
360  while (SVT != MVT::f32) {
361    SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
362    if (CFP->isValueValidForType(SVT, CFP->getValueAPF()) &&
363        // Only do this if the target has a native EXTLOAD instruction from
364        // smaller type.
365        TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
366        TLI.ShouldShrinkFPConstant(OrigVT)) {
367      const Type *SType = SVT.getTypeForEVT(*DAG.getContext());
368      LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
369      VT = SVT;
370      Extend = true;
371    }
372  }
373
374  SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
375  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
376  if (Extend)
377    return DAG.getExtLoad(ISD::EXTLOAD, dl,
378                          OrigVT, DAG.getEntryNode(),
379                          CPIdx, PseudoSourceValue::getConstantPool(),
380                          0, VT, false, false, Alignment);
381  return DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
382                     PseudoSourceValue::getConstantPool(), 0, false, false,
383                     Alignment);
384}
385
386/// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
387static
388SDValue ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
389                             const TargetLowering &TLI) {
390  SDValue Chain = ST->getChain();
391  SDValue Ptr = ST->getBasePtr();
392  SDValue Val = ST->getValue();
393  EVT VT = Val.getValueType();
394  int Alignment = ST->getAlignment();
395  int SVOffset = ST->getSrcValueOffset();
396  DebugLoc dl = ST->getDebugLoc();
397  if (ST->getMemoryVT().isFloatingPoint() ||
398      ST->getMemoryVT().isVector()) {
399    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
400    if (TLI.isTypeLegal(intVT)) {
401      // Expand to a bitconvert of the value to the integer type of the
402      // same size, then a (misaligned) int store.
403      // FIXME: Does not handle truncating floating point stores!
404      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, intVT, Val);
405      return DAG.getStore(Chain, dl, Result, Ptr, ST->getSrcValue(),
406                          SVOffset, ST->isVolatile(), ST->isNonTemporal(),
407                          Alignment);
408    } else {
409      // Do a (aligned) store to a stack slot, then copy from the stack slot
410      // to the final destination using (unaligned) integer loads and stores.
411      EVT StoredVT = ST->getMemoryVT();
412      EVT RegVT =
413        TLI.getRegisterType(*DAG.getContext(), EVT::getIntegerVT(*DAG.getContext(), StoredVT.getSizeInBits()));
414      unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
415      unsigned RegBytes = RegVT.getSizeInBits() / 8;
416      unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
417
418      // Make sure the stack slot is also aligned for the register type.
419      SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
420
421      // Perform the original store, only redirected to the stack slot.
422      SDValue Store = DAG.getTruncStore(Chain, dl,
423                                        Val, StackPtr, NULL, 0, StoredVT,
424                                        false, false, 0);
425      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
426      SmallVector<SDValue, 8> Stores;
427      unsigned Offset = 0;
428
429      // Do all but one copies using the full register width.
430      for (unsigned i = 1; i < NumRegs; i++) {
431        // Load one integer register's worth from the stack slot.
432        SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, NULL, 0,
433                                   false, false, 0);
434        // Store it to the final location.  Remember the store.
435        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
436                                      ST->getSrcValue(), SVOffset + Offset,
437                                      ST->isVolatile(), ST->isNonTemporal(),
438                                      MinAlign(ST->getAlignment(), Offset)));
439        // Increment the pointers.
440        Offset += RegBytes;
441        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
442                               Increment);
443        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
444      }
445
446      // The last store may be partial.  Do a truncating store.  On big-endian
447      // machines this requires an extending load from the stack slot to ensure
448      // that the bits are in the right place.
449      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
450
451      // Load from the stack slot.
452      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
453                                    NULL, 0, MemVT, false, false, 0);
454
455      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
456                                         ST->getSrcValue(), SVOffset + Offset,
457                                         MemVT, ST->isVolatile(),
458                                         ST->isNonTemporal(),
459                                         MinAlign(ST->getAlignment(), Offset)));
460      // The order of the stores doesn't matter - say it with a TokenFactor.
461      return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
462                         Stores.size());
463    }
464  }
465  assert(ST->getMemoryVT().isInteger() &&
466         !ST->getMemoryVT().isVector() &&
467         "Unaligned store of unknown type.");
468  // Get the half-size VT
469  EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
470  int NumBits = NewStoredVT.getSizeInBits();
471  int IncrementSize = NumBits / 8;
472
473  // Divide the stored value in two parts.
474  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
475  SDValue Lo = Val;
476  SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
477
478  // Store the two parts
479  SDValue Store1, Store2;
480  Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
481                             ST->getSrcValue(), SVOffset, NewStoredVT,
482                             ST->isVolatile(), ST->isNonTemporal(), Alignment);
483  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
484                    DAG.getConstant(IncrementSize, TLI.getPointerTy()));
485  Alignment = MinAlign(Alignment, IncrementSize);
486  Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
487                             ST->getSrcValue(), SVOffset + IncrementSize,
488                             NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
489                             Alignment);
490
491  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
492}
493
494/// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
495static
496SDValue ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
497                            const TargetLowering &TLI) {
498  int SVOffset = LD->getSrcValueOffset();
499  SDValue Chain = LD->getChain();
500  SDValue Ptr = LD->getBasePtr();
501  EVT VT = LD->getValueType(0);
502  EVT LoadedVT = LD->getMemoryVT();
503  DebugLoc dl = LD->getDebugLoc();
504  if (VT.isFloatingPoint() || VT.isVector()) {
505    EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
506    if (TLI.isTypeLegal(intVT)) {
507      // Expand to a (misaligned) integer load of the same size,
508      // then bitconvert to floating point or vector.
509      SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getSrcValue(),
510                                    SVOffset, LD->isVolatile(),
511                                    LD->isNonTemporal(), LD->getAlignment());
512      SDValue Result = DAG.getNode(ISD::BIT_CONVERT, dl, LoadedVT, newLoad);
513      if (VT.isFloatingPoint() && LoadedVT != VT)
514        Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
515
516      SDValue Ops[] = { Result, Chain };
517      return DAG.getMergeValues(Ops, 2, dl);
518    } else {
519      // Copy the value to a (aligned) stack slot using (unaligned) integer
520      // loads and stores, then do a (aligned) load from the stack slot.
521      EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
522      unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
523      unsigned RegBytes = RegVT.getSizeInBits() / 8;
524      unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
525
526      // Make sure the stack slot is also aligned for the register type.
527      SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
528
529      SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
530      SmallVector<SDValue, 8> Stores;
531      SDValue StackPtr = StackBase;
532      unsigned Offset = 0;
533
534      // Do all but one copies using the full register width.
535      for (unsigned i = 1; i < NumRegs; i++) {
536        // Load one integer register's worth from the original location.
537        SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, LD->getSrcValue(),
538                                   SVOffset + Offset, LD->isVolatile(),
539                                   LD->isNonTemporal(),
540                                   MinAlign(LD->getAlignment(), Offset));
541        // Follow the load with a store to the stack slot.  Remember the store.
542        Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
543                                      NULL, 0, false, false, 0));
544        // Increment the pointers.
545        Offset += RegBytes;
546        Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
547        StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
548                               Increment);
549      }
550
551      // The last copy may be partial.  Do an extending load.
552      EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8 * (LoadedBytes - Offset));
553      SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
554                                    LD->getSrcValue(), SVOffset + Offset,
555                                    MemVT, LD->isVolatile(),
556                                    LD->isNonTemporal(),
557                                    MinAlign(LD->getAlignment(), Offset));
558      // Follow the load with a store to the stack slot.  Remember the store.
559      // On big-endian machines this requires a truncating store to ensure
560      // that the bits end up in the right place.
561      Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
562                                         NULL, 0, MemVT, false, false, 0));
563
564      // The order of the stores doesn't matter - say it with a TokenFactor.
565      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
566                               Stores.size());
567
568      // Finally, perform the original load only redirected to the stack slot.
569      Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
570                            NULL, 0, LoadedVT, false, false, 0);
571
572      // Callers expect a MERGE_VALUES node.
573      SDValue Ops[] = { Load, TF };
574      return DAG.getMergeValues(Ops, 2, dl);
575    }
576  }
577  assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
578         "Unaligned load of unsupported type.");
579
580  // Compute the new VT that is half the size of the old one.  This is an
581  // integer MVT.
582  unsigned NumBits = LoadedVT.getSizeInBits();
583  EVT NewLoadedVT;
584  NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
585  NumBits >>= 1;
586
587  unsigned Alignment = LD->getAlignment();
588  unsigned IncrementSize = NumBits / 8;
589  ISD::LoadExtType HiExtType = LD->getExtensionType();
590
591  // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
592  if (HiExtType == ISD::NON_EXTLOAD)
593    HiExtType = ISD::ZEXTLOAD;
594
595  // Load the value in two parts
596  SDValue Lo, Hi;
597  if (TLI.isLittleEndian()) {
598    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
599                        SVOffset, NewLoadedVT, LD->isVolatile(),
600                        LD->isNonTemporal(), Alignment);
601    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
602                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
603    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
604                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
605                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize));
606  } else {
607    Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getSrcValue(),
608                        SVOffset, NewLoadedVT, LD->isVolatile(),
609                        LD->isNonTemporal(), Alignment);
610    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
611                      DAG.getConstant(IncrementSize, TLI.getPointerTy()));
612    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getSrcValue(),
613                        SVOffset + IncrementSize, NewLoadedVT, LD->isVolatile(),
614                        LD->isNonTemporal(), MinAlign(Alignment, IncrementSize));
615  }
616
617  // aggregate the two parts
618  SDValue ShiftAmount = DAG.getConstant(NumBits, TLI.getShiftAmountTy());
619  SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
620  Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
621
622  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
623                             Hi.getValue(1));
624
625  SDValue Ops[] = { Result, TF };
626  return DAG.getMergeValues(Ops, 2, dl);
627}
628
629/// PerformInsertVectorEltInMemory - Some target cannot handle a variable
630/// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
631/// is necessary to spill the vector being inserted into to memory, perform
632/// the insert there, and then read the result back.
633SDValue SelectionDAGLegalize::
634PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
635                               DebugLoc dl) {
636  SDValue Tmp1 = Vec;
637  SDValue Tmp2 = Val;
638  SDValue Tmp3 = Idx;
639
640  // If the target doesn't support this, we have to spill the input vector
641  // to a temporary stack slot, update the element, then reload it.  This is
642  // badness.  We could also load the value into a vector register (either
643  // with a "move to register" or "extload into register" instruction, then
644  // permute it into place, if the idx is a constant and if the idx is
645  // supported by the target.
646  EVT VT    = Tmp1.getValueType();
647  EVT EltVT = VT.getVectorElementType();
648  EVT IdxVT = Tmp3.getValueType();
649  EVT PtrVT = TLI.getPointerTy();
650  SDValue StackPtr = DAG.CreateStackTemporary(VT);
651
652  int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
653
654  // Store the vector.
655  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
656                            PseudoSourceValue::getFixedStack(SPFI), 0,
657                            false, false, 0);
658
659  // Truncate or zero extend offset to target pointer type.
660  unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
661  Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
662  // Add the offset to the index.
663  unsigned EltSize = EltVT.getSizeInBits()/8;
664  Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
665  SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
666  // Store the scalar value.
667  Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2,
668                         PseudoSourceValue::getFixedStack(SPFI), 0, EltVT,
669                         false, false, 0);
670  // Load the updated vector.
671  return DAG.getLoad(VT, dl, Ch, StackPtr,
672                     PseudoSourceValue::getFixedStack(SPFI), 0,
673                     false, false, 0);
674}
675
676
677SDValue SelectionDAGLegalize::
678ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
679  if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
680    // SCALAR_TO_VECTOR requires that the type of the value being inserted
681    // match the element type of the vector being created, except for
682    // integers in which case the inserted value can be over width.
683    EVT EltVT = Vec.getValueType().getVectorElementType();
684    if (Val.getValueType() == EltVT ||
685        (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
686      SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
687                                  Vec.getValueType(), Val);
688
689      unsigned NumElts = Vec.getValueType().getVectorNumElements();
690      // We generate a shuffle of InVec and ScVec, so the shuffle mask
691      // should be 0,1,2,3,4,5... with the appropriate element replaced with
692      // elt 0 of the RHS.
693      SmallVector<int, 8> ShufOps;
694      for (unsigned i = 0; i != NumElts; ++i)
695        ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
696
697      return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
698                                  &ShufOps[0]);
699    }
700  }
701  return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
702}
703
704SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
705  // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
706  // FIXME: We shouldn't do this for TargetConstantFP's.
707  // FIXME: move this to the DAG Combiner!  Note that we can't regress due
708  // to phase ordering between legalized code and the dag combiner.  This
709  // probably means that we need to integrate dag combiner and legalizer
710  // together.
711  // We generally can't do this one for long doubles.
712  SDValue Tmp1 = ST->getChain();
713  SDValue Tmp2 = ST->getBasePtr();
714  SDValue Tmp3;
715  int SVOffset = ST->getSrcValueOffset();
716  unsigned Alignment = ST->getAlignment();
717  bool isVolatile = ST->isVolatile();
718  bool isNonTemporal = ST->isNonTemporal();
719  DebugLoc dl = ST->getDebugLoc();
720  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
721    if (CFP->getValueType(0) == MVT::f32 &&
722        getTypeAction(MVT::i32) == Legal) {
723      Tmp3 = DAG.getConstant(CFP->getValueAPF().
724                                      bitcastToAPInt().zextOrTrunc(32),
725                              MVT::i32);
726      return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
727                          SVOffset, isVolatile, isNonTemporal, Alignment);
728    } else if (CFP->getValueType(0) == MVT::f64) {
729      // If this target supports 64-bit registers, do a single 64-bit store.
730      if (getTypeAction(MVT::i64) == Legal) {
731        Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
732                                  zextOrTrunc(64), MVT::i64);
733        return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
734                            SVOffset, isVolatile, isNonTemporal, Alignment);
735      } else if (getTypeAction(MVT::i32) == Legal && !ST->isVolatile()) {
736        // Otherwise, if the target supports 32-bit registers, use 2 32-bit
737        // stores.  If the target supports neither 32- nor 64-bits, this
738        // xform is certainly not worth it.
739        const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
740        SDValue Lo = DAG.getConstant(APInt(IntVal).trunc(32), MVT::i32);
741        SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
742        if (TLI.isBigEndian()) std::swap(Lo, Hi);
743
744        Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getSrcValue(),
745                          SVOffset, isVolatile, isNonTemporal, Alignment);
746        Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
747                            DAG.getIntPtrConstant(4));
748        Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(), SVOffset+4,
749                          isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
750
751        return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
752      }
753    }
754  }
755  return SDValue();
756}
757
758/// LegalizeOp - We know that the specified value has a legal type, and
759/// that its operands are legal.  Now ensure that the operation itself
760/// is legal, recursively ensuring that the operands' operations remain
761/// legal.
762SDValue SelectionDAGLegalize::LegalizeOp(SDValue Op) {
763  if (Op.getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
764    return Op;
765
766  SDNode *Node = Op.getNode();
767  DebugLoc dl = Node->getDebugLoc();
768
769  for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
770    assert(getTypeAction(Node->getValueType(i)) == Legal &&
771           "Unexpected illegal type!");
772
773  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
774    assert((isTypeLegal(Node->getOperand(i).getValueType()) ||
775            Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
776           "Unexpected illegal type!");
777
778  // Note that LegalizeOp may be reentered even from single-use nodes, which
779  // means that we always must cache transformed nodes.
780  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
781  if (I != LegalizedNodes.end()) return I->second;
782
783  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
784  SDValue Result = Op;
785  bool isCustom = false;
786
787  // Figure out the correct action; the way to query this varies by opcode
788  TargetLowering::LegalizeAction Action;
789  bool SimpleFinishLegalizing = true;
790  switch (Node->getOpcode()) {
791  case ISD::INTRINSIC_W_CHAIN:
792  case ISD::INTRINSIC_WO_CHAIN:
793  case ISD::INTRINSIC_VOID:
794  case ISD::VAARG:
795  case ISD::STACKSAVE:
796    Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
797    break;
798  case ISD::SINT_TO_FP:
799  case ISD::UINT_TO_FP:
800  case ISD::EXTRACT_VECTOR_ELT:
801    Action = TLI.getOperationAction(Node->getOpcode(),
802                                    Node->getOperand(0).getValueType());
803    break;
804  case ISD::FP_ROUND_INREG:
805  case ISD::SIGN_EXTEND_INREG: {
806    EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
807    Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
808    break;
809  }
810  case ISD::SELECT_CC:
811  case ISD::SETCC:
812  case ISD::BR_CC: {
813    unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
814                         Node->getOpcode() == ISD::SETCC ? 2 : 1;
815    unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
816    EVT OpVT = Node->getOperand(CompareOperand).getValueType();
817    ISD::CondCode CCCode =
818        cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
819    Action = TLI.getCondCodeAction(CCCode, OpVT);
820    if (Action == TargetLowering::Legal) {
821      if (Node->getOpcode() == ISD::SELECT_CC)
822        Action = TLI.getOperationAction(Node->getOpcode(),
823                                        Node->getValueType(0));
824      else
825        Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
826    }
827    break;
828  }
829  case ISD::LOAD:
830  case ISD::STORE:
831    // FIXME: Model these properly.  LOAD and STORE are complicated, and
832    // STORE expects the unlegalized operand in some cases.
833    SimpleFinishLegalizing = false;
834    break;
835  case ISD::CALLSEQ_START:
836  case ISD::CALLSEQ_END:
837    // FIXME: This shouldn't be necessary.  These nodes have special properties
838    // dealing with the recursive nature of legalization.  Removing this
839    // special case should be done as part of making LegalizeDAG non-recursive.
840    SimpleFinishLegalizing = false;
841    break;
842  case ISD::EXTRACT_ELEMENT:
843  case ISD::FLT_ROUNDS_:
844  case ISD::SADDO:
845  case ISD::SSUBO:
846  case ISD::UADDO:
847  case ISD::USUBO:
848  case ISD::SMULO:
849  case ISD::UMULO:
850  case ISD::FPOWI:
851  case ISD::MERGE_VALUES:
852  case ISD::EH_RETURN:
853  case ISD::FRAME_TO_ARGS_OFFSET:
854    // These operations lie about being legal: when they claim to be legal,
855    // they should actually be expanded.
856    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
857    if (Action == TargetLowering::Legal)
858      Action = TargetLowering::Expand;
859    break;
860  case ISD::TRAMPOLINE:
861  case ISD::FRAMEADDR:
862  case ISD::RETURNADDR:
863    // These operations lie about being legal: when they claim to be legal,
864    // they should actually be custom-lowered.
865    Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
866    if (Action == TargetLowering::Legal)
867      Action = TargetLowering::Custom;
868    break;
869  case ISD::BUILD_VECTOR:
870    // A weird case: legalization for BUILD_VECTOR never legalizes the
871    // operands!
872    // FIXME: This really sucks... changing it isn't semantically incorrect,
873    // but it massively pessimizes the code for floating-point BUILD_VECTORs
874    // because ConstantFP operands get legalized into constant pool loads
875    // before the BUILD_VECTOR code can see them.  It doesn't usually bite,
876    // though, because BUILD_VECTORS usually get lowered into other nodes
877    // which get legalized properly.
878    SimpleFinishLegalizing = false;
879    break;
880  default:
881    if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
882      Action = TargetLowering::Legal;
883    } else {
884      Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
885    }
886    break;
887  }
888
889  if (SimpleFinishLegalizing) {
890    SmallVector<SDValue, 8> Ops, ResultVals;
891    for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
892      Ops.push_back(LegalizeOp(Node->getOperand(i)));
893    switch (Node->getOpcode()) {
894    default: break;
895    case ISD::BR:
896    case ISD::BRIND:
897    case ISD::BR_JT:
898    case ISD::BR_CC:
899    case ISD::BRCOND:
900      // Branches tweak the chain to include LastCALLSEQ_END
901      Ops[0] = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ops[0],
902                            LastCALLSEQ_END);
903      Ops[0] = LegalizeOp(Ops[0]);
904      LastCALLSEQ_END = DAG.getEntryNode();
905      break;
906    case ISD::SHL:
907    case ISD::SRL:
908    case ISD::SRA:
909    case ISD::ROTL:
910    case ISD::ROTR:
911      // Legalizing shifts/rotates requires adjusting the shift amount
912      // to the appropriate width.
913      if (!Ops[1].getValueType().isVector())
914        Ops[1] = LegalizeOp(DAG.getShiftAmountOperand(Ops[1]));
915      break;
916    case ISD::SRL_PARTS:
917    case ISD::SRA_PARTS:
918    case ISD::SHL_PARTS:
919      // Legalizing shifts/rotates requires adjusting the shift amount
920      // to the appropriate width.
921      if (!Ops[2].getValueType().isVector())
922        Ops[2] = LegalizeOp(DAG.getShiftAmountOperand(Ops[2]));
923      break;
924    }
925
926    Result = DAG.UpdateNodeOperands(Result.getValue(0), Ops.data(),
927                                    Ops.size());
928    switch (Action) {
929    case TargetLowering::Legal:
930      for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
931        ResultVals.push_back(Result.getValue(i));
932      break;
933    case TargetLowering::Custom:
934      // FIXME: The handling for custom lowering with multiple results is
935      // a complete mess.
936      Tmp1 = TLI.LowerOperation(Result, DAG);
937      if (Tmp1.getNode()) {
938        for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
939          if (e == 1)
940            ResultVals.push_back(Tmp1);
941          else
942            ResultVals.push_back(Tmp1.getValue(i));
943        }
944        break;
945      }
946
947      // FALL THROUGH
948    case TargetLowering::Expand:
949      ExpandNode(Result.getNode(), ResultVals);
950      break;
951    case TargetLowering::Promote:
952      PromoteNode(Result.getNode(), ResultVals);
953      break;
954    }
955    if (!ResultVals.empty()) {
956      for (unsigned i = 0, e = ResultVals.size(); i != e; ++i) {
957        if (ResultVals[i] != SDValue(Node, i))
958          ResultVals[i] = LegalizeOp(ResultVals[i]);
959        AddLegalizedOperand(SDValue(Node, i), ResultVals[i]);
960      }
961      return ResultVals[Op.getResNo()];
962    }
963  }
964
965  switch (Node->getOpcode()) {
966  default:
967#ifndef NDEBUG
968    dbgs() << "NODE: ";
969    Node->dump( &DAG);
970    dbgs() << "\n";
971#endif
972    llvm_unreachable("Do not know how to legalize this operator!");
973
974  case ISD::BUILD_VECTOR:
975    switch (TLI.getOperationAction(ISD::BUILD_VECTOR, Node->getValueType(0))) {
976    default: llvm_unreachable("This action is not supported yet!");
977    case TargetLowering::Custom:
978      Tmp3 = TLI.LowerOperation(Result, DAG);
979      if (Tmp3.getNode()) {
980        Result = Tmp3;
981        break;
982      }
983      // FALLTHROUGH
984    case TargetLowering::Expand:
985      Result = ExpandBUILD_VECTOR(Result.getNode());
986      break;
987    }
988    break;
989  case ISD::CALLSEQ_START: {
990    SDNode *CallEnd = FindCallEndFromCallStart(Node);
991
992    // Recursively Legalize all of the inputs of the call end that do not lead
993    // to this call start.  This ensures that any libcalls that need be inserted
994    // are inserted *before* the CALLSEQ_START.
995    {SmallPtrSet<SDNode*, 32> NodesLeadingTo;
996    for (unsigned i = 0, e = CallEnd->getNumOperands(); i != e; ++i)
997      LegalizeAllNodesNotLeadingTo(CallEnd->getOperand(i).getNode(), Node,
998                                   NodesLeadingTo);
999    }
1000
1001    // Now that we legalized all of the inputs (which may have inserted
1002    // libcalls) create the new CALLSEQ_START node.
1003    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1004
1005    // Merge in the last call, to ensure that this call start after the last
1006    // call ended.
1007    if (LastCALLSEQ_END.getOpcode() != ISD::EntryToken) {
1008      Tmp1 = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1009                         Tmp1, LastCALLSEQ_END);
1010      Tmp1 = LegalizeOp(Tmp1);
1011    }
1012
1013    // Do not try to legalize the target-specific arguments (#1+).
1014    if (Tmp1 != Node->getOperand(0)) {
1015      SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1016      Ops[0] = Tmp1;
1017      Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1018    }
1019
1020    // Remember that the CALLSEQ_START is legalized.
1021    AddLegalizedOperand(Op.getValue(0), Result);
1022    if (Node->getNumValues() == 2)    // If this has a flag result, remember it.
1023      AddLegalizedOperand(Op.getValue(1), Result.getValue(1));
1024
1025    // Now that the callseq_start and all of the non-call nodes above this call
1026    // sequence have been legalized, legalize the call itself.  During this
1027    // process, no libcalls can/will be inserted, guaranteeing that no calls
1028    // can overlap.
1029    assert(!IsLegalizingCall && "Inconsistent sequentialization of calls!");
1030    // Note that we are selecting this call!
1031    LastCALLSEQ_END = SDValue(CallEnd, 0);
1032    IsLegalizingCall = true;
1033
1034    // Legalize the call, starting from the CALLSEQ_END.
1035    LegalizeOp(LastCALLSEQ_END);
1036    assert(!IsLegalizingCall && "CALLSEQ_END should have cleared this!");
1037    return Result;
1038  }
1039  case ISD::CALLSEQ_END:
1040    // If the CALLSEQ_START node hasn't been legalized first, legalize it.  This
1041    // will cause this node to be legalized as well as handling libcalls right.
1042    if (LastCALLSEQ_END.getNode() != Node) {
1043      LegalizeOp(SDValue(FindCallStartFromCallEnd(Node), 0));
1044      DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
1045      assert(I != LegalizedNodes.end() &&
1046             "Legalizing the call start should have legalized this node!");
1047      return I->second;
1048    }
1049
1050    // Otherwise, the call start has been legalized and everything is going
1051    // according to plan.  Just legalize ourselves normally here.
1052    Tmp1 = LegalizeOp(Node->getOperand(0));  // Legalize the chain.
1053    // Do not try to legalize the target-specific arguments (#1+), except for
1054    // an optional flag input.
1055    if (Node->getOperand(Node->getNumOperands()-1).getValueType() != MVT::Flag){
1056      if (Tmp1 != Node->getOperand(0)) {
1057        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1058        Ops[0] = Tmp1;
1059        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1060      }
1061    } else {
1062      Tmp2 = LegalizeOp(Node->getOperand(Node->getNumOperands()-1));
1063      if (Tmp1 != Node->getOperand(0) ||
1064          Tmp2 != Node->getOperand(Node->getNumOperands()-1)) {
1065        SmallVector<SDValue, 8> Ops(Node->op_begin(), Node->op_end());
1066        Ops[0] = Tmp1;
1067        Ops.back() = Tmp2;
1068        Result = DAG.UpdateNodeOperands(Result, &Ops[0], Ops.size());
1069      }
1070    }
1071    assert(IsLegalizingCall && "Call sequence imbalance between start/end?");
1072    // This finishes up call legalization.
1073    IsLegalizingCall = false;
1074
1075    // If the CALLSEQ_END node has a flag, remember that we legalized it.
1076    AddLegalizedOperand(SDValue(Node, 0), Result.getValue(0));
1077    if (Node->getNumValues() == 2)
1078      AddLegalizedOperand(SDValue(Node, 1), Result.getValue(1));
1079    return Result.getValue(Op.getResNo());
1080  case ISD::LOAD: {
1081    LoadSDNode *LD = cast<LoadSDNode>(Node);
1082    Tmp1 = LegalizeOp(LD->getChain());   // Legalize the chain.
1083    Tmp2 = LegalizeOp(LD->getBasePtr()); // Legalize the base pointer.
1084
1085    ISD::LoadExtType ExtType = LD->getExtensionType();
1086    if (ExtType == ISD::NON_EXTLOAD) {
1087      EVT VT = Node->getValueType(0);
1088      Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1089      Tmp3 = Result.getValue(0);
1090      Tmp4 = Result.getValue(1);
1091
1092      switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
1093      default: llvm_unreachable("This action is not supported yet!");
1094      case TargetLowering::Legal:
1095        // If this is an unaligned load and the target doesn't support it,
1096        // expand it.
1097        if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1098          const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1099          unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1100          if (LD->getAlignment() < ABIAlignment){
1101            Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1102                                         DAG, TLI);
1103            Tmp3 = Result.getOperand(0);
1104            Tmp4 = Result.getOperand(1);
1105            Tmp3 = LegalizeOp(Tmp3);
1106            Tmp4 = LegalizeOp(Tmp4);
1107          }
1108        }
1109        break;
1110      case TargetLowering::Custom:
1111        Tmp1 = TLI.LowerOperation(Tmp3, DAG);
1112        if (Tmp1.getNode()) {
1113          Tmp3 = LegalizeOp(Tmp1);
1114          Tmp4 = LegalizeOp(Tmp1.getValue(1));
1115        }
1116        break;
1117      case TargetLowering::Promote: {
1118        // Only promote a load of vector type to another.
1119        assert(VT.isVector() && "Cannot promote this load!");
1120        // Change base type to a different vector type.
1121        EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
1122
1123        Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1124                           LD->getSrcValueOffset(),
1125                           LD->isVolatile(), LD->isNonTemporal(),
1126                           LD->getAlignment());
1127        Tmp3 = LegalizeOp(DAG.getNode(ISD::BIT_CONVERT, dl, VT, Tmp1));
1128        Tmp4 = LegalizeOp(Tmp1.getValue(1));
1129        break;
1130      }
1131      }
1132      // Since loads produce two values, make sure to remember that we
1133      // legalized both of them.
1134      AddLegalizedOperand(SDValue(Node, 0), Tmp3);
1135      AddLegalizedOperand(SDValue(Node, 1), Tmp4);
1136      return Op.getResNo() ? Tmp4 : Tmp3;
1137    } else {
1138      EVT SrcVT = LD->getMemoryVT();
1139      unsigned SrcWidth = SrcVT.getSizeInBits();
1140      int SVOffset = LD->getSrcValueOffset();
1141      unsigned Alignment = LD->getAlignment();
1142      bool isVolatile = LD->isVolatile();
1143      bool isNonTemporal = LD->isNonTemporal();
1144
1145      if (SrcWidth != SrcVT.getStoreSizeInBits() &&
1146          // Some targets pretend to have an i1 loading operation, and actually
1147          // load an i8.  This trick is correct for ZEXTLOAD because the top 7
1148          // bits are guaranteed to be zero; it helps the optimizers understand
1149          // that these bits are zero.  It is also useful for EXTLOAD, since it
1150          // tells the optimizers that those bits are undefined.  It would be
1151          // nice to have an effective generic way of getting these benefits...
1152          // Until such a way is found, don't insist on promoting i1 here.
1153          (SrcVT != MVT::i1 ||
1154           TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
1155        // Promote to a byte-sized load if not loading an integral number of
1156        // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
1157        unsigned NewWidth = SrcVT.getStoreSizeInBits();
1158        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
1159        SDValue Ch;
1160
1161        // The extra bits are guaranteed to be zero, since we stored them that
1162        // way.  A zext load from NVT thus automatically gives zext from SrcVT.
1163
1164        ISD::LoadExtType NewExtType =
1165          ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
1166
1167        Result = DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
1168                                Tmp1, Tmp2, LD->getSrcValue(), SVOffset,
1169                                NVT, isVolatile, isNonTemporal, Alignment);
1170
1171        Ch = Result.getValue(1); // The chain.
1172
1173        if (ExtType == ISD::SEXTLOAD)
1174          // Having the top bits zero doesn't help when sign extending.
1175          Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1176                               Result.getValueType(),
1177                               Result, DAG.getValueType(SrcVT));
1178        else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1179          // All the top bits are guaranteed to be zero - inform the optimizers.
1180          Result = DAG.getNode(ISD::AssertZext, dl,
1181                               Result.getValueType(), Result,
1182                               DAG.getValueType(SrcVT));
1183
1184        Tmp1 = LegalizeOp(Result);
1185        Tmp2 = LegalizeOp(Ch);
1186      } else if (SrcWidth & (SrcWidth - 1)) {
1187        // If not loading a power-of-2 number of bits, expand as two loads.
1188        assert(!SrcVT.isVector() && "Unsupported extload!");
1189        unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1190        assert(RoundWidth < SrcWidth);
1191        unsigned ExtraWidth = SrcWidth - RoundWidth;
1192        assert(ExtraWidth < RoundWidth);
1193        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1194               "Load size not an integral number of bytes!");
1195        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1196        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1197        SDValue Lo, Hi, Ch;
1198        unsigned IncrementSize;
1199
1200        if (TLI.isLittleEndian()) {
1201          // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1202          // Load the bottom RoundWidth bits.
1203          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1204                              Node->getValueType(0), Tmp1, Tmp2,
1205                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1206                              isNonTemporal, Alignment);
1207
1208          // Load the remaining ExtraWidth bits.
1209          IncrementSize = RoundWidth / 8;
1210          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1211                             DAG.getIntPtrConstant(IncrementSize));
1212          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1213                              LD->getSrcValue(), SVOffset + IncrementSize,
1214                              ExtraVT, isVolatile, isNonTemporal,
1215                              MinAlign(Alignment, IncrementSize));
1216
1217          // Build a factor node to remember that this load is independent of the
1218          // other one.
1219          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1220                           Hi.getValue(1));
1221
1222          // Move the top bits to the right place.
1223          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1224                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1225
1226          // Join the hi and lo parts.
1227          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1228        } else {
1229          // Big endian - avoid unaligned loads.
1230          // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1231          // Load the top RoundWidth bits.
1232          Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1233                              LD->getSrcValue(), SVOffset, RoundVT, isVolatile,
1234                              isNonTemporal, Alignment);
1235
1236          // Load the remaining ExtraWidth bits.
1237          IncrementSize = RoundWidth / 8;
1238          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1239                             DAG.getIntPtrConstant(IncrementSize));
1240          Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl,
1241                              Node->getValueType(0), Tmp1, Tmp2,
1242                              LD->getSrcValue(), SVOffset + IncrementSize,
1243                              ExtraVT, isVolatile, isNonTemporal,
1244                              MinAlign(Alignment, IncrementSize));
1245
1246          // Build a factor node to remember that this load is independent of the
1247          // other one.
1248          Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1249                           Hi.getValue(1));
1250
1251          // Move the top bits to the right place.
1252          Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1253                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1254
1255          // Join the hi and lo parts.
1256          Result = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1257        }
1258
1259        Tmp1 = LegalizeOp(Result);
1260        Tmp2 = LegalizeOp(Ch);
1261      } else {
1262        switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1263        default: llvm_unreachable("This action is not supported yet!");
1264        case TargetLowering::Custom:
1265          isCustom = true;
1266          // FALLTHROUGH
1267        case TargetLowering::Legal:
1268          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp2, LD->getOffset());
1269          Tmp1 = Result.getValue(0);
1270          Tmp2 = Result.getValue(1);
1271
1272          if (isCustom) {
1273            Tmp3 = TLI.LowerOperation(Result, DAG);
1274            if (Tmp3.getNode()) {
1275              Tmp1 = LegalizeOp(Tmp3);
1276              Tmp2 = LegalizeOp(Tmp3.getValue(1));
1277            }
1278          } else {
1279            // If this is an unaligned load and the target doesn't support it,
1280            // expand it.
1281            if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1282              const Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1283              unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1284              if (LD->getAlignment() < ABIAlignment){
1285                Result = ExpandUnalignedLoad(cast<LoadSDNode>(Result.getNode()),
1286                                             DAG, TLI);
1287                Tmp1 = Result.getOperand(0);
1288                Tmp2 = Result.getOperand(1);
1289                Tmp1 = LegalizeOp(Tmp1);
1290                Tmp2 = LegalizeOp(Tmp2);
1291              }
1292            }
1293          }
1294          break;
1295        case TargetLowering::Expand:
1296          // f64 = EXTLOAD f32 should expand to LOAD, FP_EXTEND
1297          // f128 = EXTLOAD {f32,f64} too
1298          if ((SrcVT == MVT::f32 && (Node->getValueType(0) == MVT::f64 ||
1299                                     Node->getValueType(0) == MVT::f128)) ||
1300              (SrcVT == MVT::f64 && Node->getValueType(0) == MVT::f128)) {
1301            SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2, LD->getSrcValue(),
1302                                       LD->getSrcValueOffset(),
1303                                       LD->isVolatile(), LD->isNonTemporal(),
1304                                       LD->getAlignment());
1305            Result = DAG.getNode(ISD::FP_EXTEND, dl,
1306                                 Node->getValueType(0), Load);
1307            Tmp1 = LegalizeOp(Result);  // Relegalize new nodes.
1308            Tmp2 = LegalizeOp(Load.getValue(1));
1309            break;
1310          }
1311          assert(ExtType != ISD::EXTLOAD &&"EXTLOAD should always be supported!");
1312          // Turn the unsupported load into an EXTLOAD followed by an explicit
1313          // zero/sign extend inreg.
1314          Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1315                                  Tmp1, Tmp2, LD->getSrcValue(),
1316                                  LD->getSrcValueOffset(), SrcVT,
1317                                  LD->isVolatile(), LD->isNonTemporal(),
1318                                  LD->getAlignment());
1319          SDValue ValRes;
1320          if (ExtType == ISD::SEXTLOAD)
1321            ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1322                                 Result.getValueType(),
1323                                 Result, DAG.getValueType(SrcVT));
1324          else
1325            ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT);
1326          Tmp1 = LegalizeOp(ValRes);  // Relegalize new nodes.
1327          Tmp2 = LegalizeOp(Result.getValue(1));  // Relegalize new nodes.
1328          break;
1329        }
1330      }
1331
1332      // Since loads produce two values, make sure to remember that we legalized
1333      // both of them.
1334      AddLegalizedOperand(SDValue(Node, 0), Tmp1);
1335      AddLegalizedOperand(SDValue(Node, 1), Tmp2);
1336      return Op.getResNo() ? Tmp2 : Tmp1;
1337    }
1338  }
1339  case ISD::STORE: {
1340    StoreSDNode *ST = cast<StoreSDNode>(Node);
1341    Tmp1 = LegalizeOp(ST->getChain());    // Legalize the chain.
1342    Tmp2 = LegalizeOp(ST->getBasePtr());  // Legalize the pointer.
1343    int SVOffset = ST->getSrcValueOffset();
1344    unsigned Alignment = ST->getAlignment();
1345    bool isVolatile = ST->isVolatile();
1346    bool isNonTemporal = ST->isNonTemporal();
1347
1348    if (!ST->isTruncatingStore()) {
1349      if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1350        Result = SDValue(OptStore, 0);
1351        break;
1352      }
1353
1354      {
1355        Tmp3 = LegalizeOp(ST->getValue());
1356        Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1357                                        ST->getOffset());
1358
1359        EVT VT = Tmp3.getValueType();
1360        switch (TLI.getOperationAction(ISD::STORE, VT)) {
1361        default: llvm_unreachable("This action is not supported yet!");
1362        case TargetLowering::Legal:
1363          // If this is an unaligned store and the target doesn't support it,
1364          // expand it.
1365          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1366            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1367            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1368            if (ST->getAlignment() < ABIAlignment)
1369              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1370                                            DAG, TLI);
1371          }
1372          break;
1373        case TargetLowering::Custom:
1374          Tmp1 = TLI.LowerOperation(Result, DAG);
1375          if (Tmp1.getNode()) Result = Tmp1;
1376          break;
1377        case TargetLowering::Promote:
1378          assert(VT.isVector() && "Unknown legal promote case!");
1379          Tmp3 = DAG.getNode(ISD::BIT_CONVERT, dl,
1380                             TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1381          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1382                                ST->getSrcValue(), SVOffset, isVolatile,
1383                                isNonTemporal, Alignment);
1384          break;
1385        }
1386        break;
1387      }
1388    } else {
1389      Tmp3 = LegalizeOp(ST->getValue());
1390
1391      EVT StVT = ST->getMemoryVT();
1392      unsigned StWidth = StVT.getSizeInBits();
1393
1394      if (StWidth != StVT.getStoreSizeInBits()) {
1395        // Promote to a byte-sized store with upper bits zero if not
1396        // storing an integral number of bytes.  For example, promote
1397        // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1398        EVT NVT = EVT::getIntegerVT(*DAG.getContext(), StVT.getStoreSizeInBits());
1399        Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1400        Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1401                                   SVOffset, NVT, isVolatile, isNonTemporal,
1402                                   Alignment);
1403      } else if (StWidth & (StWidth - 1)) {
1404        // If not storing a power-of-2 number of bits, expand as two stores.
1405        assert(!StVT.isVector() && "Unsupported truncstore!");
1406        unsigned RoundWidth = 1 << Log2_32(StWidth);
1407        assert(RoundWidth < StWidth);
1408        unsigned ExtraWidth = StWidth - RoundWidth;
1409        assert(ExtraWidth < RoundWidth);
1410        assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1411               "Store size not an integral number of bytes!");
1412        EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1413        EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1414        SDValue Lo, Hi;
1415        unsigned IncrementSize;
1416
1417        if (TLI.isLittleEndian()) {
1418          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1419          // Store the bottom RoundWidth bits.
1420          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1421                                 SVOffset, RoundVT,
1422                                 isVolatile, isNonTemporal, Alignment);
1423
1424          // Store the remaining ExtraWidth bits.
1425          IncrementSize = RoundWidth / 8;
1426          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1427                             DAG.getIntPtrConstant(IncrementSize));
1428          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1429                           DAG.getConstant(RoundWidth, TLI.getShiftAmountTy()));
1430          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1431                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1432                                 isNonTemporal,
1433                                 MinAlign(Alignment, IncrementSize));
1434        } else {
1435          // Big endian - avoid unaligned stores.
1436          // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1437          // Store the top RoundWidth bits.
1438          Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1439                           DAG.getConstant(ExtraWidth, TLI.getShiftAmountTy()));
1440          Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getSrcValue(),
1441                                 SVOffset, RoundVT, isVolatile, isNonTemporal,
1442                                 Alignment);
1443
1444          // Store the remaining ExtraWidth bits.
1445          IncrementSize = RoundWidth / 8;
1446          Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1447                             DAG.getIntPtrConstant(IncrementSize));
1448          Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1449                                 SVOffset + IncrementSize, ExtraVT, isVolatile,
1450                                 isNonTemporal,
1451                                 MinAlign(Alignment, IncrementSize));
1452        }
1453
1454        // The order of the stores doesn't matter.
1455        Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1456      } else {
1457        if (Tmp1 != ST->getChain() || Tmp3 != ST->getValue() ||
1458            Tmp2 != ST->getBasePtr())
1459          Result = DAG.UpdateNodeOperands(Result, Tmp1, Tmp3, Tmp2,
1460                                          ST->getOffset());
1461
1462        switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1463        default: llvm_unreachable("This action is not supported yet!");
1464        case TargetLowering::Legal:
1465          // If this is an unaligned store and the target doesn't support it,
1466          // expand it.
1467          if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1468            const Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1469            unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
1470            if (ST->getAlignment() < ABIAlignment)
1471              Result = ExpandUnalignedStore(cast<StoreSDNode>(Result.getNode()),
1472                                            DAG, TLI);
1473          }
1474          break;
1475        case TargetLowering::Custom:
1476          Result = TLI.LowerOperation(Result, DAG);
1477          break;
1478        case Expand:
1479          // TRUNCSTORE:i16 i32 -> STORE i16
1480          assert(isTypeLegal(StVT) && "Do not know how to expand this store!");
1481          Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1482          Result = DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getSrcValue(),
1483                                SVOffset, isVolatile, isNonTemporal,
1484                                Alignment);
1485          break;
1486        }
1487      }
1488    }
1489    break;
1490  }
1491  }
1492  assert(Result.getValueType() == Op.getValueType() &&
1493         "Bad legalization!");
1494
1495  // Make sure that the generated code is itself legal.
1496  if (Result != Op)
1497    Result = LegalizeOp(Result);
1498
1499  // Note that LegalizeOp may be reentered even from single-use nodes, which
1500  // means that we always must cache transformed nodes.
1501  AddLegalizedOperand(Op, Result);
1502  return Result;
1503}
1504
1505SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1506  SDValue Vec = Op.getOperand(0);
1507  SDValue Idx = Op.getOperand(1);
1508  DebugLoc dl = Op.getDebugLoc();
1509  // Store the value to a temporary stack slot, then LOAD the returned part.
1510  SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1511  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, NULL, 0,
1512                            false, false, 0);
1513
1514  // Add the offset to the index.
1515  unsigned EltSize =
1516      Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1517  Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1518                    DAG.getConstant(EltSize, Idx.getValueType()));
1519
1520  if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1521    Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1522  else
1523    Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1524
1525  StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1526
1527  if (Op.getValueType().isVector())
1528    return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, NULL, 0,
1529                       false, false, 0);
1530  else
1531    return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1532                          NULL, 0, Vec.getValueType().getVectorElementType(),
1533                          false, false, 0);
1534}
1535
1536SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1537  // We can't handle this case efficiently.  Allocate a sufficiently
1538  // aligned object on the stack, store each element into it, then load
1539  // the result as a vector.
1540  // Create the stack frame object.
1541  EVT VT = Node->getValueType(0);
1542  EVT EltVT = VT.getVectorElementType();
1543  DebugLoc dl = Node->getDebugLoc();
1544  SDValue FIPtr = DAG.CreateStackTemporary(VT);
1545  int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1546  const Value *SV = PseudoSourceValue::getFixedStack(FI);
1547
1548  // Emit a store of each element to the stack slot.
1549  SmallVector<SDValue, 8> Stores;
1550  unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1551  // Store (in the right endianness) the elements to memory.
1552  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1553    // Ignore undef elements.
1554    if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1555
1556    unsigned Offset = TypeByteSize*i;
1557
1558    SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1559    Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1560
1561    // If the destination vector element type is narrower than the source
1562    // element type, only store the bits necessary.
1563    if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1564      Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1565                                         Node->getOperand(i), Idx, SV, Offset,
1566                                         EltVT, false, false, 0));
1567    } else
1568      Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1569                                    Node->getOperand(i), Idx, SV, Offset,
1570                                    false, false, 0));
1571  }
1572
1573  SDValue StoreChain;
1574  if (!Stores.empty())    // Not all undef elements?
1575    StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1576                             &Stores[0], Stores.size());
1577  else
1578    StoreChain = DAG.getEntryNode();
1579
1580  // Result is a load from the stack slot.
1581  return DAG.getLoad(VT, dl, StoreChain, FIPtr, SV, 0, false, false, 0);
1582}
1583
1584SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1585  DebugLoc dl = Node->getDebugLoc();
1586  SDValue Tmp1 = Node->getOperand(0);
1587  SDValue Tmp2 = Node->getOperand(1);
1588  assert((Tmp2.getValueType() == MVT::f32 ||
1589          Tmp2.getValueType() == MVT::f64) &&
1590          "Ugly special-cased code!");
1591  // Get the sign bit of the RHS.
1592  SDValue SignBit;
1593  EVT IVT = Tmp2.getValueType() == MVT::f64 ? MVT::i64 : MVT::i32;
1594  if (isTypeLegal(IVT)) {
1595    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, IVT, Tmp2);
1596  } else {
1597    assert(isTypeLegal(TLI.getPointerTy()) &&
1598            (TLI.getPointerTy() == MVT::i32 ||
1599            TLI.getPointerTy() == MVT::i64) &&
1600            "Legal type for load?!");
1601    SDValue StackPtr = DAG.CreateStackTemporary(Tmp2.getValueType());
1602    SDValue StorePtr = StackPtr, LoadPtr = StackPtr;
1603    SDValue Ch =
1604      DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StorePtr, NULL, 0,
1605                   false, false, 0);
1606    if (Tmp2.getValueType() == MVT::f64 && TLI.isLittleEndian())
1607      LoadPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(),
1608                            LoadPtr, DAG.getIntPtrConstant(4));
1609    SignBit = DAG.getExtLoad(ISD::SEXTLOAD, dl, TLI.getPointerTy(),
1610                             Ch, LoadPtr, NULL, 0, MVT::i32,
1611                             false, false, 0);
1612  }
1613  SignBit =
1614      DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1615                    SignBit, DAG.getConstant(0, SignBit.getValueType()),
1616                    ISD::SETLT);
1617  // Get the absolute value of the result.
1618  SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1619  // Select between the nabs and abs value based on the sign bit of
1620  // the input.
1621  return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1622                     DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1623                     AbsVal);
1624}
1625
1626void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1627                                           SmallVectorImpl<SDValue> &Results) {
1628  unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1629  assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1630          " not tell us which reg is the stack pointer!");
1631  DebugLoc dl = Node->getDebugLoc();
1632  EVT VT = Node->getValueType(0);
1633  SDValue Tmp1 = SDValue(Node, 0);
1634  SDValue Tmp2 = SDValue(Node, 1);
1635  SDValue Tmp3 = Node->getOperand(2);
1636  SDValue Chain = Tmp1.getOperand(0);
1637
1638  // Chain the dynamic stack allocation so that it doesn't modify the stack
1639  // pointer when other instructions are using the stack.
1640  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1641
1642  SDValue Size  = Tmp2.getOperand(1);
1643  SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1644  Chain = SP.getValue(1);
1645  unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1646  unsigned StackAlign =
1647    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1648  if (Align > StackAlign)
1649    SP = DAG.getNode(ISD::AND, dl, VT, SP,
1650                      DAG.getConstant(-(uint64_t)Align, VT));
1651  Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1652  Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1653
1654  Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1655                            DAG.getIntPtrConstant(0, true), SDValue());
1656
1657  Results.push_back(Tmp1);
1658  Results.push_back(Tmp2);
1659}
1660
1661/// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1662/// condition code CC on the current target. This routine expands SETCC with
1663/// illegal condition code into AND / OR of multiple SETCC values.
1664void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1665                                                 SDValue &LHS, SDValue &RHS,
1666                                                 SDValue &CC,
1667                                                 DebugLoc dl) {
1668  EVT OpVT = LHS.getValueType();
1669  ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1670  switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1671  default: llvm_unreachable("Unknown condition code action!");
1672  case TargetLowering::Legal:
1673    // Nothing to do.
1674    break;
1675  case TargetLowering::Expand: {
1676    ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1677    unsigned Opc = 0;
1678    switch (CCCode) {
1679    default: llvm_unreachable("Don't know how to expand this condition!");
1680    case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1681    case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1682    case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1683    case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1684    case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1685    case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1686    case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1687    case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1688    case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1689    case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1690    case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1691    case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1692    // FIXME: Implement more expansions.
1693    }
1694
1695    SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1696    SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1697    LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1698    RHS = SDValue();
1699    CC  = SDValue();
1700    break;
1701  }
1702  }
1703}
1704
1705/// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1706/// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1707/// a load from the stack slot to DestVT, extending it if needed.
1708/// The resultant code need not be legal.
1709SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1710                                               EVT SlotVT,
1711                                               EVT DestVT,
1712                                               DebugLoc dl) {
1713  // Create the stack frame object.
1714  unsigned SrcAlign =
1715    TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1716                                              getTypeForEVT(*DAG.getContext()));
1717  SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1718
1719  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1720  int SPFI = StackPtrFI->getIndex();
1721  const Value *SV = PseudoSourceValue::getFixedStack(SPFI);
1722
1723  unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1724  unsigned SlotSize = SlotVT.getSizeInBits();
1725  unsigned DestSize = DestVT.getSizeInBits();
1726  unsigned DestAlign =
1727    TLI.getTargetData()->getPrefTypeAlignment(DestVT.getTypeForEVT(*DAG.getContext()));
1728
1729  // Emit a store to the stack slot.  Use a truncstore if the input value is
1730  // later than DestVT.
1731  SDValue Store;
1732
1733  if (SrcSize > SlotSize)
1734    Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1735                              SV, 0, SlotVT, false, false, SrcAlign);
1736  else {
1737    assert(SrcSize == SlotSize && "Invalid store");
1738    Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1739                         SV, 0, false, false, SrcAlign);
1740  }
1741
1742  // Result is a load from the stack slot.
1743  if (SlotSize == DestSize)
1744    return DAG.getLoad(DestVT, dl, Store, FIPtr, SV, 0, false, false,
1745                       DestAlign);
1746
1747  assert(SlotSize < DestSize && "Unknown extension!");
1748  return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, SV, 0, SlotVT,
1749                        false, false, DestAlign);
1750}
1751
1752SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1753  DebugLoc dl = Node->getDebugLoc();
1754  // Create a vector sized/aligned stack slot, store the value to element #0,
1755  // then load the whole vector back out.
1756  SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1757
1758  FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1759  int SPFI = StackPtrFI->getIndex();
1760
1761  SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1762                                 StackPtr,
1763                                 PseudoSourceValue::getFixedStack(SPFI), 0,
1764                                 Node->getValueType(0).getVectorElementType(),
1765                                 false, false, 0);
1766  return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1767                     PseudoSourceValue::getFixedStack(SPFI), 0,
1768                     false, false, 0);
1769}
1770
1771
1772/// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1773/// support the operation, but do support the resultant vector type.
1774SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1775  unsigned NumElems = Node->getNumOperands();
1776  SDValue Value1, Value2;
1777  DebugLoc dl = Node->getDebugLoc();
1778  EVT VT = Node->getValueType(0);
1779  EVT OpVT = Node->getOperand(0).getValueType();
1780  EVT EltVT = VT.getVectorElementType();
1781
1782  // If the only non-undef value is the low element, turn this into a
1783  // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1784  bool isOnlyLowElement = true;
1785  bool MoreThanTwoValues = false;
1786  bool isConstant = true;
1787  for (unsigned i = 0; i < NumElems; ++i) {
1788    SDValue V = Node->getOperand(i);
1789    if (V.getOpcode() == ISD::UNDEF)
1790      continue;
1791    if (i > 0)
1792      isOnlyLowElement = false;
1793    if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1794      isConstant = false;
1795
1796    if (!Value1.getNode()) {
1797      Value1 = V;
1798    } else if (!Value2.getNode()) {
1799      if (V != Value1)
1800        Value2 = V;
1801    } else if (V != Value1 && V != Value2) {
1802      MoreThanTwoValues = true;
1803    }
1804  }
1805
1806  if (!Value1.getNode())
1807    return DAG.getUNDEF(VT);
1808
1809  if (isOnlyLowElement)
1810    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1811
1812  // If all elements are constants, create a load from the constant pool.
1813  if (isConstant) {
1814    std::vector<Constant*> CV;
1815    for (unsigned i = 0, e = NumElems; i != e; ++i) {
1816      if (ConstantFPSDNode *V =
1817          dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1818        CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1819      } else if (ConstantSDNode *V =
1820                 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1821        if (OpVT==EltVT)
1822          CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1823        else {
1824          // If OpVT and EltVT don't match, EltVT is not legal and the
1825          // element values have been promoted/truncated earlier.  Undo this;
1826          // we don't want a v16i8 to become a v16i32 for example.
1827          const ConstantInt *CI = V->getConstantIntValue();
1828          CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1829                                        CI->getZExtValue()));
1830        }
1831      } else {
1832        assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1833        const Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1834        CV.push_back(UndefValue::get(OpNTy));
1835      }
1836    }
1837    Constant *CP = ConstantVector::get(CV);
1838    SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1839    unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1840    return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1841                       PseudoSourceValue::getConstantPool(), 0,
1842                       false, false, Alignment);
1843  }
1844
1845  if (!MoreThanTwoValues) {
1846    SmallVector<int, 8> ShuffleVec(NumElems, -1);
1847    for (unsigned i = 0; i < NumElems; ++i) {
1848      SDValue V = Node->getOperand(i);
1849      if (V.getOpcode() == ISD::UNDEF)
1850        continue;
1851      ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1852    }
1853    if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1854      // Get the splatted value into the low element of a vector register.
1855      SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1856      SDValue Vec2;
1857      if (Value2.getNode())
1858        Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1859      else
1860        Vec2 = DAG.getUNDEF(VT);
1861
1862      // Return shuffle(LowValVec, undef, <0,0,0,0>)
1863      return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1864    }
1865  }
1866
1867  // Otherwise, we can't handle this case efficiently.
1868  return ExpandVectorBuildThroughStack(Node);
1869}
1870
1871// ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1872// does not fit into a register, return the lo part and set the hi part to the
1873// by-reg argument.  If it does fit into a single register, return the result
1874// and leave the Hi part unset.
1875SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1876                                            bool isSigned) {
1877  assert(!IsLegalizingCall && "Cannot overlap legalization of calls!");
1878  // The input chain to this libcall is the entry node of the function.
1879  // Legalizing the call will automatically add the previous call to the
1880  // dependence.
1881  SDValue InChain = DAG.getEntryNode();
1882
1883  TargetLowering::ArgListTy Args;
1884  TargetLowering::ArgListEntry Entry;
1885  for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1886    EVT ArgVT = Node->getOperand(i).getValueType();
1887    const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1888    Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1889    Entry.isSExt = isSigned;
1890    Entry.isZExt = !isSigned;
1891    Args.push_back(Entry);
1892  }
1893  SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1894                                         TLI.getPointerTy());
1895
1896  // Splice the libcall in wherever FindInputOutputChains tells us to.
1897  const Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1898  std::pair<SDValue, SDValue> CallInfo =
1899    TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
1900                    0, TLI.getLibcallCallingConv(LC), false,
1901                    /*isReturnValueUsed=*/true,
1902                    Callee, Args, DAG, Node->getDebugLoc());
1903
1904  // Legalize the call sequence, starting with the chain.  This will advance
1905  // the LastCALLSEQ_END to the legalized version of the CALLSEQ_END node that
1906  // was added by LowerCallTo (guaranteeing proper serialization of calls).
1907  LegalizeOp(CallInfo.second);
1908  return CallInfo.first;
1909}
1910
1911SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1912                                              RTLIB::Libcall Call_F32,
1913                                              RTLIB::Libcall Call_F64,
1914                                              RTLIB::Libcall Call_F80,
1915                                              RTLIB::Libcall Call_PPCF128) {
1916  RTLIB::Libcall LC;
1917  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1918  default: llvm_unreachable("Unexpected request for libcall!");
1919  case MVT::f32: LC = Call_F32; break;
1920  case MVT::f64: LC = Call_F64; break;
1921  case MVT::f80: LC = Call_F80; break;
1922  case MVT::ppcf128: LC = Call_PPCF128; break;
1923  }
1924  return ExpandLibCall(LC, Node, false);
1925}
1926
1927SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1928                                               RTLIB::Libcall Call_I8,
1929                                               RTLIB::Libcall Call_I16,
1930                                               RTLIB::Libcall Call_I32,
1931                                               RTLIB::Libcall Call_I64,
1932                                               RTLIB::Libcall Call_I128) {
1933  RTLIB::Libcall LC;
1934  switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1935  default: llvm_unreachable("Unexpected request for libcall!");
1936  case MVT::i8:   LC = Call_I8; break;
1937  case MVT::i16:  LC = Call_I16; break;
1938  case MVT::i32:  LC = Call_I32; break;
1939  case MVT::i64:  LC = Call_I64; break;
1940  case MVT::i128: LC = Call_I128; break;
1941  }
1942  return ExpandLibCall(LC, Node, isSigned);
1943}
1944
1945/// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
1946/// INT_TO_FP operation of the specified operand when the target requests that
1947/// we expand it.  At this point, we know that the result and operand types are
1948/// legal for the target.
1949SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
1950                                                   SDValue Op0,
1951                                                   EVT DestVT,
1952                                                   DebugLoc dl) {
1953  if (Op0.getValueType() == MVT::i32) {
1954    // simple 32-bit [signed|unsigned] integer to float/double expansion
1955
1956    // Get the stack frame index of a 8 byte buffer.
1957    SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
1958
1959    // word offset constant for Hi/Lo address computation
1960    SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
1961    // set up Hi and Lo (into buffer) address based on endian
1962    SDValue Hi = StackSlot;
1963    SDValue Lo = DAG.getNode(ISD::ADD, dl,
1964                             TLI.getPointerTy(), StackSlot, WordOff);
1965    if (TLI.isLittleEndian())
1966      std::swap(Hi, Lo);
1967
1968    // if signed map to unsigned space
1969    SDValue Op0Mapped;
1970    if (isSigned) {
1971      // constant used to invert sign bit (signed to unsigned mapping)
1972      SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
1973      Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
1974    } else {
1975      Op0Mapped = Op0;
1976    }
1977    // store the lo of the constructed double - based on integer input
1978    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
1979                                  Op0Mapped, Lo, NULL, 0,
1980                                  false, false, 0);
1981    // initial hi portion of constructed double
1982    SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
1983    // store the hi of the constructed double - biased exponent
1984    SDValue Store2=DAG.getStore(Store1, dl, InitialHi, Hi, NULL, 0,
1985                                false, false, 0);
1986    // load the constructed double
1987    SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, NULL, 0,
1988                               false, false, 0);
1989    // FP constant to bias correct the final result
1990    SDValue Bias = DAG.getConstantFP(isSigned ?
1991                                     BitsToDouble(0x4330000080000000ULL) :
1992                                     BitsToDouble(0x4330000000000000ULL),
1993                                     MVT::f64);
1994    // subtract the bias
1995    SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
1996    // final result
1997    SDValue Result;
1998    // handle final rounding
1999    if (DestVT == MVT::f64) {
2000      // do nothing
2001      Result = Sub;
2002    } else if (DestVT.bitsLT(MVT::f64)) {
2003      Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2004                           DAG.getIntPtrConstant(0));
2005    } else if (DestVT.bitsGT(MVT::f64)) {
2006      Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2007    }
2008    return Result;
2009  }
2010  assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2011
2012  // Implementation of unsigned i64 to f64 following the algorithm in
2013  // __floatundidf in compiler_rt. This implementation has the advantage
2014  // of performing rounding correctly, both in the default rounding mode
2015  // and in all alternate rounding modes.
2016  // TODO: Generalize this for use with other types.
2017  if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2018    SDValue TwoP52 =
2019      DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2020    SDValue TwoP84PlusTwoP52 =
2021      DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2022    SDValue TwoP84 =
2023      DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2024
2025    SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2026    SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2027                             DAG.getConstant(32, MVT::i64));
2028    SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2029    SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2030    SDValue LoFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, LoOr);
2031    SDValue HiFlt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, HiOr);
2032    SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, TwoP84PlusTwoP52);
2033    return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2034  }
2035
2036  SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2037
2038  SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2039                                 Op0, DAG.getConstant(0, Op0.getValueType()),
2040                                 ISD::SETLT);
2041  SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2042  SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2043                                    SignSet, Four, Zero);
2044
2045  // If the sign bit of the integer is set, the large number will be treated
2046  // as a negative number.  To counteract this, the dynamic code adds an
2047  // offset depending on the data type.
2048  uint64_t FF;
2049  switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2050  default: llvm_unreachable("Unsupported integer type!");
2051  case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2052  case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2053  case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2054  case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2055  }
2056  if (TLI.isLittleEndian()) FF <<= 32;
2057  Constant *FudgeFactor = ConstantInt::get(
2058                                       Type::getInt64Ty(*DAG.getContext()), FF);
2059
2060  SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2061  unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2062  CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2063  Alignment = std::min(Alignment, 4u);
2064  SDValue FudgeInReg;
2065  if (DestVT == MVT::f32)
2066    FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2067                             PseudoSourceValue::getConstantPool(), 0,
2068                             false, false, Alignment);
2069  else {
2070    FudgeInReg =
2071      LegalizeOp(DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2072                                DAG.getEntryNode(), CPIdx,
2073                                PseudoSourceValue::getConstantPool(), 0,
2074                                MVT::f32, false, false, Alignment));
2075  }
2076
2077  return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2078}
2079
2080/// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2081/// *INT_TO_FP operation of the specified operand when the target requests that
2082/// we promote it.  At this point, we know that the result and operand types are
2083/// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2084/// operation that takes a larger input.
2085SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2086                                                    EVT DestVT,
2087                                                    bool isSigned,
2088                                                    DebugLoc dl) {
2089  // First step, figure out the appropriate *INT_TO_FP operation to use.
2090  EVT NewInTy = LegalOp.getValueType();
2091
2092  unsigned OpToUse = 0;
2093
2094  // Scan for the appropriate larger type to use.
2095  while (1) {
2096    NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2097    assert(NewInTy.isInteger() && "Ran out of possibilities!");
2098
2099    // If the target supports SINT_TO_FP of this type, use it.
2100    if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2101      OpToUse = ISD::SINT_TO_FP;
2102      break;
2103    }
2104    if (isSigned) continue;
2105
2106    // If the target supports UINT_TO_FP of this type, use it.
2107    if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2108      OpToUse = ISD::UINT_TO_FP;
2109      break;
2110    }
2111
2112    // Otherwise, try a larger type.
2113  }
2114
2115  // Okay, we found the operation and type to use.  Zero extend our input to the
2116  // desired type then run the operation on it.
2117  return DAG.getNode(OpToUse, dl, DestVT,
2118                     DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2119                                 dl, NewInTy, LegalOp));
2120}
2121
2122/// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2123/// FP_TO_*INT operation of the specified operand when the target requests that
2124/// we promote it.  At this point, we know that the result and operand types are
2125/// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2126/// operation that returns a larger result.
2127SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2128                                                    EVT DestVT,
2129                                                    bool isSigned,
2130                                                    DebugLoc dl) {
2131  // First step, figure out the appropriate FP_TO*INT operation to use.
2132  EVT NewOutTy = DestVT;
2133
2134  unsigned OpToUse = 0;
2135
2136  // Scan for the appropriate larger type to use.
2137  while (1) {
2138    NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2139    assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2140
2141    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2142      OpToUse = ISD::FP_TO_SINT;
2143      break;
2144    }
2145
2146    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2147      OpToUse = ISD::FP_TO_UINT;
2148      break;
2149    }
2150
2151    // Otherwise, try a larger type.
2152  }
2153
2154
2155  // Okay, we found the operation and type to use.
2156  SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2157
2158  // Truncate the result of the extended FP_TO_*INT operation to the desired
2159  // size.
2160  return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2161}
2162
2163/// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2164///
2165SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2166  EVT VT = Op.getValueType();
2167  EVT SHVT = TLI.getShiftAmountTy();
2168  SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2169  switch (VT.getSimpleVT().SimpleTy) {
2170  default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2171  case MVT::i16:
2172    Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2173    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2174    return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2175  case MVT::i32:
2176    Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2177    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2178    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2179    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2180    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2181    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2182    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2183    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2184    return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2185  case MVT::i64:
2186    Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2187    Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2188    Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2189    Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2190    Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2191    Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2192    Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2193    Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2194    Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2195    Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2196    Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2197    Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2198    Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2199    Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2200    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2201    Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2202    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2203    Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2204    Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2205    Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2206    return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2207  }
2208}
2209
2210/// ExpandBitCount - Expand the specified bitcount instruction into operations.
2211///
2212SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2213                                             DebugLoc dl) {
2214  switch (Opc) {
2215  default: llvm_unreachable("Cannot expand this yet!");
2216  case ISD::CTPOP: {
2217    static const uint64_t mask[6] = {
2218      0x5555555555555555ULL, 0x3333333333333333ULL,
2219      0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
2220      0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
2221    };
2222    EVT VT = Op.getValueType();
2223    EVT ShVT = TLI.getShiftAmountTy();
2224    unsigned len = VT.getSizeInBits();
2225    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2226      //x = (x & mask[i][len/8]) + (x >> (1 << i) & mask[i][len/8])
2227      unsigned EltSize = VT.isVector() ?
2228        VT.getVectorElementType().getSizeInBits() : len;
2229      SDValue Tmp2 = DAG.getConstant(APInt(EltSize, mask[i]), VT);
2230      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2231      Op = DAG.getNode(ISD::ADD, dl, VT,
2232                       DAG.getNode(ISD::AND, dl, VT, Op, Tmp2),
2233                       DAG.getNode(ISD::AND, dl, VT,
2234                                   DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3),
2235                                   Tmp2));
2236    }
2237    return Op;
2238  }
2239  case ISD::CTLZ: {
2240    // for now, we do this:
2241    // x = x | (x >> 1);
2242    // x = x | (x >> 2);
2243    // ...
2244    // x = x | (x >>16);
2245    // x = x | (x >>32); // for 64-bit input
2246    // return popcount(~x);
2247    //
2248    // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2249    EVT VT = Op.getValueType();
2250    EVT ShVT = TLI.getShiftAmountTy();
2251    unsigned len = VT.getSizeInBits();
2252    for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2253      SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2254      Op = DAG.getNode(ISD::OR, dl, VT, Op,
2255                       DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2256    }
2257    Op = DAG.getNOT(dl, Op, VT);
2258    return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2259  }
2260  case ISD::CTTZ: {
2261    // for now, we use: { return popcount(~x & (x - 1)); }
2262    // unless the target has ctlz but not ctpop, in which case we use:
2263    // { return 32 - nlz(~x & (x-1)); }
2264    // see also http://www.hackersdelight.org/HDcode/ntz.cc
2265    EVT VT = Op.getValueType();
2266    SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2267                               DAG.getNOT(dl, Op, VT),
2268                               DAG.getNode(ISD::SUB, dl, VT, Op,
2269                                           DAG.getConstant(1, VT)));
2270    // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2271    if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2272        TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2273      return DAG.getNode(ISD::SUB, dl, VT,
2274                         DAG.getConstant(VT.getSizeInBits(), VT),
2275                         DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2276    return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2277  }
2278  }
2279}
2280
2281void SelectionDAGLegalize::ExpandNode(SDNode *Node,
2282                                      SmallVectorImpl<SDValue> &Results) {
2283  DebugLoc dl = Node->getDebugLoc();
2284  SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2285  switch (Node->getOpcode()) {
2286  case ISD::CTPOP:
2287  case ISD::CTLZ:
2288  case ISD::CTTZ:
2289    Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2290    Results.push_back(Tmp1);
2291    break;
2292  case ISD::BSWAP:
2293    Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2294    break;
2295  case ISD::FRAMEADDR:
2296  case ISD::RETURNADDR:
2297  case ISD::FRAME_TO_ARGS_OFFSET:
2298    Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2299    break;
2300  case ISD::FLT_ROUNDS_:
2301    Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2302    break;
2303  case ISD::EH_RETURN:
2304  case ISD::EH_LABEL:
2305  case ISD::PREFETCH:
2306  case ISD::MEMBARRIER:
2307  case ISD::VAEND:
2308    Results.push_back(Node->getOperand(0));
2309    break;
2310  case ISD::DYNAMIC_STACKALLOC:
2311    ExpandDYNAMIC_STACKALLOC(Node, Results);
2312    break;
2313  case ISD::MERGE_VALUES:
2314    for (unsigned i = 0; i < Node->getNumValues(); i++)
2315      Results.push_back(Node->getOperand(i));
2316    break;
2317  case ISD::UNDEF: {
2318    EVT VT = Node->getValueType(0);
2319    if (VT.isInteger())
2320      Results.push_back(DAG.getConstant(0, VT));
2321    else if (VT.isFloatingPoint())
2322      Results.push_back(DAG.getConstantFP(0, VT));
2323    else
2324      llvm_unreachable("Unknown value type!");
2325    break;
2326  }
2327  case ISD::TRAP: {
2328    // If this operation is not supported, lower it to 'abort()' call
2329    TargetLowering::ArgListTy Args;
2330    std::pair<SDValue, SDValue> CallResult =
2331      TLI.LowerCallTo(Node->getOperand(0), Type::getVoidTy(*DAG.getContext()),
2332                      false, false, false, false, 0, CallingConv::C, false,
2333                      /*isReturnValueUsed=*/true,
2334                      DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2335                      Args, DAG, dl);
2336    Results.push_back(CallResult.second);
2337    break;
2338  }
2339  case ISD::FP_ROUND:
2340  case ISD::BIT_CONVERT:
2341    Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2342                            Node->getValueType(0), dl);
2343    Results.push_back(Tmp1);
2344    break;
2345  case ISD::FP_EXTEND:
2346    Tmp1 = EmitStackConvert(Node->getOperand(0),
2347                            Node->getOperand(0).getValueType(),
2348                            Node->getValueType(0), dl);
2349    Results.push_back(Tmp1);
2350    break;
2351  case ISD::SIGN_EXTEND_INREG: {
2352    // NOTE: we could fall back on load/store here too for targets without
2353    // SAR.  However, it is doubtful that any exist.
2354    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2355    EVT VT = Node->getValueType(0);
2356    EVT ShiftAmountTy = TLI.getShiftAmountTy();
2357    if (VT.isVector())
2358      ShiftAmountTy = VT;
2359    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2360                        ExtraVT.getScalarType().getSizeInBits();
2361    SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2362    Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2363                       Node->getOperand(0), ShiftCst);
2364    Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2365    Results.push_back(Tmp1);
2366    break;
2367  }
2368  case ISD::FP_ROUND_INREG: {
2369    // The only way we can lower this is to turn it into a TRUNCSTORE,
2370    // EXTLOAD pair, targetting a temporary location (a stack slot).
2371
2372    // NOTE: there is a choice here between constantly creating new stack
2373    // slots and always reusing the same one.  We currently always create
2374    // new ones, as reuse may inhibit scheduling.
2375    EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2376    Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2377                            Node->getValueType(0), dl);
2378    Results.push_back(Tmp1);
2379    break;
2380  }
2381  case ISD::SINT_TO_FP:
2382  case ISD::UINT_TO_FP:
2383    Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2384                                Node->getOperand(0), Node->getValueType(0), dl);
2385    Results.push_back(Tmp1);
2386    break;
2387  case ISD::FP_TO_UINT: {
2388    SDValue True, False;
2389    EVT VT =  Node->getOperand(0).getValueType();
2390    EVT NVT = Node->getValueType(0);
2391    const uint64_t zero[] = {0, 0};
2392    APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2393    APInt x = APInt::getSignBit(NVT.getSizeInBits());
2394    (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2395    Tmp1 = DAG.getConstantFP(apf, VT);
2396    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2397                        Node->getOperand(0),
2398                        Tmp1, ISD::SETLT);
2399    True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2400    False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2401                        DAG.getNode(ISD::FSUB, dl, VT,
2402                                    Node->getOperand(0), Tmp1));
2403    False = DAG.getNode(ISD::XOR, dl, NVT, False,
2404                        DAG.getConstant(x, NVT));
2405    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2406    Results.push_back(Tmp1);
2407    break;
2408  }
2409  case ISD::VAARG: {
2410    const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2411    EVT VT = Node->getValueType(0);
2412    Tmp1 = Node->getOperand(0);
2413    Tmp2 = Node->getOperand(1);
2414    SDValue VAList = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2, V, 0,
2415                                 false, false, 0);
2416    // Increment the pointer, VAList, to the next vaarg
2417    Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2418                       DAG.getConstant(TLI.getTargetData()->
2419                                       getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2420                                       TLI.getPointerTy()));
2421    // Store the incremented VAList to the legalized pointer
2422    Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0,
2423                        false, false, 0);
2424    // Load the actual argument out of the pointer VAList
2425    Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, NULL, 0,
2426                                  false, false, 0));
2427    Results.push_back(Results[0].getValue(1));
2428    break;
2429  }
2430  case ISD::VACOPY: {
2431    // This defaults to loading a pointer from the input and storing it to the
2432    // output, returning the chain.
2433    const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2434    const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2435    Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2436                       Node->getOperand(2), VS, 0, false, false, 0);
2437    Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1), VD, 0,
2438                        false, false, 0);
2439    Results.push_back(Tmp1);
2440    break;
2441  }
2442  case ISD::EXTRACT_VECTOR_ELT:
2443    if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2444      // This must be an access of the only element.  Return it.
2445      Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, Node->getValueType(0),
2446                         Node->getOperand(0));
2447    else
2448      Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2449    Results.push_back(Tmp1);
2450    break;
2451  case ISD::EXTRACT_SUBVECTOR:
2452    Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2453    break;
2454  case ISD::CONCAT_VECTORS: {
2455    Results.push_back(ExpandVectorBuildThroughStack(Node));
2456    break;
2457  }
2458  case ISD::SCALAR_TO_VECTOR:
2459    Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2460    break;
2461  case ISD::INSERT_VECTOR_ELT:
2462    Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2463                                              Node->getOperand(1),
2464                                              Node->getOperand(2), dl));
2465    break;
2466  case ISD::VECTOR_SHUFFLE: {
2467    SmallVector<int, 8> Mask;
2468    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
2469
2470    EVT VT = Node->getValueType(0);
2471    EVT EltVT = VT.getVectorElementType();
2472    unsigned NumElems = VT.getVectorNumElements();
2473    SmallVector<SDValue, 8> Ops;
2474    for (unsigned i = 0; i != NumElems; ++i) {
2475      if (Mask[i] < 0) {
2476        Ops.push_back(DAG.getUNDEF(EltVT));
2477        continue;
2478      }
2479      unsigned Idx = Mask[i];
2480      if (Idx < NumElems)
2481        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2482                                  Node->getOperand(0),
2483                                  DAG.getIntPtrConstant(Idx)));
2484      else
2485        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2486                                  Node->getOperand(1),
2487                                  DAG.getIntPtrConstant(Idx - NumElems)));
2488    }
2489    Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2490    Results.push_back(Tmp1);
2491    break;
2492  }
2493  case ISD::EXTRACT_ELEMENT: {
2494    EVT OpTy = Node->getOperand(0).getValueType();
2495    if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2496      // 1 -> Hi
2497      Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2498                         DAG.getConstant(OpTy.getSizeInBits()/2,
2499                                         TLI.getShiftAmountTy()));
2500      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2501    } else {
2502      // 0 -> Lo
2503      Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2504                         Node->getOperand(0));
2505    }
2506    Results.push_back(Tmp1);
2507    break;
2508  }
2509  case ISD::STACKSAVE:
2510    // Expand to CopyFromReg if the target set
2511    // StackPointerRegisterToSaveRestore.
2512    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2513      Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2514                                           Node->getValueType(0)));
2515      Results.push_back(Results[0].getValue(1));
2516    } else {
2517      Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2518      Results.push_back(Node->getOperand(0));
2519    }
2520    break;
2521  case ISD::STACKRESTORE:
2522    // Expand to CopyToReg if the target set
2523    // StackPointerRegisterToSaveRestore.
2524    if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2525      Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2526                                         Node->getOperand(1)));
2527    } else {
2528      Results.push_back(Node->getOperand(0));
2529    }
2530    break;
2531  case ISD::FCOPYSIGN:
2532    Results.push_back(ExpandFCOPYSIGN(Node));
2533    break;
2534  case ISD::FNEG:
2535    // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2536    Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2537    Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2538                       Node->getOperand(0));
2539    Results.push_back(Tmp1);
2540    break;
2541  case ISD::FABS: {
2542    // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2543    EVT VT = Node->getValueType(0);
2544    Tmp1 = Node->getOperand(0);
2545    Tmp2 = DAG.getConstantFP(0.0, VT);
2546    Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2547                        Tmp1, Tmp2, ISD::SETUGT);
2548    Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2549    Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2550    Results.push_back(Tmp1);
2551    break;
2552  }
2553  case ISD::FSQRT:
2554    Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2555                                      RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2556    break;
2557  case ISD::FSIN:
2558    Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2559                                      RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2560    break;
2561  case ISD::FCOS:
2562    Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2563                                      RTLIB::COS_F80, RTLIB::COS_PPCF128));
2564    break;
2565  case ISD::FLOG:
2566    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2567                                      RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2568    break;
2569  case ISD::FLOG2:
2570    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2571                                      RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2572    break;
2573  case ISD::FLOG10:
2574    Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2575                                      RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2576    break;
2577  case ISD::FEXP:
2578    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2579                                      RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2580    break;
2581  case ISD::FEXP2:
2582    Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2583                                      RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2584    break;
2585  case ISD::FTRUNC:
2586    Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2587                                      RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2588    break;
2589  case ISD::FFLOOR:
2590    Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2591                                      RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
2592    break;
2593  case ISD::FCEIL:
2594    Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
2595                                      RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
2596    break;
2597  case ISD::FRINT:
2598    Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
2599                                      RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
2600    break;
2601  case ISD::FNEARBYINT:
2602    Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
2603                                      RTLIB::NEARBYINT_F64,
2604                                      RTLIB::NEARBYINT_F80,
2605                                      RTLIB::NEARBYINT_PPCF128));
2606    break;
2607  case ISD::FPOWI:
2608    Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
2609                                      RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
2610    break;
2611  case ISD::FPOW:
2612    Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
2613                                      RTLIB::POW_F80, RTLIB::POW_PPCF128));
2614    break;
2615  case ISD::FDIV:
2616    Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
2617                                      RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
2618    break;
2619  case ISD::FREM:
2620    Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
2621                                      RTLIB::REM_F80, RTLIB::REM_PPCF128));
2622    break;
2623  case ISD::ConstantFP: {
2624    ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
2625    // Check to see if this FP immediate is already legal.
2626    // If this is a legal constant, turn it into a TargetConstantFP node.
2627    if (TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
2628      Results.push_back(SDValue(Node, 0));
2629    else
2630      Results.push_back(ExpandConstantFP(CFP, true, DAG, TLI));
2631    break;
2632  }
2633  case ISD::EHSELECTION: {
2634    unsigned Reg = TLI.getExceptionSelectorRegister();
2635    assert(Reg && "Can't expand to unknown register!");
2636    Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
2637                                         Node->getValueType(0)));
2638    Results.push_back(Results[0].getValue(1));
2639    break;
2640  }
2641  case ISD::EXCEPTIONADDR: {
2642    unsigned Reg = TLI.getExceptionAddressRegister();
2643    assert(Reg && "Can't expand to unknown register!");
2644    Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
2645                                         Node->getValueType(0)));
2646    Results.push_back(Results[0].getValue(1));
2647    break;
2648  }
2649  case ISD::SUB: {
2650    EVT VT = Node->getValueType(0);
2651    assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
2652           TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
2653           "Don't know how to expand this subtraction!");
2654    Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
2655               DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
2656    Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp2, DAG.getConstant(1, VT));
2657    Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
2658    break;
2659  }
2660  case ISD::UREM:
2661  case ISD::SREM: {
2662    EVT VT = Node->getValueType(0);
2663    SDVTList VTs = DAG.getVTList(VT, VT);
2664    bool isSigned = Node->getOpcode() == ISD::SREM;
2665    unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
2666    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2667    Tmp2 = Node->getOperand(0);
2668    Tmp3 = Node->getOperand(1);
2669    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
2670      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
2671    } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
2672      // X % Y -> X-X/Y*Y
2673      Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
2674      Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
2675      Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
2676    } else if (isSigned) {
2677      Tmp1 = ExpandIntLibCall(Node, true,
2678                              RTLIB::SREM_I8,
2679                              RTLIB::SREM_I16, RTLIB::SREM_I32,
2680                              RTLIB::SREM_I64, RTLIB::SREM_I128);
2681    } else {
2682      Tmp1 = ExpandIntLibCall(Node, false,
2683                              RTLIB::UREM_I8,
2684                              RTLIB::UREM_I16, RTLIB::UREM_I32,
2685                              RTLIB::UREM_I64, RTLIB::UREM_I128);
2686    }
2687    Results.push_back(Tmp1);
2688    break;
2689  }
2690  case ISD::UDIV:
2691  case ISD::SDIV: {
2692    bool isSigned = Node->getOpcode() == ISD::SDIV;
2693    unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
2694    EVT VT = Node->getValueType(0);
2695    SDVTList VTs = DAG.getVTList(VT, VT);
2696    if (TLI.isOperationLegalOrCustom(DivRemOpc, VT))
2697      Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
2698                         Node->getOperand(1));
2699    else if (isSigned)
2700      Tmp1 = ExpandIntLibCall(Node, true,
2701                              RTLIB::SDIV_I8,
2702                              RTLIB::SDIV_I16, RTLIB::SDIV_I32,
2703                              RTLIB::SDIV_I64, RTLIB::SDIV_I128);
2704    else
2705      Tmp1 = ExpandIntLibCall(Node, false,
2706                              RTLIB::UDIV_I8,
2707                              RTLIB::UDIV_I16, RTLIB::UDIV_I32,
2708                              RTLIB::UDIV_I64, RTLIB::UDIV_I128);
2709    Results.push_back(Tmp1);
2710    break;
2711  }
2712  case ISD::MULHU:
2713  case ISD::MULHS: {
2714    unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
2715                                                              ISD::SMUL_LOHI;
2716    EVT VT = Node->getValueType(0);
2717    SDVTList VTs = DAG.getVTList(VT, VT);
2718    assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
2719           "If this wasn't legal, it shouldn't have been created!");
2720    Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
2721                       Node->getOperand(1));
2722    Results.push_back(Tmp1.getValue(1));
2723    break;
2724  }
2725  case ISD::MUL: {
2726    EVT VT = Node->getValueType(0);
2727    SDVTList VTs = DAG.getVTList(VT, VT);
2728    // See if multiply or divide can be lowered using two-result operations.
2729    // We just need the low half of the multiply; try both the signed
2730    // and unsigned forms. If the target supports both SMUL_LOHI and
2731    // UMUL_LOHI, form a preference by checking which forms of plain
2732    // MULH it supports.
2733    bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
2734    bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
2735    bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
2736    bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
2737    unsigned OpToUse = 0;
2738    if (HasSMUL_LOHI && !HasMULHS) {
2739      OpToUse = ISD::SMUL_LOHI;
2740    } else if (HasUMUL_LOHI && !HasMULHU) {
2741      OpToUse = ISD::UMUL_LOHI;
2742    } else if (HasSMUL_LOHI) {
2743      OpToUse = ISD::SMUL_LOHI;
2744    } else if (HasUMUL_LOHI) {
2745      OpToUse = ISD::UMUL_LOHI;
2746    }
2747    if (OpToUse) {
2748      Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
2749                                    Node->getOperand(1)));
2750      break;
2751    }
2752    Tmp1 = ExpandIntLibCall(Node, false,
2753                            RTLIB::MUL_I8,
2754                            RTLIB::MUL_I16, RTLIB::MUL_I32,
2755                            RTLIB::MUL_I64, RTLIB::MUL_I128);
2756    Results.push_back(Tmp1);
2757    break;
2758  }
2759  case ISD::SADDO:
2760  case ISD::SSUBO: {
2761    SDValue LHS = Node->getOperand(0);
2762    SDValue RHS = Node->getOperand(1);
2763    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2764                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2765                              LHS, RHS);
2766    Results.push_back(Sum);
2767    EVT OType = Node->getValueType(1);
2768
2769    SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2770
2771    //   LHSSign -> LHS >= 0
2772    //   RHSSign -> RHS >= 0
2773    //   SumSign -> Sum >= 0
2774    //
2775    //   Add:
2776    //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2777    //   Sub:
2778    //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2779    //
2780    SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2781    SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2782    SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2783                                      Node->getOpcode() == ISD::SADDO ?
2784                                      ISD::SETEQ : ISD::SETNE);
2785
2786    SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2787    SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2788
2789    SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2790    Results.push_back(Cmp);
2791    break;
2792  }
2793  case ISD::UADDO:
2794  case ISD::USUBO: {
2795    SDValue LHS = Node->getOperand(0);
2796    SDValue RHS = Node->getOperand(1);
2797    SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
2798                              ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2799                              LHS, RHS);
2800    Results.push_back(Sum);
2801    Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
2802                                   Node->getOpcode () == ISD::UADDO ?
2803                                   ISD::SETULT : ISD::SETUGT));
2804    break;
2805  }
2806  case ISD::UMULO:
2807  case ISD::SMULO: {
2808    EVT VT = Node->getValueType(0);
2809    SDValue LHS = Node->getOperand(0);
2810    SDValue RHS = Node->getOperand(1);
2811    SDValue BottomHalf;
2812    SDValue TopHalf;
2813    static const unsigned Ops[2][3] =
2814        { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
2815          { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
2816    bool isSigned = Node->getOpcode() == ISD::SMULO;
2817    if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
2818      BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
2819      TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
2820    } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
2821      BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
2822                               RHS);
2823      TopHalf = BottomHalf.getValue(1);
2824    } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2))) {
2825      EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
2826      LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
2827      RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
2828      Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
2829      BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2830                               DAG.getIntPtrConstant(0));
2831      TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
2832                            DAG.getIntPtrConstant(1));
2833    } else {
2834      // FIXME: We should be able to fall back to a libcall with an illegal
2835      // type in some cases.
2836      // Also, we can fall back to a division in some cases, but that's a big
2837      // performance hit in the general case.
2838      llvm_unreachable("Don't know how to expand this operation yet!");
2839    }
2840    if (isSigned) {
2841      Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1, TLI.getShiftAmountTy());
2842      Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
2843      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
2844                             ISD::SETNE);
2845    } else {
2846      TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
2847                             DAG.getConstant(0, VT), ISD::SETNE);
2848    }
2849    Results.push_back(BottomHalf);
2850    Results.push_back(TopHalf);
2851    break;
2852  }
2853  case ISD::BUILD_PAIR: {
2854    EVT PairTy = Node->getValueType(0);
2855    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
2856    Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
2857    Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
2858                       DAG.getConstant(PairTy.getSizeInBits()/2,
2859                                       TLI.getShiftAmountTy()));
2860    Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
2861    break;
2862  }
2863  case ISD::SELECT:
2864    Tmp1 = Node->getOperand(0);
2865    Tmp2 = Node->getOperand(1);
2866    Tmp3 = Node->getOperand(2);
2867    if (Tmp1.getOpcode() == ISD::SETCC) {
2868      Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
2869                             Tmp2, Tmp3,
2870                             cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
2871    } else {
2872      Tmp1 = DAG.getSelectCC(dl, Tmp1,
2873                             DAG.getConstant(0, Tmp1.getValueType()),
2874                             Tmp2, Tmp3, ISD::SETNE);
2875    }
2876    Results.push_back(Tmp1);
2877    break;
2878  case ISD::BR_JT: {
2879    SDValue Chain = Node->getOperand(0);
2880    SDValue Table = Node->getOperand(1);
2881    SDValue Index = Node->getOperand(2);
2882
2883    EVT PTy = TLI.getPointerTy();
2884
2885    const TargetData &TD = *TLI.getTargetData();
2886    unsigned EntrySize =
2887      DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
2888
2889    Index = DAG.getNode(ISD::MUL, dl, PTy,
2890                        Index, DAG.getConstant(EntrySize, PTy));
2891    SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
2892
2893    EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
2894    SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
2895                                PseudoSourceValue::getJumpTable(), 0, MemVT,
2896                                false, false, 0);
2897    Addr = LD;
2898    if (TLI.getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2899      // For PIC, the sequence is:
2900      // BRIND(load(Jumptable + index) + RelocBase)
2901      // RelocBase can be JumpTable, GOT or some sort of global base.
2902      Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
2903                          TLI.getPICJumpTableRelocBase(Table, DAG));
2904    }
2905    Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
2906    Results.push_back(Tmp1);
2907    break;
2908  }
2909  case ISD::BRCOND:
2910    // Expand brcond's setcc into its constituent parts and create a BR_CC
2911    // Node.
2912    Tmp1 = Node->getOperand(0);
2913    Tmp2 = Node->getOperand(1);
2914    if (Tmp2.getOpcode() == ISD::SETCC) {
2915      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
2916                         Tmp1, Tmp2.getOperand(2),
2917                         Tmp2.getOperand(0), Tmp2.getOperand(1),
2918                         Node->getOperand(2));
2919    } else {
2920      Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
2921                         DAG.getCondCode(ISD::SETNE), Tmp2,
2922                         DAG.getConstant(0, Tmp2.getValueType()),
2923                         Node->getOperand(2));
2924    }
2925    Results.push_back(Tmp1);
2926    break;
2927  case ISD::SETCC: {
2928    Tmp1 = Node->getOperand(0);
2929    Tmp2 = Node->getOperand(1);
2930    Tmp3 = Node->getOperand(2);
2931    LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
2932
2933    // If we expanded the SETCC into an AND/OR, return the new node
2934    if (Tmp2.getNode() == 0) {
2935      Results.push_back(Tmp1);
2936      break;
2937    }
2938
2939    // Otherwise, SETCC for the given comparison type must be completely
2940    // illegal; expand it into a SELECT_CC.
2941    EVT VT = Node->getValueType(0);
2942    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
2943                       DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
2944    Results.push_back(Tmp1);
2945    break;
2946  }
2947  case ISD::SELECT_CC: {
2948    Tmp1 = Node->getOperand(0);   // LHS
2949    Tmp2 = Node->getOperand(1);   // RHS
2950    Tmp3 = Node->getOperand(2);   // True
2951    Tmp4 = Node->getOperand(3);   // False
2952    SDValue CC = Node->getOperand(4);
2953
2954    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
2955                          Tmp1, Tmp2, CC, dl);
2956
2957    assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
2958    Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
2959    CC = DAG.getCondCode(ISD::SETNE);
2960    Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
2961                       Tmp3, Tmp4, CC);
2962    Results.push_back(Tmp1);
2963    break;
2964  }
2965  case ISD::BR_CC: {
2966    Tmp1 = Node->getOperand(0);              // Chain
2967    Tmp2 = Node->getOperand(2);              // LHS
2968    Tmp3 = Node->getOperand(3);              // RHS
2969    Tmp4 = Node->getOperand(1);              // CC
2970
2971    LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
2972                          Tmp2, Tmp3, Tmp4, dl);
2973    LastCALLSEQ_END = DAG.getEntryNode();
2974
2975    assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
2976    Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
2977    Tmp4 = DAG.getCondCode(ISD::SETNE);
2978    Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
2979                       Tmp3, Node->getOperand(4));
2980    Results.push_back(Tmp1);
2981    break;
2982  }
2983  case ISD::GLOBAL_OFFSET_TABLE:
2984  case ISD::GlobalAddress:
2985  case ISD::GlobalTLSAddress:
2986  case ISD::ExternalSymbol:
2987  case ISD::ConstantPool:
2988  case ISD::JumpTable:
2989  case ISD::INTRINSIC_W_CHAIN:
2990  case ISD::INTRINSIC_WO_CHAIN:
2991  case ISD::INTRINSIC_VOID:
2992    // FIXME: Custom lowering for these operations shouldn't return null!
2993    for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
2994      Results.push_back(SDValue(Node, i));
2995    break;
2996  }
2997}
2998void SelectionDAGLegalize::PromoteNode(SDNode *Node,
2999                                       SmallVectorImpl<SDValue> &Results) {
3000  EVT OVT = Node->getValueType(0);
3001  if (Node->getOpcode() == ISD::UINT_TO_FP ||
3002      Node->getOpcode() == ISD::SINT_TO_FP ||
3003      Node->getOpcode() == ISD::SETCC) {
3004    OVT = Node->getOperand(0).getValueType();
3005  }
3006  EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3007  DebugLoc dl = Node->getDebugLoc();
3008  SDValue Tmp1, Tmp2, Tmp3;
3009  switch (Node->getOpcode()) {
3010  case ISD::CTTZ:
3011  case ISD::CTLZ:
3012  case ISD::CTPOP:
3013    // Zero extend the argument.
3014    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3015    // Perform the larger operation.
3016    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3017    if (Node->getOpcode() == ISD::CTTZ) {
3018      //if Tmp1 == sizeinbits(NVT) then Tmp1 = sizeinbits(Old VT)
3019      Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3020                          Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3021                          ISD::SETEQ);
3022      Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3023                          DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3024    } else if (Node->getOpcode() == ISD::CTLZ) {
3025      // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3026      Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3027                          DAG.getConstant(NVT.getSizeInBits() -
3028                                          OVT.getSizeInBits(), NVT));
3029    }
3030    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3031    break;
3032  case ISD::BSWAP: {
3033    unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3034    Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3035    Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3036    Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3037                          DAG.getConstant(DiffBits, TLI.getShiftAmountTy()));
3038    Results.push_back(Tmp1);
3039    break;
3040  }
3041  case ISD::FP_TO_UINT:
3042  case ISD::FP_TO_SINT:
3043    Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3044                                 Node->getOpcode() == ISD::FP_TO_SINT, dl);
3045    Results.push_back(Tmp1);
3046    break;
3047  case ISD::UINT_TO_FP:
3048  case ISD::SINT_TO_FP:
3049    Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3050                                 Node->getOpcode() == ISD::SINT_TO_FP, dl);
3051    Results.push_back(Tmp1);
3052    break;
3053  case ISD::AND:
3054  case ISD::OR:
3055  case ISD::XOR: {
3056    unsigned ExtOp, TruncOp;
3057    if (OVT.isVector()) {
3058      ExtOp   = ISD::BIT_CONVERT;
3059      TruncOp = ISD::BIT_CONVERT;
3060    } else if (OVT.isInteger()) {
3061      ExtOp   = ISD::ANY_EXTEND;
3062      TruncOp = ISD::TRUNCATE;
3063    } else {
3064      llvm_report_error("Cannot promote logic operation");
3065    }
3066    // Promote each of the values to the new type.
3067    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3068    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3069    // Perform the larger operation, then convert back
3070    Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3071    Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3072    break;
3073  }
3074  case ISD::SELECT: {
3075    unsigned ExtOp, TruncOp;
3076    if (Node->getValueType(0).isVector()) {
3077      ExtOp   = ISD::BIT_CONVERT;
3078      TruncOp = ISD::BIT_CONVERT;
3079    } else if (Node->getValueType(0).isInteger()) {
3080      ExtOp   = ISD::ANY_EXTEND;
3081      TruncOp = ISD::TRUNCATE;
3082    } else {
3083      ExtOp   = ISD::FP_EXTEND;
3084      TruncOp = ISD::FP_ROUND;
3085    }
3086    Tmp1 = Node->getOperand(0);
3087    // Promote each of the values to the new type.
3088    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3089    Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3090    // Perform the larger operation, then round down.
3091    Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3092    if (TruncOp != ISD::FP_ROUND)
3093      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3094    else
3095      Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3096                         DAG.getIntPtrConstant(0));
3097    Results.push_back(Tmp1);
3098    break;
3099  }
3100  case ISD::VECTOR_SHUFFLE: {
3101    SmallVector<int, 8> Mask;
3102    cast<ShuffleVectorSDNode>(Node)->getMask(Mask);
3103
3104    // Cast the two input vectors.
3105    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(0));
3106    Tmp2 = DAG.getNode(ISD::BIT_CONVERT, dl, NVT, Node->getOperand(1));
3107
3108    // Convert the shuffle mask to the right # elements.
3109    Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3110    Tmp1 = DAG.getNode(ISD::BIT_CONVERT, dl, OVT, Tmp1);
3111    Results.push_back(Tmp1);
3112    break;
3113  }
3114  case ISD::SETCC: {
3115    unsigned ExtOp = ISD::FP_EXTEND;
3116    if (NVT.isInteger()) {
3117      ISD::CondCode CCCode =
3118        cast<CondCodeSDNode>(Node->getOperand(2))->get();
3119      ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3120    }
3121    Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3122    Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3123    Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3124                                  Tmp1, Tmp2, Node->getOperand(2)));
3125    break;
3126  }
3127  }
3128}
3129
3130// SelectionDAG::Legalize - This is the entry point for the file.
3131//
3132void SelectionDAG::Legalize(CodeGenOpt::Level OptLevel) {
3133  /// run - This is the main entry point to this class.
3134  ///
3135  SelectionDAGLegalize(*this, OptLevel).LegalizeDAG();
3136}
3137
3138